3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-14 06:45:25 +00:00

Merge branch 'master' into polysat

This commit is contained in:
Jakob Rath 2023-07-10 09:45:55 +02:00
commit 59c3234fb8
196 changed files with 4705 additions and 4168 deletions

View file

@ -94,7 +94,7 @@ namespace sat {
// from clause x, y, z
// then ~x, ~y -> z
// look for ~y, z -> ~x - contains ternary(y, ~z, ~x)
// look for ~x, y -> u - u is used in a ternary claues (~y, x)
// look for ~x, y -> u - u is used in a ternary clause (~y, x)
// look for y, u -> ~x - contains ternary(~u, ~x, ~y)
// then ~x = if ~y then z else u

View file

@ -47,7 +47,7 @@ Marijn's version:
if inconsistent():
learn C (subsumes C or p)
else:
candidates' := C union ~(consequencs of propagate(~C))
candidates' := C union ~(consequences of propagate(~C))
candidates := candidates' intersect candidates
pop(1)
for q in candidates:
@ -77,7 +77,7 @@ Marijn's version:
if inconsistent():
learn C (subsumes C or p)
else:
candidates := candicates union C union ~(consequencs of propagate(~C))
candidates := candidates union C union ~(consequences of propagate(~C))
pop(1)
for q in candidates:
push(1)

View file

@ -28,7 +28,7 @@ namespace sat {
}
// for nary clauses
static bool contains_watched(watch_list const & wlist, clause const & c, clause_offset cls_off) {
bool integrity_checker::contains_watched(watch_list const & wlist, clause const & c, clause_offset cls_off) const {
for (watched const& w : wlist) {
if (w.is_clause()) {
if (w.get_clause_offset() == cls_off) {
@ -38,6 +38,8 @@ namespace sat {
}
}
}
TRACE("sat", tout << "clause " << c << " not found in watch-list\n");
TRACE("sat", s.display_watches(tout));
UNREACHABLE();
return false;
}

View file

@ -25,6 +25,7 @@ Revision History:
namespace sat {
class integrity_checker {
solver const & s;
bool contains_watched(watch_list const & wlist, clause const & c, clause_offset cls_off) const;
public:
integrity_checker(solver const & s);

View file

@ -7,15 +7,13 @@
Abstract:
proof replay and trim
The proof is trimmed by re-running the proof steps and collecting justified literals
at level 0. The proof is obtained by back-tracing the justificiations attached to literals.
Author:
Nikolaj Bjorner 2023-10-04
Notes:
--*/
#include "sat/sat_proof_trim.h"
@ -29,53 +27,50 @@ namespace sat {
Output: reduced trail - result
*/
unsigned_vector proof_trim::trim() {
unsigned_vector result;
m_core_literals.reset();
m_core_literals.insert(literal_vector());
vector<std::pair<unsigned, unsigned_vector>> proof_trim::trim() {
m_result.reset();
m_propagated.resize(num_vars(), false);
for (unsigned i = m_trail.size(); i-- > 0; ) {
IF_VERBOSE(10, s.display(verbose_stream() << "trim\n"));
auto const& [id, cl, clp, is_add, is_initial] = m_trail.back();
SASSERT(cl.empty());
m_result.push_back({id, unsigned_vector()});
conflict_analysis_core(m_conflict, m_conflict_clause);
m_trail.pop_back();
for (unsigned i = m_trail.size(); i-- > 0; ) {
auto const& [id, cl, clp, is_add, is_initial] = m_trail[i];
if (!is_add) {
revive(cl, clp);
continue;
}
}
IF_VERBOSE(10, s.display(verbose_stream()));
prune_trail(cl, clp);
IF_VERBOSE(10, verbose_stream() << cl << " " << in_core(cl, clp) << ": "; for (auto const& c : m_core_literals) verbose_stream() << "{" << c << "} ");
IF_VERBOSE(10, s.display(verbose_stream() << "\n"));
del(cl, clp);
if (!in_core(cl, clp))
if (!in_core(cl))
continue;
result.push_back(id);
IF_VERBOSE(4, verbose_stream() << cl << " in-core " << in_core(cl) << ": "; for (auto const& [k,v] : m_clauses) verbose_stream() << "{" << v.m_clauses << "} "; verbose_stream() << "\n");
m_result.push_back({id, unsigned_vector()});
if (is_initial)
continue;
conflict_analysis_core(cl, clp);
}
result.reverse();
return result;
m_result.reverse();
return m_result;
}
void proof_trim::del(literal_vector const& cl, clause* cp) {
CTRACE("sat", cp, tout << "del " << *cp << "\n");
if (cp)
s.detach_clause(*cp);
else
del(cl);
}
bool proof_trim::match_clause(literal_vector const& cl, literal l1, literal l2) const {
return cl.size() == 2 && ((l1 == cl[0] && l2 == cl[1]) || (l1 == cl[1] && l2 == cl[0]));
}
bool proof_trim::match_clause(literal_vector const& cl, literal l1, literal l2, literal l3) const {
return cl.size() == 3 &&
((l1 == cl[0] && l2 == cl[1] && l3 == cl[2]) ||
(l1 == cl[0] && l2 == cl[2] && l3 == cl[1]) ||
(l1 == cl[1] && l2 == cl[0] && l3 == cl[2]) ||
(l1 == cl[1] && l2 == cl[2] && l3 == cl[0]) ||
(l1 == cl[2] && l2 == cl[1] && l3 == cl[0]) ||
(l1 == cl[2] && l2 == cl[0] && l3 == cl[1]));
}
/**
* cl is on the trail if there is some literal l that is implied by cl
@ -90,6 +85,8 @@ namespace sat {
void proof_trim::prune_trail(literal_vector const& cl, clause* cp) {
m_in_clause.reset();
m_in_coi.reset();
// verbose_stream() << "prune trail " << cl << "\n";
if (cl.empty())
return;
@ -121,12 +118,21 @@ namespace sat {
auto js = s.get_justification(l);
bool in_coi = false;
if (js.is_clause())
for (literal lit : s.get_clause(j))
for (literal lit : s.get_clause(js))
in_coi |= m_in_coi.contains(lit.index());
else if (js.is_binary_clause())
in_coi = m_in_coi.contains(js.get_literal().index());
else
else if (js.is_none()) {
verbose_stream() << "none " << js << "\n";
}
else if (js.is_ext_justification()) {
verbose_stream() << js << "\n";
UNREACHABLE(); // approach does not work for external justifications
}
else {
verbose_stream() << js << "\n";
UNREACHABLE(); // approach does not work for external justifications
}
if (in_coi)
unassign_literal(l);
@ -134,6 +140,7 @@ namespace sat {
s.m_trail[j++] = s.m_trail[i];
}
s.m_trail.shrink(j);
// verbose_stream() << "trail after " << s.m_trail << "\n";
s.m_inconsistent = false;
s.m_qhead = s.m_trail.size();
s.propagate(false);
@ -188,11 +195,14 @@ namespace sat {
m_propagated[s.m_trail[i].var()] = true;
}
SASSERT(s.inconsistent());
IF_VERBOSE(3, verbose_stream() << s.m_not_l << " " << s.m_conflict << "\n");
IF_VERBOSE(3, s.display_justification(verbose_stream() << "conflict " << s.m_not_l << " ", s.m_conflict) << "\n");
IF_VERBOSE(3, s.display(verbose_stream()));
sat::literal l = sat::null_literal;
if (s.m_not_l != null_literal) {
add_core(~s.m_not_l, s.m_conflict);
add_dependency(s.m_not_l);
l = ~s.m_not_l;
}
add_core(l, s.m_conflict);
add_dependency(s.m_conflict);
for (unsigned i = s.m_trail.size(); i-- > trail_size0; ) {
@ -201,7 +211,7 @@ namespace sat {
if (!s.is_marked(v))
continue;
add_core(v);
s.reset_mark(v);
s.reset_mark(v);
add_dependency(s.get_justification(v));
}
if (!cl.empty())
@ -210,8 +220,10 @@ namespace sat {
void proof_trim::add_dependency(literal lit) {
bool_var v = lit.var();
if (m_propagated[v]) // literal was propagated after assuming ~C
s.mark(v);
if (m_propagated[v]) { // literal was propagated after assuming ~C
if (!s.is_marked(v))
s.mark(v);
}
else if (s.lvl(v) == 0) // literal depends on level 0, it is not assumed by ~C
// inefficient for repeated insertions ?
add_core(v);
@ -253,28 +265,28 @@ namespace sat {
m_clause.push_back(j.get_literal());
break;
case justification::CLAUSE:
s.get_clause(j).mark_used();
IF_VERBOSE(3, verbose_stream() << "add core " << s.get_clause(j) << "\n");
return;
for (auto lit : s.get_clause(j))
m_clause.push_back(lit);
break;
default:
verbose_stream() << j << "\n";
UNREACHABLE();
break;
}
std::sort(m_clause.begin(), m_clause.end());
IF_VERBOSE(3, verbose_stream() << "add core " << m_clause << "\n");
m_core_literals.insert(m_clause);
if (s.lvl(l) == 0) {
auto& [clauses, id, in_core] = m_clauses.find(m_clause);
in_core = true;
m_result.back().second.push_back(id);
if (l != null_literal && s.lvl(l) == 0) {
m_clause.reset();
m_clause.push_back(l);
m_core_literals.insert(m_clause);
m_clauses.insert_if_not_there(m_clause, {{}, 0, true }).m_in_core = true;
}
}
bool proof_trim::in_core(literal_vector const& cl, clause* cp) const {
if (cp)
return cp->was_used();
else
return m_core_literals.contains(cl);
bool proof_trim::in_core(literal_vector const& cl) const {
return m_clauses.find(cl).m_in_core;
}
void proof_trim::revive(literal_vector const& cl, clause* cp) {
@ -286,7 +298,7 @@ namespace sat {
clause* proof_trim::del(literal_vector const& cl) {
clause* cp = nullptr;
IF_VERBOSE(3, verbose_stream() << "del: " << cl << "\n");
TRACE("sat", tout << "del: " << cl << "\n");
if (cl.size() == 2) {
s.detach_bin_clause(cl[0], cl[1], true);
return cp;
@ -294,23 +306,15 @@ namespace sat {
auto* e = m_clauses.find_core(cl);
if (!e)
return cp;
auto& v = e->get_data().m_value;
if (!v.empty()) {
cp = v.back();
IF_VERBOSE(3, verbose_stream() << "del: " << *cp << "\n");
auto& [clauses, id, in_core] = e->get_data().m_value;
if (!clauses.empty()) {
cp = clauses.back();
TRACE("sat", tout << "del: " << *cp << "\n");
s.detach_clause(*cp);
v.pop_back();
clauses.pop_back();
}
return cp;
}
void proof_trim::save(literal_vector const& lits, clause* cl) {
if (!cl)
return;
IF_VERBOSE(3, verbose_stream() << "add: " << *cl << "\n");
auto& v = m_clauses.insert_if_not_there(lits, clause_vector());
v.push_back(cl);
}
}
proof_trim::proof_trim(params_ref const& p, reslimit& lim):
s(p, lim) {
@ -318,14 +322,53 @@ namespace sat {
}
void proof_trim::assume(unsigned id, bool is_initial) {
std::sort(m_clause.begin(), m_clause.end());
std::sort(m_clause.begin(), m_clause.end());
if (unit_or_binary_occurs())
return;
return;
if (!m_conflict.empty() && m_clause.empty()) {
m_clauses.insert(m_clause, { {}, id, m_clause.empty() });
m_trail.push_back({ id , m_clause, nullptr, true, is_initial });
}
if (!m_conflict.empty())
return;
IF_VERBOSE(3, verbose_stream() << (is_initial?"assume ":"rup ") << m_clause << "\n");
auto* cl = s.mk_clause(m_clause, status::redundant());
auto& [clauses, id2, in_core] = m_clauses.insert_if_not_there(m_clause, { {}, id, m_clause.empty() });
if (cl)
clauses.push_back(cl);
m_trail.push_back({ id, m_clause, cl, true, is_initial });
auto is_unit2 = [&]() {
if (s.value(m_clause[0]) == l_false)
std::swap(m_clause[0], m_clause[1]);
return s.value(m_clause[1]) == l_false;
};
auto is_unit = [&]() {
unsigned undef_idx = m_clause.size();
for (unsigned i = 0; i < m_clause.size(); ++i) {
sat::literal lit = (*cl)[i];
if (s.value(lit) != l_undef)
continue;
if (undef_idx < m_clause.size())
return false;
undef_idx = i;
}
if (undef_idx < m_clause.size()) {
std::swap((*cl)[undef_idx], (*cl)[0]);
return true;
}
return false;
};
if (m_clause.size() == 2 && is_unit2())
s.propagate_bin_clause(m_clause[0], m_clause[1]);
else if (m_clause.size() > 2 && is_unit())
s.propagate_clause(*cl, true, 0, s.cls_allocator().get_offset(cl));
s.propagate(false);
save(m_clause, cl);
if (s.inconsistent() || all_of(m_clause, [&](sat::literal lit) { return s.value(lit) == l_false; }))
set_conflict(m_clause, cl);
}
/**
@ -352,6 +395,4 @@ namespace sat {
void proof_trim::infer(unsigned id) {
assume(id, false);
}
}

View file

@ -30,11 +30,12 @@ namespace sat {
class proof_trim {
solver s;
literal_vector m_clause;
literal_vector m_clause, m_conflict;
uint_set m_in_clause;
uint_set m_in_coi;
clause* m_conflict_clause = nullptr;
vector<std::tuple<unsigned, literal_vector, clause*, bool, bool>> m_trail;
vector<std::pair<unsigned, unsigned_vector>> m_result;
struct hash {
unsigned operator()(literal_vector const& v) const {
@ -46,16 +47,20 @@ namespace sat {
return a == b;
}
};
map<literal_vector, clause_vector, hash, eq> m_clauses;
hashtable<literal_vector, hash, eq> m_core_literals;
struct clause_info {
clause_vector m_clauses;
unsigned m_id = 0;
bool m_in_core = false;
};
map<literal_vector, clause_info, hash, eq> m_clauses;
bool_vector m_propagated;
void del(literal_vector const& cl, clause* cp);
bool match_clause(literal_vector const& cl, literal l1, literal l2) const;
bool match_clause(literal_vector const& cl, literal l1, literal l2, literal l3) const;
void prune_trail(literal_vector const& cl, clause* cp);
void conflict_analysis_core(literal_vector const& cl, clause* cp);
@ -63,13 +68,13 @@ namespace sat {
void add_dependency(justification j);
void add_core(bool_var v);
void add_core(literal l, justification j);
bool in_core(literal_vector const& cl, clause* cp) const;
bool in_core(literal_vector const& cl) const;
void revive(literal_vector const& cl, clause* cp);
clause* del(literal_vector const& cl);
void save(literal_vector const& lits, clause* cl);
uint_set m_units;
bool unit_or_binary_occurs();
void set_conflict(literal_vector const& c, clause* cp) { m_conflict.reset(); m_conflict.append(c); m_conflict_clause = cp;}
public:
@ -85,7 +90,7 @@ namespace sat {
void infer(unsigned id);
void updt_params(params_ref const& p) { s.updt_params(p); }
unsigned_vector trim();
vector<std::pair<unsigned, unsigned_vector>> trim();
};
}

View file

@ -90,7 +90,7 @@ namespace sat {
solver::~solver() {
m_ext = nullptr;
SASSERT(m_config.m_num_threads > 1 || check_invariant());
SASSERT(m_config.m_num_threads > 1 || m_trim || check_invariant());
CTRACE("sat", !m_clauses.empty(), tout << "Delete clauses\n";);
del_clauses(m_clauses);
CTRACE("sat", !m_learned.empty(), tout << "Delete learned\n";);
@ -879,6 +879,7 @@ namespace sat {
m_conflict = c;
m_not_l = not_l;
TRACE("sat", display(display_justification(tout << "conflict " << not_l << " ", c) << "\n"));
TRACE("sat", display_watches(tout));
}
void solver::assign_core(literal l, justification j) {
@ -3462,7 +3463,7 @@ namespace sat {
}
}
// can't eliminat FUIP
// can't eliminate FUIP
SASSERT(is_marked_lit(m_lemma[0]));
unsigned j = 0;

View file

@ -47,7 +47,7 @@ class sat_smt_solver : public solver {
ast_manager& m;
trail_stack& m_trail;
expr_ref_vector m_refs;
obj_map<expr, expr*> m_dep2orig; // map original dependency to uninterpeted literal
obj_map<expr, expr*> m_dep2orig; // map original dependency to uninterpreted literal
u_map<expr*> m_lit2dep; // map from literal assumption to original expression
obj_map<expr, sat::literal> m_dep2lit; // map uninterpreted literal to sat literal

View file

@ -136,9 +136,22 @@ namespace arith {
arith_proof_hint const* solver::explain_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs) {
arith_proof_hint* hint = nullptr;
if (ctx.use_drat()) {
m_coeffs.reset();
for (auto const& e : m_explanation) {
if (inequality_source == m_constraint_sources[e.ci()])
m_coeffs.push_back(e.coeff());
}
m_arith_hint.set_type(ctx, hint_type::farkas_h);
for (auto lit : core)
m_arith_hint.add_lit(rational::one(), lit);
if (m_coeffs.size() == core.size()) {
unsigned i = 0;
for (auto lit : core)
m_arith_hint.add_lit(m_coeffs[i], lit), ++i;
}
else {
for (auto lit : core)
m_arith_hint.add_lit(rational::one(), lit);
}
for (auto const& [a,b] : eqs)
m_arith_hint.add_eq(a, b);
hint = m_arith_hint.mk(ctx);

View file

@ -160,7 +160,6 @@ namespace arith {
expr_ref_vector& terms = st.terms();
svector<theory_var>& vars = st.vars();
vector<rational>& coeffs = st.coeffs();
rational& offset = st.offset();
rational r;
expr* n1, * n2;
unsigned index = 0;
@ -204,7 +203,9 @@ namespace arith {
++index;
}
else if (a.is_numeral(n, r)) {
offset += coeffs[index] * r;
theory_var v = internalize_numeral(to_app(n), r);
coeffs[vars.size()] = coeffs[index];
vars.push_back(v);
++index;
}
else if (a.is_uminus(n, n1)) {
@ -457,6 +458,19 @@ namespace arith {
return v;
}
theory_var solver::internalize_numeral(app* n, rational const& val) {
theory_var v = mk_evar(n);
lpvar vi = get_lpvar(v);
if (vi == UINT_MAX) {
vi = lp().add_var(v, a.is_int(n));
add_def_constraint_and_equality(vi, lp::GE, val);
add_def_constraint_and_equality(vi, lp::LE, val);
register_fixed_var(v, val);
}
return v;
}
theory_var solver::internalize_mul(app* t) {
SASSERT(a.is_mul(t));
internalize_args(t, true);
@ -484,57 +498,32 @@ namespace arith {
theory_var v = mk_evar(term);
TRACE("arith", tout << mk_bounded_pp(term, m) << " v" << v << "\n";);
if (is_unit_var(st) && v == st.vars()[0]) {
if (is_unit_var(st) && v == st.vars()[0])
return st.vars()[0];
}
else if (is_one(st) && a.is_numeral(term)) {
return lp().local_to_external(get_one(a.is_int(term)));
}
else if (is_zero(st) && a.is_numeral(term)) {
return lp().local_to_external(get_zero(a.is_int(term)));
}
else {
init_left_side(st);
lpvar vi = get_lpvar(v);
if (vi == UINT_MAX) {
if (m_left_side.empty()) {
vi = lp().add_var(v, a.is_int(term));
add_def_constraint_and_equality(vi, lp::GE, st.offset());
add_def_constraint_and_equality(vi, lp::LE, st.offset());
register_fixed_var(v, st.offset());
return v;
}
if (!st.offset().is_zero()) {
m_left_side.push_back(std::make_pair(st.offset(), get_one(a.is_int(term))));
}
if (m_left_side.empty()) {
vi = lp().add_var(v, a.is_int(term));
add_def_constraint_and_equality(vi, lp::GE, rational(0));
add_def_constraint_and_equality(vi, lp::LE, rational(0));
}
else {
vi = lp().add_term(m_left_side, v);
SASSERT(lp::tv::is_term(vi));
TRACE("arith_verbose",
tout << "v" << v << " := " << mk_pp(term, m)
<< " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
lp().print_term(lp().get_term(lp::tv::raw(vi)), tout) << "\n";);
}
init_left_side(st);
lpvar vi = get_lpvar(v);
if (vi == UINT_MAX) {
if (m_left_side.empty()) {
vi = lp().add_var(v, a.is_int(term));
add_def_constraint_and_equality(vi, lp::GE, rational(0));
add_def_constraint_and_equality(vi, lp::LE, rational(0));
}
else {
vi = lp().add_term(m_left_side, v);
SASSERT(lp::tv::is_term(vi));
TRACE("arith_verbose",
tout << "v" << v << " := " << mk_pp(term, m)
<< " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
lp().print_term(lp().get_term(lp::tv::raw(vi)), tout) << "\n";);
}
return v;
}
return v;
}
bool solver::is_unit_var(scoped_internalize_state& st) {
return st.offset().is_zero() && st.vars().size() == 1 && st.coeffs()[0].is_one();
}
bool solver::is_one(scoped_internalize_state& st) {
return st.offset().is_one() && st.vars().empty();
}
bool solver::is_zero(scoped_internalize_state& st) {
return st.offset().is_zero() && st.vars().empty();
return st.vars().size() == 1 && st.coeffs()[0].is_one();
}
void solver::init_left_side(scoped_internalize_state& st) {

View file

@ -145,13 +145,11 @@ namespace arith {
expr_ref_vector m_terms;
vector<rational> m_coeffs;
svector<theory_var> m_vars;
rational m_offset;
ptr_vector<expr> m_to_ensure_enode, m_to_ensure_var;
internalize_state(ast_manager& m) : m_terms(m) {}
void reset() {
m_terms.reset();
m_coeffs.reset();
m_offset.reset();
m_vars.reset();
m_to_ensure_enode.reset();
m_to_ensure_var.reset();
@ -178,7 +176,6 @@ namespace arith {
expr_ref_vector& terms() { return m_st.m_terms; }
vector<rational>& coeffs() { return m_st.m_coeffs; }
svector<theory_var>& vars() { return m_st.m_vars; }
rational& offset() { return m_st.m_offset; }
ptr_vector<expr>& to_ensure_enode() { return m_st.m_to_ensure_enode; }
ptr_vector<expr>& to_ensure_var() { return m_st.m_to_ensure_var; }
void push(expr* e, rational c) { m_st.m_terms.push_back(e); m_st.m_coeffs.push_back(c); }
@ -254,6 +251,7 @@ namespace arith {
lp::explanation m_explanation;
vector<nla::lemma> m_nla_lemma_vector;
literal_vector m_core, m_core2;
vector<rational> m_coeffs;
svector<enode_pair> m_eqs;
vector<parameter> m_params;
nla::lemma m_lemma;
@ -290,6 +288,7 @@ namespace arith {
void ensure_arg_vars(app* t);
theory_var internalize_power(app* t, app* n, unsigned p);
theory_var internalize_mul(app* t);
theory_var internalize_numeral(app* t, rational const& v);
theory_var internalize_def(expr* term);
theory_var internalize_def(expr* term, scoped_internalize_state& st);
theory_var internalize_linearized_def(expr* term, scoped_internalize_state& st);

View file

@ -43,15 +43,19 @@ namespace user_solver {
m_prop.push_back(prop_info(explain, v, r));
}
void solver::propagate_cb(
unsigned num_fixed, expr* const* fixed_ids,
unsigned num_eqs, expr* const* eq_lhs, expr* const* eq_rhs,
expr* conseq) {
bool solver::propagate_cb(
unsigned num_fixed, expr* const* fixed_ids,
unsigned num_eqs, expr* const* eq_lhs, expr* const* eq_rhs,
expr* conseq) {
auto* n = ctx.get_enode(conseq);
if (n && s().value(ctx.enode2literal(n)) == l_true)
return false;
m_fixed_ids.reset();
for (unsigned i = 0; i < num_fixed; ++i)
m_fixed_ids.push_back(get_th_var(fixed_ids[i]));
m_prop.push_back(prop_info(num_fixed, m_fixed_ids.data(), num_eqs, eq_lhs, eq_rhs, expr_ref(conseq, m)));
DEBUG_CODE(validate_propagation(););
return true;
}
void solver::register_cb(expr* e) {
@ -76,7 +80,7 @@ namespace user_solver {
sat::check_result solver::check() {
if (!(bool)m_final_eh)
return sat::check_result::CR_DONE;
return sat::check_result::CR_DONE;
unsigned sz = m_prop.size();
m_final_eh(m_user_context, this);
return sz == m_prop.size() ? sat::check_result::CR_DONE : sat::check_result::CR_CONTINUE;

View file

@ -135,7 +135,7 @@ namespace user_solver {
bool has_fixed() const { return (bool)m_fixed_eh; }
void propagate_cb(unsigned num_fixed, expr* const* fixed_ids, unsigned num_eqs, expr* const* lhs, expr* const* rhs, expr* conseq) override;
bool propagate_cb(unsigned num_fixed, expr* const* fixed_ids, unsigned num_eqs, expr* const* lhs, expr* const* rhs, expr* conseq) override;
void register_cb(expr* e) override;
bool next_split_cb(expr* e, unsigned idx, lbool phase) override;