3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 09:55:19 +00:00

initial sketch for dominator based simplifiation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-08-28 20:03:31 -07:00
parent f20e95184e
commit 597f77cd77
2 changed files with 354 additions and 9 deletions

View file

@ -23,10 +23,7 @@ def init_project_def():
add_lib('subpaving', ['interval'], 'math/subpaving')
add_lib('ast', ['util', 'polynomial'])
add_lib('rewriter', ['ast', 'polynomial', 'automata'], 'ast/rewriter')
# Simplifier module will be deleted in the future.
# It has been replaced with rewriter module.
add_lib('simplifier', ['rewriter'], 'ast/simplifier')
add_lib('macros', ['simplifier'], 'ast/macros')
add_lib('macros', ['rewriter'], 'ast/macros')
add_lib('normal_forms', ['rewriter'], 'ast/normal_forms')
add_lib('model', ['rewriter'])
add_lib('tactic', ['ast', 'model'])
@ -47,11 +44,11 @@ def init_project_def():
add_lib('extra_cmds', ['cmd_context', 'subpaving_tactic', 'arith_tactics'], 'cmd_context/extra_cmds')
add_lib('smt2parser', ['cmd_context', 'parser_util'], 'parsers/smt2')
add_lib('proof_checker', ['rewriter'], 'ast/proof_checker')
add_lib('fpa', ['ast', 'util', 'simplifier', 'model'], 'ast/fpa')
add_lib('pattern', ['normal_forms', 'smt2parser', 'simplifier'], 'ast/pattern')
add_lib('bit_blaster', ['rewriter', 'simplifier'], 'ast/rewriter/bit_blaster')
add_lib('smt_params', ['ast', 'simplifier', 'pattern', 'bit_blaster'], 'smt/params')
add_lib('proto_model', ['model', 'simplifier', 'smt_params'], 'smt/proto_model')
add_lib('fpa', ['ast', 'util', 'rewriter', 'model'], 'ast/fpa')
add_lib('pattern', ['normal_forms', 'smt2parser', 'rewriter'], 'ast/pattern')
add_lib('bit_blaster', ['rewriter', 'rewriter'], 'ast/rewriter/bit_blaster')
add_lib('smt_params', ['ast', 'rewriter', 'pattern', 'bit_blaster'], 'smt/params')
add_lib('proto_model', ['model', 'rewriter', 'smt_params'], 'smt/proto_model')
add_lib('smt', ['bit_blaster', 'macros', 'normal_forms', 'cmd_context', 'proto_model',
'substitution', 'grobner', 'euclid', 'simplex', 'proof_checker', 'pattern', 'parser_util', 'fpa', 'lp'])
add_lib('bv_tactics', ['tactic', 'bit_blaster', 'core_tactics'], 'tactic/bv')

View file

@ -0,0 +1,348 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
dom_simplify_tactic.cpp
Abstract:
Dominator-based context simplifer.
Author:
Nikolaj and Nuno
Notes:
--*/
#if 0
#include "ast/ast.h"
class expr_dominators {
public:
typedef obj_map<expr, ptr_vector<expr>> tree_t;
private:
ast_manager& m;
expr_ref m_root;
obj_map<unsigned> m_expr2post; // reverse post-order number
ptr_vector<expr> m_post2expr;
tree_t m_parents;
obj_map<expr, expr*> m_doms;
tree_t m_tree;
void add_edge(tree_t& tree, expr * src, expr* dst) {
tree.insert_if_not_there(src, ptr_vector<expr>()).push_back(dst);
}
/**
\brief compute a post-order traversal for e.
Also populate the set of parents
*/
void compute_post_order() {
unsigned post_num = 0;
SASSERT(m_post2expr.empty());
SASSERT(m_expr2post.empty());
ast_mark mark;
ptr_vector<expr> todo;
todo.push_back(m_root);
while (!todo.empty()) {
expr* e = todo.back();
if (is_marked(e)) {
todo.pop_back();
continue;
}
if (is_app(e)) {
app* a = to_app(e);
bool done = true;
for (expr* arg : *a) {
if (!is_marked(arg)) {
todo.push_back(arg);
done = false;
}
}
if (done) {
mark.mark(e);
m_expr2post.insert(e, post_num++);
m_post2expr.push_back(e);
todo.pop_back();
for (expr* arg : *a) {
add_edge(m_parents, a, arg);
}
}
}
else {
todo.pop_back();
}
}
}
expr* intersect(expr* x, expr * y) {
unsigned n1 = m_expr2post[x];
unsigned n2 = m_expr2post[y];
while (n1 != n2) {
if (n1 < n2)
n1 = m_doms[n1];
else if (n1 > n2)
n2 = m_doms[n2];
}
return n1;
}
void compute_dominators() {
expr * e = m_root;
SASSERT(m_doms.empty());
m_doms.insert(e, e);
bool change = true;
while (change) {
change = false;
SASSERT(m_post2expr.back() == e);
for (unsigned i = 0; i < m_post2expr.size() - 1; ++i) {
expr * child = m_post2expr[i];
ptr_vector<expr> const& p = m_parents[child];
SASSERT(!p.empty());
expr * new_idom = p[0], * idom2 = 0;
for (unsigned j = 1; j < p.size(); ++j) {
if (m_doms.find(p[j], idom2)) {
new_idom = intersect(new_idom, idom2);
}
}
if (!m_doms.find(child, idom2) || idom2 != new_idom) {
m_doms.insert(child, new_idom);
}
}
}
}
void extract_tree() {
for (auto const& kv : m_doms) {
expr * child = kv.m_key;
for (expr * parent : kv.m_value) {
add_edge(m_tree, parent, child);
}
}
}
void reset() {
m_expr2post.reset();
m_post2expr.reset();
m_parents.reset();
m_doms.reset();
m_tree.reset();
m_root.reset();
}
public:
expr_dominators(ast_manager& m): m(m), m_root(m) {}
void compile(expr * e) {
reset();
m_root = e;
compute_post_order();
compute_dominators();
extract_tree();
}
void compile(unsigned sz, expr * const* es) {
expr_ref e(m.mk_and(sz, es), m);
compile(e);
}
tree_t const& get_tree() { return m_tree; }
};
// goes to header file:
class dom_simplify_tactic : public tactic {
public:
class simplifier {
public:
virtual ~simplifier() {}
/**
\brief assert_expr performs an implicit push
*/
virtual bool assert_expr(expr * t, bool sign) = 0;
/**
\brief apply simplification.
*/
virtual void operator()(expr_ref& r) = 0;
/**
\brief pop scopes accumulated from assertions.
*/
virtual void pop(unsigned num_scopes) = 0;
};
private:
simplifier& m_simplifier;
params_ref m_params;
expr_ref_vector m_trail;
obj_map<expr, expr*> m_result;
expr_dominators m_dominators;
expr_ref simplify(expr* t);
expr_ref simplify_ite(app * ite);
expr_ref simplify_and(app * ite) { return simplify_and_or(true, ite); }
expr_ref simplify_or(app * ite) { return simplify_and_or(false, ite); }
expr_ref simplify_and_or(bool is_and app * ite);
expr_ref get_cache(expr* t) { if (!m_result.find(r, r)) r = t; return expr_ref(r, m); }
void cache(expr *t, expr* r) { m_result.insert(t, r); m_trail.push_back(r); }
void simplify_goal(goal_ref& g);
public:
dom_simplify_tactic(ast_manager & m, simplifier& s, params_ref const & p = params_ref());
virtual tactic * translate(ast_manager & m);
virtual ~dom_simplify_tactic();
virtual void updt_params(params_ref const & p);
static void get_param_descrs(param_descrs & r);
virtual void collect_param_descrs(param_descrs & r) { get_param_descrs(r); }
virtual void operator()(goal_ref const & in,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core);
virtual void cleanup();
};
// implementation:
expr_ref dom_simplifier_tactic::simplify_ite(app * ite) {
expr_ref r(m);
expr * c = 0, * t = 0, * e = 0;
VERIFY(m.is_ite(ite, c, t, e));
unsigned old_lvl = scope_level();
expr_ref new_c = simplify(c);
if (m.is_true(new_c)) {
r = simplify(t);
}
else if (m.is_false(new_c) || !assert_expr(new_c, false)) {
r = simplify(e);
}
else {
expr_ref t = simplify(t);
pop(scope_level() - old_lvl);
if (!assert_expr(new_c, true)) {
return new_t;
}
expr_ref new_e = simplify(e);
pop(scope_level() - old_lvl);
if (c == new_c && t == new_t && e == new_e) {
r = ite;
}
else if (new_t == new_e) {
r = new_t;
}
else {
TRACE("tactic", tout << new_c << "\n" << new_t << "\n" << new_e << "\n";);
r = m.mk_ite(new_c, new_t, new_c);
}
}
return r;
}
expr_ref dom_simplifier_tactic::simplify(expr * e0) {
expr_ref r(m);
expr* e = 0;
if (!m_result.find(e0, e)) {
e = e0;
}
if (m.is_ite(e)) {
r = simplify_ite(to_app(e));
}
else if (m.is_and(e)) {
r = simplify_and(to_app(e));
}
else if (m.is_or(e)) {
r = simplify_or(to_app(e));
}
else {
tree_t const& t = m_dominators.get_tree();
if (t.contains(e)) {
ptr_vector<expr> const& children = t[e];
for (expr * child : children) {
simplify(child);
}
}
if (is_app(e)) {
m_args.reset();
for (expr* arg : *to_app(e)) {
m_args.push_back(get_cached(arg));
}
r = m.mk_app(to_app(e)->get_decl(), m_args.size(), m_args.c_ptr());
}
else {
r = e;
}
}
m_simplifier(r);
cache(e0, r);
return r;
}
expr_ref dom_simplifier_tactic::simplify_or_and(bool is_and, app * e) {
expr_ref r(m);
unsigned old_lvl = scope_level();
m_args.reset();
for (expr * arg : *e) {
r = simplify(arg);
if (!assert_expr(r, is_and)) {
r = is_and ? m.mk_false() : m.mk_true();
}
m_args.push_back(r);
}
pop(scope_level() - old_lvl);
m_args.reverse();
m_args2.reset();
for (expr * arg : m_args) {
r = simplify(arg);
if (!assert_expr(r, is_and)) {
r = is_and ? m.mk_false() : m.mk_true();
}
m_args2.push_back(r);
}
pop(scope_level() - old_lvl);
m_args2.reverse();
r = is_and ? mk_and(m_args2) : mk_or(m_args2);
return r;
}
void dom_simplifier_tactic::simplify_goal(goal& g) {
expr_ref_vector args(m);
expr_ref fml(m);
for (unsigned i = 0; i < sz; ++i) args.push_back(g.form(i));
fml = mk_and(args);
expr_ref tmp(fml);
// TBD: deal with dependencies.
do {
m_result.reset();
m_trail.reset();
m_dominators.compile(fml);
#if 0
for (unsigned i = 0; i < sz; ++i) {
r = simplify(g.form(i));
// TBD: simplfy goal as a conjuction ?
//
}
#endif
tmp = fml;
fml = simplify(fml);
}
while (tmp != fml);
//g.reset();
//g.add(fml);
}
#endif