3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-19 12:23:38 +00:00

working on viable/explain

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2024-01-03 10:56:56 -08:00
parent e670194a2d
commit 5730cad4e0
4 changed files with 83 additions and 43 deletions

View file

@ -449,6 +449,18 @@ namespace polysat {
s.get_bitvector_sub_slices(v, out); s.get_bitvector_sub_slices(v, out);
} }
pdd core::mk_zero_extend(unsigned sz, pdd const& p) {
if (p.is_val())
return value(p.val(), p.manager().power_of_2() + sz);
throw default_exception("nyi zero_extend");
}
pdd core::mk_extract(unsigned hi, unsigned lo, pdd const& p) {
if (p.is_val())
return value(p.val(), hi - lo + 1);
throw default_exception("nyi extract");
}
bool core::inconsistent() const { bool core::inconsistent() const {
return s.inconsistent(); return s.inconsistent();
} }

View file

@ -158,7 +158,8 @@ namespace polysat {
void get_bitvector_suffixes(pvar v, offset_slices& out); void get_bitvector_suffixes(pvar v, offset_slices& out);
void get_fixed_bits(pvar v, fixed_bits_vector& fixed_slice); void get_fixed_bits(pvar v, fixed_bits_vector& fixed_slice);
void get_subslices(pvar v, offset_slices& out); void get_subslices(pvar v, offset_slices& out);
pdd mk_extract(unsigned hi, unsigned lo, pdd const& p) { throw default_exception("nyi extract"); } pdd mk_zero_extend(unsigned sz, pdd const& p);
pdd mk_extract(unsigned hi, unsigned lo, pdd const& p);
/* /*
* Saturation * Saturation

View file

@ -85,7 +85,6 @@ namespace polysat {
find_t viable::find_viable(pvar v, rational& lo) { find_t viable::find_viable(pvar v, rational& lo) {
m_explain.reset(); m_explain.reset();
m_ineqs.reset();
m_var = v; m_var = v;
m_num_bits = c.size(v); m_num_bits = c.size(v);
m_fixed_bits.reset(v); m_fixed_bits.reset(v);
@ -106,11 +105,10 @@ namespace polysat {
continue; continue;
} }
m_explain.push_back(n); update_value_to_high(lo, n);
m_explain.push_back({ n, lo });
if (is_conflict()) if (is_conflict())
return find_t::empty; return find_t::empty;
update_value_to_high(lo, n);
} }
return find_t::resource_out; return find_t::resource_out;
@ -457,12 +455,12 @@ namespace polysat {
*/ */
bool viable::is_conflict() { bool viable::is_conflict() {
auto last = m_explain.back(); auto last = m_explain.back();
unsigned bw = last->bit_width; unsigned bw = last.e->bit_width;
for (unsigned i = m_explain.size() - 1; i-- > 0; ) { for (unsigned i = m_explain.size() - 1; i-- > 0; ) {
auto e = m_explain[i]; auto e = m_explain[i];
if (bw < e->bit_width) if (bw < e.e->bit_width)
return false; return false;
if (last == e) if (last.e == e.e)
return true; return true;
} }
return false; return false;
@ -478,20 +476,20 @@ namespace polysat {
uint_set seen; uint_set seen;
auto last = m_explain.back(); auto last = m_explain.back();
auto after = last; auto after = last;
unsigned bw = c.size(last->var); unsigned bw = c.size(last.e->var);
for (unsigned i = m_explain.size() - 1; i-- > 0; ) { for (unsigned i = m_explain.size() - 1; i-- > 0; ) {
auto e = m_explain[i]; auto e = m_explain[i];
auto index = e->constraint_index; auto index = e.e->constraint_index;
explain_overlap(e, after, result); explain_overlap(e, after, result);
if (e == last) if (e.e == last.e)
break; break;
after = e; after = e;
if (seen.contains(index.id)) if (seen.contains(index.id))
continue; continue;
seen.insert(index.id); seen.insert(index.id);
if (m_var != e->var) if (m_var != e.e->var)
result.push_back(offset_claim(m_var, { e->var, 0 })); result.push_back(offset_claim(m_var, { e.e->var, 0 }));
for (auto const& sc : e->side_cond) for (auto const& sc : e.e->side_cond)
result.push_back(c.propagate(sc, c.explain_eval(sc))); result.push_back(c.propagate(sc, c.explain_eval(sc)));
result.push_back(c.get_dependency(index)); result.push_back(c.get_dependency(index));
} }
@ -501,35 +499,65 @@ namespace polysat {
return result; return result;
} }
void viable::explain_overlap(entry* e, entry* after, dependency_vector& deps) { /*
auto bw = c.size(e->var); * For two consecutive intervals
auto bw_after = c.size(after->var); *
auto t = e->interval.hi(); * - 2^kx \not\in [lo, hi[,
auto lo = after->interval.lo(); * - 2^k'y \not\in [lo', hi'[
auto hi = after->interval.hi(); *
* Where:
* - w is the width of x, w' the width of y
* - bw is the bit-width of x, bw' the bit-width of y
* - k = w - bwx, k' = w' - bw'
*
* We want to encode the constraint that (2^k' hi)[w'] in [lo', hi'[
*
* Note that x in [lo, hi[ <=> x - lo < hi - lo
* If k' = 0, w' = w, there is nothing to do.
* If w' > w, then hi <- zero_extend(w' - w, hi)
* If w' < w, then hi <- hi[w' - 1:0]
* If k' > 0, then hi <- 2^k' hi
*
* TODO: So far we assume that hi is divisible by 2^k.
*
*/
SASSERT(after->bit_width <= bw_after); void viable::explain_overlap(explanation const& e, explanation const& after, dependency_vector& deps) {
SASSERT(e->bit_width <= bw); auto bw = c.size(e.e->var);
auto bw_after = c.size(after.e->var);
auto t = e.e->interval.hi();
auto lo = after.e->interval.lo();
auto hi = after.e->interval.hi();
// if e/after use same bit-width, but different layer, then .. verbose_stream() << e.e->interval << " then " << after.e->interval << "\n";
//
if (bw < bw_after) { SASSERT(after.e->bit_width <= bw_after);
SASSERT(after->bit_width == bw_after); SASSERT(e.e->bit_width <= bw);
SASSERT(e->bit_width = bw);
verbose_stream() << t << " " << lo << " " << hi << "\n"; if (bw_after > bw) {
auto s = c.mk_extract(bw - 1, 0, t); auto eq = cs.eq(t, c.value(mod(e.value, rational::power_of_two(bw)), bw));
if (!eq.is_always_true())
deps.push_back(c.propagate(eq, c.explain_eval(eq)));
t.reset(lo.manager()); t.reset(lo.manager());
t = s; t = c.value(e.value, bw_after);
} }
else if (bw > bw_after) {
throw default_exception("Nyi after"); if (bw_after < bw) {
// auto s = c.mk_zero_extend(bw - bw_after, t); auto eq = cs.eq(t, c.value(e.value, bw));
// t.reset(lo.manager()); if (!eq.is_always_true())
// t = s; deps.push_back(c.propagate(eq, c.explain_eval(eq)));
t.reset(lo.manager());
t = c.value(mod(e.value, rational::power_of_two(bw_after)), bw_after);
} }
if (after.e->bit_width < bw_after)
t *= rational::power_of_two(bw_after - after.e->bit_width);
auto sc = cs.ult(t - lo, hi - lo); auto sc = cs.ult(t - lo, hi - lo);
verbose_stream() << "in interval: " << sc << "\n";
if (sc.is_always_true()) if (sc.is_always_true())
return; return;
SASSERT(!sc.is_always_false());
deps.push_back(c.propagate(sc, c.explain_eval(sc))); deps.push_back(c.propagate(sc, c.explain_eval(sc)));
} }
@ -647,8 +675,7 @@ namespace polysat {
} }
if (ne->interval.is_full()) { if (ne->interval.is_full()) {
m_explain.reset(); m_explain.reset();
m_ineqs.reset(); m_explain.push_back({ ne, rational::zero() });
m_explain.push_back(ne);
m_fixed_bits.reset(); m_fixed_bits.reset();
m_var = v; m_var = v;
return false; return false;

View file

@ -86,15 +86,15 @@ namespace polysat {
}; };
// short for t in [lo,hi[ // short for t in [lo,hi[
struct interval_member { struct explanation {
entry* prev, * next; entry* e;
rational value;
}; };
ptr_vector<entry> m_alloc; ptr_vector<entry> m_alloc;
vector<layers> m_units; // set of viable values based on unit multipliers, layered by bit-width in descending order vector<layers> m_units; // set of viable values based on unit multipliers, layered by bit-width in descending order
ptr_vector<entry> m_equal_lin; // entries that have non-unit multipliers, but are equal ptr_vector<entry> m_equal_lin; // entries that have non-unit multipliers, but are equal
ptr_vector<entry> m_diseq_lin; // entries that have distinct non-zero multipliers ptr_vector<entry> m_diseq_lin; // entries that have distinct non-zero multipliers
vector<interval_member> m_ineqs; // inequalities to justify that values are not viable. vector<explanation> m_explain; // entries that explain the current propagation or conflict
ptr_vector<entry> m_explain; // entries that explain the current propagation or conflict
bool well_formed(entry* e); bool well_formed(entry* e);
bool well_formed(layers const& ls); bool well_formed(layers const& ls);
@ -122,7 +122,7 @@ namespace polysat {
void update_value_to_high(rational& val, entry* e); void update_value_to_high(rational& val, entry* e);
bool is_conflict(); bool is_conflict();
void explain_overlap(entry* e, entry* after, dependency_vector& deps); void explain_overlap(explanation const& e, explanation const& after, dependency_vector& deps);
lbool next_viable_layer(pvar w, layer& l, rational& val); lbool next_viable_layer(pvar w, layer& l, rational& val);