3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

zero-length automaton solution fix

This commit is contained in:
Murphy Berzish 2018-01-18 17:52:55 -05:00
parent dbb15f65b5
commit 5727950a3c

View file

@ -9811,33 +9811,85 @@ namespace smt {
continue;
}
if (exact_length_value.is_zero()) {
// shortcut
expr_ref lhs(ctx.mk_eq_atom(mk_strlen(str), m_autil.mk_numeral(rational::zero(), true)), m);
expr_ref rhs(ctx.mk_eq_atom(str, mk_string("")), m);
assert_implication(lhs, rhs);
} else {
// find a consistent automaton for this term
bool found = false;
regex_automaton_under_assumptions assumption;
if (regex_automaton_assumptions.contains(re) &&
!regex_automaton_assumptions[re].empty()){
for (svector<regex_automaton_under_assumptions>::iterator it = regex_automaton_assumptions[re].begin();
it != regex_automaton_assumptions[re].end(); ++it) {
regex_automaton_under_assumptions autA = *it;
rational assumed_upper_bound, assumed_lower_bound;
bool assumes_upper_bound = autA.get_upper_bound(assumed_upper_bound);
bool assumes_lower_bound = autA.get_lower_bound(assumed_lower_bound);
if (!assumes_upper_bound && !assumes_lower_bound) {
// automaton with no assumptions is always usable
assumption = autA;
found = true;
break;
// find a consistent automaton for this term
bool found = false;
regex_automaton_under_assumptions assumption;
if (regex_automaton_assumptions.contains(re) &&
!regex_automaton_assumptions[re].empty()){
for (svector<regex_automaton_under_assumptions>::iterator it = regex_automaton_assumptions[re].begin();
it != regex_automaton_assumptions[re].end(); ++it) {
regex_automaton_under_assumptions autA = *it;
rational assumed_upper_bound, assumed_lower_bound;
bool assumes_upper_bound = autA.get_upper_bound(assumed_upper_bound);
bool assumes_lower_bound = autA.get_lower_bound(assumed_lower_bound);
if (!assumes_upper_bound && !assumes_lower_bound) {
// automaton with no assumptions is always usable
assumption = autA;
found = true;
break;
}
// check consistency of bounds assumptions
} // foreach(a in regex_automaton_assumptions)
}
if (found) {
if (exact_length_value.is_zero()) {
// check consistency of 0-length solution with automaton
eautomaton * aut = assumption.get_automaton();
bool zero_solution = false;
unsigned initial_state = aut->init();
if (aut->is_final_state(initial_state)) {
zero_solution = true;
} else {
unsigned_vector eps_states;
aut->get_epsilon_closure(initial_state, eps_states);
for (unsigned_vector::iterator it = eps_states.begin(); it != eps_states.end(); ++it) {
unsigned state = *it;
if (aut->is_final_state(state)) {
zero_solution = true;
break;
}
}
// check consistency of bounds assumptions
} // foreach(a in regex_automaton_assumptions)
}
if (found) {
}
// now check polarity of automaton wrt. original term
if ( (current_assignment == l_true && !assumption.get_polarity())
|| (current_assignment == l_false && assumption.get_polarity())) {
// invert sense
NOT_IMPLEMENTED_YET();
}
if (zero_solution) {
TRACE("str", tout << "zero-length solution OK -- asserting empty path constraint" << std::endl;);
expr_ref_vector lhs_terms(m);
if (current_assignment == l_true) {
lhs_terms.push_back(str_in_re);
} else {
lhs_terms.push_back(m.mk_not(str_in_re));
}
lhs_terms.push_back(ctx.mk_eq_atom(mk_strlen(str), m_autil.mk_numeral(exact_length_value, true)));
expr_ref lhs(mk_and(lhs_terms), m);
expr_ref rhs(ctx.mk_eq_atom(str, mk_string("")), m);
assert_implication(lhs, rhs);
regex_terms_with_path_constraints.insert(str_in_re);
m_trail_stack.push(insert_obj_trail<theory_str, expr>(regex_terms_with_path_constraints, str_in_re));
} else {
TRACE("str", tout << "zero-length solution not admitted by this automaton -- asserting conflict clause" << std::endl;);
expr_ref_vector lhs_terms(m);
if (current_assignment == l_true) {
lhs_terms.push_back(str_in_re);
} else {
lhs_terms.push_back(m.mk_not(str_in_re));
}
lhs_terms.push_back(ctx.mk_eq_atom(mk_strlen(str), m_autil.mk_numeral(exact_length_value, true)));
expr_ref lhs(mk_and(lhs_terms), m);
expr_ref conflict(m.mk_not(lhs), m);
assert_axiom(conflict);
}
regex_axiom_add = true;
regex_inc_counter(regex_length_attempt_count, re);
continue;
} else {
expr_ref pathConstraint(m);
expr_ref characterConstraints(m);
pathConstraint = generate_regex_path_constraints(str, assumption.get_automaton(), exact_length_value, characterConstraints);
@ -9876,30 +9928,30 @@ namespace smt {
TRACE("str", tout << "length attempt count for " << mk_pp(re, m) << " is " << v << std::endl;);
}
continue;
} else {
// no automata available, or else all bounds assumptions are invalid
unsigned expected_complexity = estimate_regex_complexity(re);
if (expected_complexity <= m_params.m_RegexAutomata_DifficultyThreshold || regex_get_counter(regex_fail_count, str_in_re) >= m_params.m_RegexAutomata_FailedAutomatonThreshold) {
CTRACE("str", regex_get_counter(regex_fail_count, str_in_re) >= m_params.m_RegexAutomata_FailedAutomatonThreshold,
tout << "failed automaton threshold reached for " << mk_pp(str_in_re, m) << " -- automatically constructing full automaton" << std::endl;);
eautomaton * aut = m_mk_aut(re);
aut->compress();
regex_automata.push_back(aut);
regex_automaton_under_assumptions new_aut(re, aut, true);
if (!regex_automaton_assumptions.contains(re)) {
regex_automaton_assumptions.insert(re, svector<regex_automaton_under_assumptions>());
}
regex_automaton_assumptions[re].push_back(new_aut);
TRACE("str", tout << "add new automaton for " << mk_pp(re, m) << ": no assumptions" << std::endl;);
regex_axiom_add = true;
find_automaton_initial_bounds(str_in_re, aut);
} else {
regex_inc_counter(regex_fail_count, str_in_re);
}
continue;
}
} // !length is zero
} else {
// no automata available, or else all bounds assumptions are invalid
unsigned expected_complexity = estimate_regex_complexity(re);
if (expected_complexity <= m_params.m_RegexAutomata_DifficultyThreshold || regex_get_counter(regex_fail_count, str_in_re) >= m_params.m_RegexAutomata_FailedAutomatonThreshold) {
CTRACE("str", regex_get_counter(regex_fail_count, str_in_re) >= m_params.m_RegexAutomata_FailedAutomatonThreshold,
tout << "failed automaton threshold reached for " << mk_pp(str_in_re, m) << " -- automatically constructing full automaton" << std::endl;);
eautomaton * aut = m_mk_aut(re);
aut->compress();
regex_automata.push_back(aut);
regex_automaton_under_assumptions new_aut(re, aut, true);
if (!regex_automaton_assumptions.contains(re)) {
regex_automaton_assumptions.insert(re, svector<regex_automaton_under_assumptions>());
}
regex_automaton_assumptions[re].push_back(new_aut);
TRACE("str", tout << "add new automaton for " << mk_pp(re, m) << ": no assumptions" << std::endl;);
regex_axiom_add = true;
find_automaton_initial_bounds(str_in_re, aut);
} else {
regex_inc_counter(regex_fail_count, str_in_re);
}
continue;
}
} // get_len_value()
expr_ref str_len(mk_strlen(str), m);
rational lower_bound_value;