mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 09:34:08 +00:00
remove incorrect order lemmas
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
b0ffad95b0
commit
56690d16da
|
@ -212,24 +212,8 @@ bool order::order_lemma_on_ac_and_bc(const monic& rm_ac,
|
|||
// We try to find a monic n = cd, such that |b| = |d|
|
||||
// and get a lemma m R n & |b| = |d| => ab/|b| R cd /|d|, where R is a relation
|
||||
void order::order_lemma_on_factorization(const monic& m, const factorization& ab) {
|
||||
bool sign = m.rsign();
|
||||
for (factor f: ab)
|
||||
sign ^= _().canonize_sign(f);
|
||||
const rational rsign = sign_to_rat(sign);
|
||||
const rational fv = val(var(ab[0])) * val(var(ab[1]));
|
||||
const rational mv = rsign * var_val(m);
|
||||
TRACE("nla_solver",
|
||||
tout << "ab.size()=" << ab.size() << "\n";
|
||||
tout << "we should have sign*var_val(m):" << mv << "=(" << rsign << ")*(" << var_val(m) <<") to be equal to " << " val(var(ab[0]))*val(var(ab[1])):" << fv << "\n";);
|
||||
if (mv == fv)
|
||||
return;
|
||||
bool gt = mv > fv;
|
||||
SASSERT(mv != fv);
|
||||
TRACE("nla_solver", tout << "m="; _().print_monic_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
|
||||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, rsign, var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab); explain(m);
|
||||
TRACE("nla_solver", _().print_lemma(tout););
|
||||
order_lemma_on_ac_explore(m, ab, j == 1);
|
||||
}
|
||||
}
|
||||
|
@ -332,67 +316,5 @@ bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
|
|||
}
|
||||
return false;
|
||||
}
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * var_val(m) > val(a) * val(b));
|
||||
add_lemma();
|
||||
if (val(a).is_pos()) {
|
||||
TRACE("nla_solver", tout << "a is pos\n";);
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b <= val(b)
|
||||
mk_ineq(b, llc::GT, val(b));
|
||||
// ab <= val(b)a
|
||||
mk_ineq(sign, m.var(), -val(b), a, llc::LE);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "a is neg\n";);
|
||||
SASSERT(val(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b >= val(b)
|
||||
mk_ineq(b, llc::LT, val(b));
|
||||
// ab <= val(b)a
|
||||
mk_ineq(sign, m.var(), -val(b), a, llc::LE);
|
||||
}
|
||||
}
|
||||
// we need to deduce ab >= val(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_lt(const monic& m, const rational& sign, lpvar a, lpvar b) {
|
||||
TRACE("nla_solver", tout << "sign = " << sign << ", m = "; c().print_monic(m, tout) << ", a = "; c().print_var(a, tout) <<
|
||||
", b = "; c().print_var(b, tout) << "\n";);
|
||||
SASSERT(sign * var_val(m) < val(a) * val(b));
|
||||
add_lemma();
|
||||
if (val(a).is_pos()) {
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b >= val(b)
|
||||
mk_ineq(b, llc::LT, val(b));
|
||||
// ab <= val(b)a
|
||||
mk_ineq(sign, m.var(), -val(b), a, llc::GE);
|
||||
} else {
|
||||
SASSERT(val(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b <= val(b)
|
||||
mk_ineq(b, llc::GT, val(b));
|
||||
// ab >= val(b)a
|
||||
mk_ineq(sign, m.var(), -val(b), a, llc::GE);
|
||||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_ab(const monic& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
if (gt)
|
||||
order_lemma_on_ab_gt(m, sign, a, b);
|
||||
else
|
||||
order_lemma_on_ab_lt(m, sign, a, b);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -48,19 +48,6 @@ private:
|
|||
|
||||
void order_lemma_on_factorization(const monic& rm, const factorization& ab);
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a, lpvar b);
|
||||
// we need to deduce ab >= val(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_lt(const monic& m, const rational& sign, lpvar a, lpvar b);
|
||||
void order_lemma_on_ab(const monic& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monic& m, bool k);
|
||||
void order_lemma_on_factor_binomial_rm(const monic& ac, bool k, const monic& bd);
|
||||
|
|
|
@ -64,7 +64,6 @@ struct imp {
|
|||
c().explain(m_x, exp);
|
||||
c().explain(m_y, exp);
|
||||
}
|
||||
void generate_simple_tangent_lemma(const monic& m, const factorization&);
|
||||
void tangent_lemma_on_bf() {
|
||||
get_tang_points();
|
||||
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(tout) << std::endl;);
|
||||
|
|
Loading…
Reference in a new issue