3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-01 08:53:18 +00:00

enable conditional euf-completion with (optional) solver

This allows using z3 for limited E-saturation simplification.
The tactic rewrites all assertions using the E-graph induced by the equalities and instantiated equality axioms.
It does allow solving with conditionals, although this is a first inefficient cut.

The following is a sample use case that rewrites to false.
```
(declare-fun prime () Int)
(declare-fun add (Int Int) Int)
(declare-fun mul (Int Int) Int)
(declare-fun ^ (Int Int) Int)
(declare-fun sub (Int Int) Int)
(declare-fun i () Int)
(declare-fun j () Int)
(declare-fun base () Int)
(declare-fun S () (Seq Int))
(declare-fun hash ((Seq Int) Int Int Int Int) Int)
(assert (let ((a!1 (mul (seq.nth S i) (^ base (sub (sub j i) 1)))))
(let ((a!2 (mod (add (hash S base prime (add i 1) j) a!1) prime)))
  (not (= (hash S base prime i j) a!2)))))
(assert (forall ((x Int))
  (! (= (mod (mod x prime) prime) (mod x prime))
     :pattern ((mod (mod x prime) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (mul x y) prime) (mod (mul (mod x prime) y) prime))
     :pattern ((mod (mul x y) prime))
     :pattern ((mod (mul (mod x prime) y) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (mul x y) prime) (mod (mul x (mod y prime)) prime))
     :pattern ((mod (mul x y) prime))
     :pattern ((mod (mul x (mod y prime)) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (add x y) prime) (mod (add x (mod y prime)) prime))
     :pattern ((mod (add x y) prime))
     :pattern ((mod (add x (mod y prime)) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mod (add x y) prime) (mod (add (mod x prime) y) prime))
     :pattern ((mod (add x y) prime))
     :pattern ((mod (add (mod x prime) y) prime)))))
(assert (forall ((x Int) (y Int))
  (! (= (mul x (^ x y)) (^ x (add y 1))) :pattern ((mul x (^ x y))))))
(assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y)))))
(assert (forall ((x Int) (y Int)) (! (= (add x y) (add y x)) :pattern ((add x y)))))
(assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (add x (add y z)) (add (add x y) z))
     :pattern ((add x (add y z)))
     :pattern ((add (add x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (mul x (mul y z)) (mul (mul x y) z))
     :pattern ((mul x (mul y z)))
     :pattern ((mul (mul x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (sub (sub x y) z) (sub (sub x z) y)) :pattern ((sub (sub x y) z)))))
(assert (forall ((x Int) (y Int) (z Int))
  (! (= (mul x (add y z)) (add (mul x y) (mul x z)))
     :pattern ((mul x (add y z))))))
(assert (forall ((x Int)) (! (= (sub (add x 1) 1) x) :pattern ((add x 1)))))
(assert (forall ((x Int)) (! (= (add (sub x 1) 1) x) :pattern ((sub x 1)))))
(assert (let ((a!1 (^ base (sub (sub (sub j 1) i) 1))))
(let ((a!2 (mod (add (hash S base prime (add i 1) (sub j 1))
                     (mul (seq.nth S i) a!1))
                prime)))
  (= (hash S base prime i (sub j 1)) a!2))))
(assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime i (sub j 1))))))
  (= (hash S base prime i j) (mod a!1 prime))))
(assert (let ((a!1 (add (seq.nth S (- j 1))
                (mul base (hash S base prime (add i 1) (sub j 1))))))
  (= (hash S base prime (add i 1) j) (mod a!1 prime))))
(apply euf-completion)
```

To use conditional rewriting you can
```
(assert (not (= 0 prime)))
```
and update axioms using modulus with prime to be of the form:
```
(=> (not (= 0 prime)) <original-body of quantifier>)
```
This commit is contained in:
Nikolaj Bjorner 2025-06-06 11:42:31 +02:00
parent 16452fec43
commit 564830ab31
6 changed files with 109 additions and 27 deletions

View file

@ -17,6 +17,7 @@ Author:
#pragma once
#include "util/scoped_vector.h"
#include "ast/simplifiers/dependent_expr_state.h"
#include "ast/euf/euf_egraph.h"
#include "ast/euf/euf_mam.h"
@ -24,6 +25,13 @@ Author:
namespace euf {
class side_condition_solver {
public:
virtual ~side_condition_solver() = default;
virtual void add_constraint(expr* f, expr_dependency* d) = 0;
virtual bool is_true(expr* f, expr_dependency*& d) = 0;
};
class completion : public dependent_expr_simplifier, public on_binding_callback, public mam_solver {
struct stats {
@ -32,6 +40,14 @@ namespace euf {
void reset() { memset(this, 0, sizeof(*this)); }
};
struct ground_rule {
expr_ref_vector m_body;
expr_ref m_head;
expr_dependency* m_dep;
ground_rule(expr_ref_vector& b, expr_ref& h, expr_dependency* d) :
m_body(b), m_head(h), m_dep(d) {}
};
egraph m_egraph;
scoped_ptr<mam> m_mam;
enode* m_tt, *m_ff;
@ -44,10 +60,11 @@ namespace euf {
unsigned_vector m_epochs;
th_rewriter m_rewriter;
stats m_stats;
scoped_ptr<side_condition_solver> m_side_condition_solver;
ptr_vector<ground_rule> m_rules;
bool m_has_new_eq = false;
bool m_should_propagate = false;
enode* mk_enode(expr* e);
bool is_new_eq(expr* a, expr* b);
void update_has_new_eq(expr* g);
@ -65,9 +82,17 @@ namespace euf {
expr_dependency* explain_conflict();
expr_dependency* get_dependency(quantifier* q) { return m_q2dep.contains(q) ? m_q2dep[q] : nullptr; }
lbool eval_cond(expr* f, expr_dependency*& d);
lbool check_rule(ground_rule& rule);
void check_rules();
void add_rule(expr* f, expr_dependency* d);
void reset_rules();
bool is_gt(expr* a, expr* b) const;
public:
completion(ast_manager& m, dependent_expr_state& fmls);
~completion() override;
char const* name() const override { return "euf-reduce"; }
void push() override { m_egraph.push(); dependent_expr_simplifier::push(); }
void pop(unsigned n) override { dependent_expr_simplifier::pop(n); m_egraph.pop(n); }
@ -84,5 +109,7 @@ namespace euf {
void on_binding(quantifier* q, app* pat, enode* const* binding, unsigned mg, unsigned ming, unsigned mx) override;
void set_solver(side_condition_solver* s) { m_side_condition_solver = s; }
};
}

View file

@ -8,7 +8,6 @@ z3_add_component(core_tactics
der_tactic.cpp
elim_term_ite_tactic.cpp
elim_uncnstr_tactic.cpp
euf_completion_tactic.cpp
injectivity_tactic.cpp
nnf_tactic.cpp
occf_tactic.cpp
@ -38,7 +37,6 @@ z3_add_component(core_tactics
elim_uncnstr_tactic.h
elim_uncnstr2_tactic.h
eliminate_predicates_tactic.h
euf_completion_tactic.h
injectivity_tactic.h
nnf_tactic.h
occf_tactic.h

View file

@ -1,24 +0,0 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
euf_completion_tactic.cpp
Abstract:
Tactic for simplifying with equations.
Author:
Nikolaj Bjorner (nbjorner) 2022-10-30
--*/
#include "tactic/tactic.h"
#include "tactic/core/euf_completion_tactic.h"
tactic * mk_euf_completion_tactic(ast_manager& m, params_ref const& p) {
return alloc(dependent_expr_state_tactic, m, p,
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(euf::completion, m, s); });
}

View file

@ -1,5 +1,6 @@
z3_add_component(portfolio
SOURCES
euf_completion_tactic.cpp
default_tactic.cpp
smt_strategic_solver.cpp
solver2lookahead.cpp
@ -16,6 +17,7 @@ z3_add_component(portfolio
ufbv_tactic
fd_solver
TACTIC_HEADERS
euf_completion_tactic.h
default_tactic.h
solver_subsumption_tactic.h

View file

@ -0,0 +1,79 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
euf_completion_tactic.cpp
Abstract:
Tactic for simplifying with equations.
Author:
Nikolaj Bjorner (nbjorner) 2022-10-30
--*/
#include "tactic/tactic.h"
#include "tactic/portfolio/euf_completion_tactic.h"
#include "solver/solver.h"
class euf_side_condition_solver : public euf::side_condition_solver {
ast_manager& m;
params_ref m_params;
scoped_ptr<solver> m_solver;
expr_ref_vector m_deps;
obj_map<expr, expr_dependency*> m_e2d;
void init_solver() {
if (m_solver.get())
return;
m_params.set_uint("smt.max_conflicts", 100);
scoped_ptr<solver_factory> f = mk_smt_strategic_solver_factory();
m_solver = (*f)(m, m_params, false, false, true, symbol::null);
}
public:
euf_side_condition_solver(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_deps(m) {}
void add_constraint(expr* f, expr_dependency* d) override {
if (!is_ground(f))
return;
init_solver();
expr* e_dep = nullptr;
if (d) {
e_dep = m.mk_fresh_const("dep", m.mk_bool_sort());
m_deps.push_back(e_dep);
m_e2d.insert(e_dep, d);
}
m_solver->assert_expr(f, e_dep);
}
bool is_true(expr* f, expr_dependency*& d) override {
d = nullptr;
m_solver->push();
expr_ref_vector fmls(m);
fmls.push_back(m.mk_not(f));
expr_ref nf(m.mk_not(f), m);
lbool r = m_solver->check_sat(fmls);
if (r == l_false) {
expr_ref_vector core(m);
m_solver->get_unsat_core(core);
for (auto c : core)
d = m.mk_join(d, m_e2d[c]);
}
m_solver->pop(1);
return r == l_false;
}
};
static euf::completion* mk_completion(ast_manager& m, dependent_expr_state& s, params_ref const& p) {
auto r = alloc(euf::completion, m, s);
auto scs = alloc(euf_side_condition_solver, m, p);
r->set_solver(scs);
return r;
}
tactic * mk_euf_completion_tactic(ast_manager& m, params_ref const& p) {
return alloc(dependent_expr_state_tactic, m, p,
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(euf::completion, m, s); });
}