mirror of
https://github.com/Z3Prover/z3
synced 2025-08-02 01:13:18 +00:00
enable conditional euf-completion with (optional) solver
This allows using z3 for limited E-saturation simplification. The tactic rewrites all assertions using the E-graph induced by the equalities and instantiated equality axioms. It does allow solving with conditionals, although this is a first inefficient cut. The following is a sample use case that rewrites to false. ``` (declare-fun prime () Int) (declare-fun add (Int Int) Int) (declare-fun mul (Int Int) Int) (declare-fun ^ (Int Int) Int) (declare-fun sub (Int Int) Int) (declare-fun i () Int) (declare-fun j () Int) (declare-fun base () Int) (declare-fun S () (Seq Int)) (declare-fun hash ((Seq Int) Int Int Int Int) Int) (assert (let ((a!1 (mul (seq.nth S i) (^ base (sub (sub j i) 1))))) (let ((a!2 (mod (add (hash S base prime (add i 1) j) a!1) prime))) (not (= (hash S base prime i j) a!2))))) (assert (forall ((x Int)) (! (= (mod (mod x prime) prime) (mod x prime)) :pattern ((mod (mod x prime) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (mul x y) prime) (mod (mul (mod x prime) y) prime)) :pattern ((mod (mul x y) prime)) :pattern ((mod (mul (mod x prime) y) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (mul x y) prime) (mod (mul x (mod y prime)) prime)) :pattern ((mod (mul x y) prime)) :pattern ((mod (mul x (mod y prime)) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (add x y) prime) (mod (add x (mod y prime)) prime)) :pattern ((mod (add x y) prime)) :pattern ((mod (add x (mod y prime)) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (add x y) prime) (mod (add (mod x prime) y) prime)) :pattern ((mod (add x y) prime)) :pattern ((mod (add (mod x prime) y) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mul x (^ x y)) (^ x (add y 1))) :pattern ((mul x (^ x y)))))) (assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y))))) (assert (forall ((x Int) (y Int)) (! (= (add x y) (add y x)) :pattern ((add x y))))) (assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (add x (add y z)) (add (add x y) z)) :pattern ((add x (add y z))) :pattern ((add (add x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (mul x (mul y z)) (mul (mul x y) z)) :pattern ((mul x (mul y z))) :pattern ((mul (mul x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (sub (sub x y) z) (sub (sub x z) y)) :pattern ((sub (sub x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (mul x (add y z)) (add (mul x y) (mul x z))) :pattern ((mul x (add y z)))))) (assert (forall ((x Int)) (! (= (sub (add x 1) 1) x) :pattern ((add x 1))))) (assert (forall ((x Int)) (! (= (add (sub x 1) 1) x) :pattern ((sub x 1))))) (assert (let ((a!1 (^ base (sub (sub (sub j 1) i) 1)))) (let ((a!2 (mod (add (hash S base prime (add i 1) (sub j 1)) (mul (seq.nth S i) a!1)) prime))) (= (hash S base prime i (sub j 1)) a!2)))) (assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime i (sub j 1)))))) (= (hash S base prime i j) (mod a!1 prime)))) (assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime (add i 1) (sub j 1)))))) (= (hash S base prime (add i 1) j) (mod a!1 prime)))) (apply euf-completion) ``` To use conditional rewriting you can ``` (assert (not (= 0 prime))) ``` and update axioms using modulus with prime to be of the form: ``` (=> (not (= 0 prime)) <original-body of quantifier>) ```
This commit is contained in:
parent
16452fec43
commit
564830ab31
6 changed files with 109 additions and 27 deletions
|
@ -17,6 +17,7 @@ Author:
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include "util/scoped_vector.h"
|
||||||
#include "ast/simplifiers/dependent_expr_state.h"
|
#include "ast/simplifiers/dependent_expr_state.h"
|
||||||
#include "ast/euf/euf_egraph.h"
|
#include "ast/euf/euf_egraph.h"
|
||||||
#include "ast/euf/euf_mam.h"
|
#include "ast/euf/euf_mam.h"
|
||||||
|
@ -24,6 +25,13 @@ Author:
|
||||||
|
|
||||||
namespace euf {
|
namespace euf {
|
||||||
|
|
||||||
|
class side_condition_solver {
|
||||||
|
public:
|
||||||
|
virtual ~side_condition_solver() = default;
|
||||||
|
virtual void add_constraint(expr* f, expr_dependency* d) = 0;
|
||||||
|
virtual bool is_true(expr* f, expr_dependency*& d) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
class completion : public dependent_expr_simplifier, public on_binding_callback, public mam_solver {
|
class completion : public dependent_expr_simplifier, public on_binding_callback, public mam_solver {
|
||||||
|
|
||||||
struct stats {
|
struct stats {
|
||||||
|
@ -32,6 +40,14 @@ namespace euf {
|
||||||
void reset() { memset(this, 0, sizeof(*this)); }
|
void reset() { memset(this, 0, sizeof(*this)); }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct ground_rule {
|
||||||
|
expr_ref_vector m_body;
|
||||||
|
expr_ref m_head;
|
||||||
|
expr_dependency* m_dep;
|
||||||
|
ground_rule(expr_ref_vector& b, expr_ref& h, expr_dependency* d) :
|
||||||
|
m_body(b), m_head(h), m_dep(d) {}
|
||||||
|
};
|
||||||
|
|
||||||
egraph m_egraph;
|
egraph m_egraph;
|
||||||
scoped_ptr<mam> m_mam;
|
scoped_ptr<mam> m_mam;
|
||||||
enode* m_tt, *m_ff;
|
enode* m_tt, *m_ff;
|
||||||
|
@ -44,10 +60,11 @@ namespace euf {
|
||||||
unsigned_vector m_epochs;
|
unsigned_vector m_epochs;
|
||||||
th_rewriter m_rewriter;
|
th_rewriter m_rewriter;
|
||||||
stats m_stats;
|
stats m_stats;
|
||||||
|
scoped_ptr<side_condition_solver> m_side_condition_solver;
|
||||||
|
ptr_vector<ground_rule> m_rules;
|
||||||
bool m_has_new_eq = false;
|
bool m_has_new_eq = false;
|
||||||
bool m_should_propagate = false;
|
bool m_should_propagate = false;
|
||||||
|
|
||||||
|
|
||||||
enode* mk_enode(expr* e);
|
enode* mk_enode(expr* e);
|
||||||
bool is_new_eq(expr* a, expr* b);
|
bool is_new_eq(expr* a, expr* b);
|
||||||
void update_has_new_eq(expr* g);
|
void update_has_new_eq(expr* g);
|
||||||
|
@ -65,9 +82,17 @@ namespace euf {
|
||||||
expr_dependency* explain_conflict();
|
expr_dependency* explain_conflict();
|
||||||
expr_dependency* get_dependency(quantifier* q) { return m_q2dep.contains(q) ? m_q2dep[q] : nullptr; }
|
expr_dependency* get_dependency(quantifier* q) { return m_q2dep.contains(q) ? m_q2dep[q] : nullptr; }
|
||||||
|
|
||||||
|
lbool eval_cond(expr* f, expr_dependency*& d);
|
||||||
|
|
||||||
|
lbool check_rule(ground_rule& rule);
|
||||||
|
void check_rules();
|
||||||
|
void add_rule(expr* f, expr_dependency* d);
|
||||||
|
void reset_rules();
|
||||||
|
|
||||||
bool is_gt(expr* a, expr* b) const;
|
bool is_gt(expr* a, expr* b) const;
|
||||||
public:
|
public:
|
||||||
completion(ast_manager& m, dependent_expr_state& fmls);
|
completion(ast_manager& m, dependent_expr_state& fmls);
|
||||||
|
~completion() override;
|
||||||
char const* name() const override { return "euf-reduce"; }
|
char const* name() const override { return "euf-reduce"; }
|
||||||
void push() override { m_egraph.push(); dependent_expr_simplifier::push(); }
|
void push() override { m_egraph.push(); dependent_expr_simplifier::push(); }
|
||||||
void pop(unsigned n) override { dependent_expr_simplifier::pop(n); m_egraph.pop(n); }
|
void pop(unsigned n) override { dependent_expr_simplifier::pop(n); m_egraph.pop(n); }
|
||||||
|
@ -84,5 +109,7 @@ namespace euf {
|
||||||
|
|
||||||
void on_binding(quantifier* q, app* pat, enode* const* binding, unsigned mg, unsigned ming, unsigned mx) override;
|
void on_binding(quantifier* q, app* pat, enode* const* binding, unsigned mg, unsigned ming, unsigned mx) override;
|
||||||
|
|
||||||
|
void set_solver(side_condition_solver* s) { m_side_condition_solver = s; }
|
||||||
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
|
@ -8,7 +8,6 @@ z3_add_component(core_tactics
|
||||||
der_tactic.cpp
|
der_tactic.cpp
|
||||||
elim_term_ite_tactic.cpp
|
elim_term_ite_tactic.cpp
|
||||||
elim_uncnstr_tactic.cpp
|
elim_uncnstr_tactic.cpp
|
||||||
euf_completion_tactic.cpp
|
|
||||||
injectivity_tactic.cpp
|
injectivity_tactic.cpp
|
||||||
nnf_tactic.cpp
|
nnf_tactic.cpp
|
||||||
occf_tactic.cpp
|
occf_tactic.cpp
|
||||||
|
@ -38,7 +37,6 @@ z3_add_component(core_tactics
|
||||||
elim_uncnstr_tactic.h
|
elim_uncnstr_tactic.h
|
||||||
elim_uncnstr2_tactic.h
|
elim_uncnstr2_tactic.h
|
||||||
eliminate_predicates_tactic.h
|
eliminate_predicates_tactic.h
|
||||||
euf_completion_tactic.h
|
|
||||||
injectivity_tactic.h
|
injectivity_tactic.h
|
||||||
nnf_tactic.h
|
nnf_tactic.h
|
||||||
occf_tactic.h
|
occf_tactic.h
|
||||||
|
|
|
@ -1,24 +0,0 @@
|
||||||
/*++
|
|
||||||
Copyright (c) 2022 Microsoft Corporation
|
|
||||||
|
|
||||||
Module Name:
|
|
||||||
|
|
||||||
euf_completion_tactic.cpp
|
|
||||||
|
|
||||||
Abstract:
|
|
||||||
|
|
||||||
Tactic for simplifying with equations.
|
|
||||||
|
|
||||||
Author:
|
|
||||||
|
|
||||||
Nikolaj Bjorner (nbjorner) 2022-10-30
|
|
||||||
|
|
||||||
--*/
|
|
||||||
|
|
||||||
#include "tactic/tactic.h"
|
|
||||||
#include "tactic/core/euf_completion_tactic.h"
|
|
||||||
|
|
||||||
tactic * mk_euf_completion_tactic(ast_manager& m, params_ref const& p) {
|
|
||||||
return alloc(dependent_expr_state_tactic, m, p,
|
|
||||||
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(euf::completion, m, s); });
|
|
||||||
}
|
|
|
@ -1,5 +1,6 @@
|
||||||
z3_add_component(portfolio
|
z3_add_component(portfolio
|
||||||
SOURCES
|
SOURCES
|
||||||
|
euf_completion_tactic.cpp
|
||||||
default_tactic.cpp
|
default_tactic.cpp
|
||||||
smt_strategic_solver.cpp
|
smt_strategic_solver.cpp
|
||||||
solver2lookahead.cpp
|
solver2lookahead.cpp
|
||||||
|
@ -16,6 +17,7 @@ z3_add_component(portfolio
|
||||||
ufbv_tactic
|
ufbv_tactic
|
||||||
fd_solver
|
fd_solver
|
||||||
TACTIC_HEADERS
|
TACTIC_HEADERS
|
||||||
|
euf_completion_tactic.h
|
||||||
default_tactic.h
|
default_tactic.h
|
||||||
solver_subsumption_tactic.h
|
solver_subsumption_tactic.h
|
||||||
|
|
||||||
|
|
79
src/tactic/portfolio/euf_completion_tactic.cpp
Normal file
79
src/tactic/portfolio/euf_completion_tactic.cpp
Normal file
|
@ -0,0 +1,79 @@
|
||||||
|
/*++
|
||||||
|
Copyright (c) 2022 Microsoft Corporation
|
||||||
|
|
||||||
|
Module Name:
|
||||||
|
|
||||||
|
euf_completion_tactic.cpp
|
||||||
|
|
||||||
|
Abstract:
|
||||||
|
|
||||||
|
Tactic for simplifying with equations.
|
||||||
|
|
||||||
|
Author:
|
||||||
|
|
||||||
|
Nikolaj Bjorner (nbjorner) 2022-10-30
|
||||||
|
|
||||||
|
--*/
|
||||||
|
|
||||||
|
#include "tactic/tactic.h"
|
||||||
|
#include "tactic/portfolio/euf_completion_tactic.h"
|
||||||
|
#include "solver/solver.h"
|
||||||
|
|
||||||
|
class euf_side_condition_solver : public euf::side_condition_solver {
|
||||||
|
ast_manager& m;
|
||||||
|
params_ref m_params;
|
||||||
|
scoped_ptr<solver> m_solver;
|
||||||
|
expr_ref_vector m_deps;
|
||||||
|
obj_map<expr, expr_dependency*> m_e2d;
|
||||||
|
void init_solver() {
|
||||||
|
if (m_solver.get())
|
||||||
|
return;
|
||||||
|
m_params.set_uint("smt.max_conflicts", 100);
|
||||||
|
scoped_ptr<solver_factory> f = mk_smt_strategic_solver_factory();
|
||||||
|
m_solver = (*f)(m, m_params, false, false, true, symbol::null);
|
||||||
|
}
|
||||||
|
public:
|
||||||
|
euf_side_condition_solver(ast_manager& m, params_ref const& p) : m(m), m_params(p), m_deps(m) {}
|
||||||
|
|
||||||
|
void add_constraint(expr* f, expr_dependency* d) override {
|
||||||
|
if (!is_ground(f))
|
||||||
|
return;
|
||||||
|
init_solver();
|
||||||
|
expr* e_dep = nullptr;
|
||||||
|
if (d) {
|
||||||
|
e_dep = m.mk_fresh_const("dep", m.mk_bool_sort());
|
||||||
|
m_deps.push_back(e_dep);
|
||||||
|
m_e2d.insert(e_dep, d);
|
||||||
|
}
|
||||||
|
m_solver->assert_expr(f, e_dep);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_true(expr* f, expr_dependency*& d) override {
|
||||||
|
d = nullptr;
|
||||||
|
m_solver->push();
|
||||||
|
expr_ref_vector fmls(m);
|
||||||
|
fmls.push_back(m.mk_not(f));
|
||||||
|
expr_ref nf(m.mk_not(f), m);
|
||||||
|
lbool r = m_solver->check_sat(fmls);
|
||||||
|
if (r == l_false) {
|
||||||
|
expr_ref_vector core(m);
|
||||||
|
m_solver->get_unsat_core(core);
|
||||||
|
for (auto c : core)
|
||||||
|
d = m.mk_join(d, m_e2d[c]);
|
||||||
|
}
|
||||||
|
m_solver->pop(1);
|
||||||
|
return r == l_false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
static euf::completion* mk_completion(ast_manager& m, dependent_expr_state& s, params_ref const& p) {
|
||||||
|
auto r = alloc(euf::completion, m, s);
|
||||||
|
auto scs = alloc(euf_side_condition_solver, m, p);
|
||||||
|
r->set_solver(scs);
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
tactic * mk_euf_completion_tactic(ast_manager& m, params_ref const& p) {
|
||||||
|
return alloc(dependent_expr_state_tactic, m, p,
|
||||||
|
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(euf::completion, m, s); });
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue