3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-12 06:00:53 +00:00

Refactor iuc_proof as a separate class

This also adds DOT printing support to interpolating proofs
(color for different parts)

iuc_proof is a proof used for IUC computation
This commit is contained in:
Arie Gurfinkel 2018-05-15 09:43:31 -07:00
parent 10106e8e12
commit 56114a5f6d
9 changed files with 960 additions and 379 deletions

View file

@ -0,0 +1,535 @@
/*++
Copyright (c) 2017 Arie Gurfinkel
Module Name:
spacer_proof_utils.cpp
Abstract:
Utilities to traverse and manipulate proofs
Author:
Bernhard Gleiss
Arie Gurfinkel
Revision History:
--*/
#include "muz/spacer/spacer_proof_utils.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/proof_checker/proof_checker.h"
#include <unordered_map>
#include "params.h"
#include "muz/spacer/spacer_iuc_proof.h"
namespace spacer {
/*
* ====================================
* methods for proof traversal
* ====================================
*/
ProofIteratorPostOrder::ProofIteratorPostOrder(proof* root, ast_manager& manager) : m(manager)
{m_todo.push_back(root);}
bool ProofIteratorPostOrder::hasNext()
{return !m_todo.empty();}
/*
* iterative post-order depth-first search (DFS) through the proof DAG
*/
proof* ProofIteratorPostOrder::next()
{
while (!m_todo.empty()) {
proof* currentNode = m_todo.back();
// if we haven't already visited the current unit
if (!m_visited.is_marked(currentNode)) {
bool existsUnvisitedParent = false;
// add unprocessed premises to stack for DFS. If there is at least one unprocessed premise, don't compute the result
// for currentProof now, but wait until those unprocessed premises are processed.
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i) {
SASSERT(m.is_proof(currentNode->get_arg(i)));
proof* premise = to_app(currentNode->get_arg(i));
// if we haven't visited the current premise yet
if (!m_visited.is_marked(premise)) {
// add it to the stack
m_todo.push_back(premise);
existsUnvisitedParent = true;
}
}
// if we already visited all parent-inferences, we can visit the inference too
if (!existsUnvisitedParent) {
m_visited.mark(currentNode, true);
m_todo.pop_back();
return currentNode;
}
} else {
m_todo.pop_back();
}
}
// we have already iterated through all inferences
return NULL;
}
/*
* ====================================
* methods for dot printing
* ====================================
*/
void pp_proof_dot_to_stream(ast_manager& m, std::ofstream& dotstream, proof* pr, iuc_proof* iuc_pr = nullptr);
std::string escape_dot(const std::string &s);
void pp_proof_post_process_dot(std::string dot_filepath, std::ofstream &dotstream);
void pp_proof_dot(ast_manager& m, proof* pr, iuc_proof* iuc_pr)
{
// open temporary dot-file
std::string dotfile_path = "proof.dot";
std::ofstream dotstream(dotfile_path);
// dump dot representation to stream
pp_proof_dot_to_stream(m, dotstream, pr, iuc_pr);
// post process dot-file, TODO: factor this out to a different place
pp_proof_post_process_dot(dotfile_path,dotstream);
}
void pp_proof_dot_to_stream(ast_manager& m, std::ofstream& dotstream, proof* pr, iuc_proof* iuc_pr)
{
dotstream << "digraph proof { \n";
std::unordered_map<unsigned, unsigned> id_to_small_id;
unsigned counter = 0;
ProofIteratorPostOrder it2(pr, m);
while (it2.hasNext())
{
proof* currentNode = it2.next();
SASSERT(id_to_small_id.find(currentNode->get_id()) == id_to_small_id.end());
id_to_small_id.insert(std::make_pair(currentNode->get_id(), counter));
std::string color = "white";
if (iuc_pr != nullptr)
{
if (iuc_pr->is_a_marked(currentNode) && !iuc_pr->is_b_marked(currentNode))
{
color = "red";
}
else if(iuc_pr->is_b_marked(currentNode) && !iuc_pr->is_a_marked(currentNode))
{
color = "blue";
}
else if(iuc_pr->is_b_marked(currentNode) && iuc_pr->is_a_marked(currentNode))
{
color = "purple";
}
}
// compute label
params_ref p;
p.set_uint("max_depth", 4294967295u);
p.set_uint("min_alias_size", 4294967295u);
std::ostringstream label_ostream;
label_ostream << mk_pp(m.get_fact(currentNode),m,p) << "\n";
std::string label = escape_dot(label_ostream.str());
// compute edge-label
std::string edge_label = "";
if (m.get_num_parents(currentNode) == 0)
{
switch (currentNode->get_decl_kind())
{
case PR_ASSERTED:
edge_label = "asserted:";
break;
case PR_HYPOTHESIS:
edge_label = "hyp:";
color = "grey";
break;
default:
if (currentNode->get_decl_kind() == PR_TH_LEMMA)
{
edge_label = "th_axiom:";
func_decl* d = currentNode->get_decl();
symbol sym;
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
{
edge_label = "th_axiom(farkas):";
}
}
else
{
edge_label = "unknown axiom-type:";
break;
}
}
}
else
{
if (currentNode->get_decl_kind() == PR_LEMMA)
{
edge_label = "lemma:";
}
else if (currentNode->get_decl_kind() == PR_TH_LEMMA)
{
func_decl* d = currentNode->get_decl();
symbol sym;
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
{
edge_label = "th_lemma(farkas):";
}
else
{
edge_label = "th_lemma(other):";
}
}
}
// generate entry for node in dot-file
dotstream << "node_" << counter << " "
<< "["
<< "shape=box,style=\"filled\","
<< "label=\"" << edge_label << " " << label << "\", "
<< "fillcolor=\"" << color << "\""
<< "]\n";
// add entry for each edge to that node
for (unsigned i = m.get_num_parents(currentNode); i > 0 ; --i)
{
proof* premise = to_app(currentNode->get_arg(i-1));
unsigned premise_small_id = id_to_small_id[premise->get_id()];
dotstream << "node_" << premise_small_id
<< " -> "
<< "node_" << counter
<< ";\n";
}
++counter;
}
dotstream << "\n}" << std::endl;
}
std::string escape_dot(const std::string &s)
{
std::string res;
res.reserve(s.size()); // preallocate
for (auto c : s) {
if (c == '\n')
res.append("\\l");
else
res.push_back(c);
}
return res;
}
void pp_proof_post_process_dot(std::string dot_filepath, std::ofstream &dotstream)
{
// replace variables in the dotfiles with nicer descriptions (hack: hard coded replacement for now)
std::vector<std::vector<std::string> > predicates;
std::vector<std::string> l1 = {"L1","i","n","A"};
predicates.push_back(l1);
std::vector<std::string> l2 = {"L2","j","m","B"};
predicates.push_back(l2);
for(auto& predicate : predicates)
{
std::string predicate_name = predicate[0];
for (unsigned i=0; i+1 < predicate.size(); ++i)
{
std::string new_name = predicate[i+1];
std::string substring0 = predicate_name + "_" + std::to_string(i) + "_0";
std::string substringN = predicate_name + "_" + std::to_string(i) + "_n";
std::string command0 = "sed -i '.bak' 's/" + substring0 + "/" + new_name + "/g' " + dot_filepath;
verbose_stream() << command0 << std::endl;
system(command0.c_str());
std::string commandN = "sed -i '.bak' s/" + substringN + "/" + new_name + "\\'" + "/g " + dot_filepath;
verbose_stream() << commandN << std::endl;
system(commandN.c_str());
}
}
verbose_stream() << "end of postprocessing";
}
/*
* ====================================
* methods for reducing hypothesis
* ====================================
*/
class reduce_hypotheses {
ast_manager &m;
// tracking all created expressions
expr_ref_vector m_pinned;
// cache for the transformation
obj_map<proof, proof*> m_cache;
// map from unit literals to their hypotheses-free derivations
obj_map<expr, proof*> m_units;
// -- all hypotheses in the the proof
obj_hashtable<expr> m_hyps;
// marks hypothetical proofs
ast_mark m_hypmark;
// stack
ptr_vector<proof> m_todo;
void reset()
{
m_cache.reset();
m_units.reset();
m_hyps.reset();
m_hypmark.reset();
m_pinned.reset();
}
bool compute_mark1(proof *pr)
{
bool hyp_mark = false;
// lemmas clear all hypotheses
if (!m.is_lemma(pr)) {
for (unsigned i = 0, sz = m.get_num_parents(pr); i < sz; ++i) {
if (m_hypmark.is_marked(m.get_parent(pr, i))) {
hyp_mark = true;
break;
}
}
}
m_hypmark.mark(pr, hyp_mark);
return hyp_mark;
}
void compute_marks(proof* pr)
{
proof *p;
ProofIteratorPostOrder pit(pr, m);
while (pit.hasNext()) {
p = pit.next();
if (m.is_hypothesis(p)) {
m_hypmark.mark(p, true);
m_hyps.insert(m.get_fact(p));
} else {
bool hyp_mark = compute_mark1(p);
// collect units that are hyp-free and are used as hypotheses somewhere
if (!hyp_mark && m.has_fact(p) && m_hyps.contains(m.get_fact(p)))
{ m_units.insert(m.get_fact(p), p); }
}
}
}
void find_units(proof *pr)
{
// optional. not implemented yet.
}
void reduce(proof* pf, proof_ref &out)
{
proof *res = NULL;
m_todo.reset();
m_todo.push_back(pf);
ptr_buffer<proof> args;
bool dirty = false;
while (!m_todo.empty()) {
proof *p, *tmp, *pp;
unsigned todo_sz;
p = m_todo.back();
if (m_cache.find(p, tmp)) {
res = tmp;
m_todo.pop_back();
continue;
}
dirty = false;
args.reset();
todo_sz = m_todo.size();
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
pp = m.get_parent(p, i);
if (m_cache.find(pp, tmp)) {
args.push_back(tmp);
dirty = dirty || pp != tmp;
} else {
m_todo.push_back(pp);
}
}
if (todo_sz < m_todo.size()) { continue; }
else { m_todo.pop_back(); }
if (m.is_hypothesis(p)) {
// hyp: replace by a corresponding unit
if (m_units.find(m.get_fact(p), tmp)) {
res = tmp;
} else { res = p; }
}
else if (!dirty) { res = p; }
else if (m.is_lemma(p)) {
//lemma: reduce the premise; remove reduced consequences from conclusion
SASSERT(args.size() == 1);
res = mk_lemma_core(args.get(0), m.get_fact(p));
compute_mark1(res);
} else if (m.is_unit_resolution(p)) {
// unit: reduce untis; reduce the first premise; rebuild unit resolution
res = mk_unit_resolution_core(args.size(), args.c_ptr());
compute_mark1(res);
} else {
// other: reduce all premises; reapply
if (m.has_fact(p)) { args.push_back(to_app(m.get_fact(p))); }
SASSERT(p->get_decl()->get_arity() == args.size());
res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
m_pinned.push_back(res);
compute_mark1(res);
}
SASSERT(res);
m_cache.insert(p, res);
if (m.has_fact(res) && m.is_false(m.get_fact(res))) { break; }
}
out = res;
}
// returns true if (hypothesis (not a)) would be reduced
bool is_reduced(expr *a)
{
expr_ref e(m);
if (m.is_not(a)) { e = to_app(a)->get_arg(0); }
else { e = m.mk_not(a); }
return m_units.contains(e);
}
proof *mk_lemma_core(proof *pf, expr *fact)
{
ptr_buffer<expr> args;
expr_ref lemma(m);
if (m.is_or(fact)) {
for (unsigned i = 0, sz = to_app(fact)->get_num_args(); i < sz; ++i) {
expr *a = to_app(fact)->get_arg(i);
if (!is_reduced(a))
{ args.push_back(a); }
}
} else if (!is_reduced(fact))
{ args.push_back(fact); }
if (args.size() == 0) { return pf; }
else if (args.size() == 1) {
lemma = args.get(0);
} else {
lemma = m.mk_or(args.size(), args.c_ptr());
}
proof* res = m.mk_lemma(pf, lemma);
m_pinned.push_back(res);
// XXX this is wrong because lemma is a proof and m_hyps only
// XXX contains expressions.
// XXX Not sure this is ever needed.
if (m_hyps.contains(lemma)) {
m_units.insert(lemma, res);
}
return res;
}
proof *mk_unit_resolution_core(unsigned num_args, proof* const *args)
{
ptr_buffer<proof> pf_args;
pf_args.push_back(args [0]);
app *cls_fact = to_app(m.get_fact(args[0]));
ptr_buffer<expr> cls;
if (m.is_or(cls_fact)) {
for (unsigned i = 0, sz = cls_fact->get_num_args(); i < sz; ++i)
{ cls.push_back(cls_fact->get_arg(i)); }
} else { cls.push_back(cls_fact); }
// construct new resolvent
ptr_buffer<expr> new_fact_cls;
bool found;
// XXX quadratic
for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
found = false;
for (unsigned j = 1; j < num_args; ++j) {
if (m.is_complement(cls.get(i), m.get_fact(args [j]))) {
found = true;
pf_args.push_back(args [j]);
break;
}
}
if (!found) {
new_fact_cls.push_back(cls.get(i));
}
}
SASSERT(new_fact_cls.size() + pf_args.size() - 1 == cls.size());
expr_ref new_fact(m);
new_fact = mk_or(m, new_fact_cls.size(), new_fact_cls.c_ptr());
// create new proof step
proof *res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr(), new_fact);
m_pinned.push_back(res);
return res;
}
// reduce all units, if any unit reduces to false return true and put its proof into out
bool reduce_units(proof_ref &out)
{
proof_ref res(m);
for (auto entry : m_units) {
reduce(entry.get_value(), res);
if (m.is_false(m.get_fact(res))) {
out = res;
return true;
}
res.reset();
}
return false;
}
public:
reduce_hypotheses(ast_manager &m) : m(m), m_pinned(m) {}
void operator()(proof_ref &pr)
{
compute_marks(pr);
if (!reduce_units(pr)) {
reduce(pr.get(), pr);
}
reset();
}
};
void reduce_hypotheses(proof_ref &pr)
{
ast_manager &m = pr.get_manager();
class reduce_hypotheses hypred(m);
hypred(pr);
DEBUG_CODE(proof_checker pc(m);
expr_ref_vector side(m);
SASSERT(pc.check(pr, side));
);
}
}