mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
Refactor iuc_proof as a separate class
This also adds DOT printing support to interpolating proofs (color for different parts) iuc_proof is a proof used for IUC computation
This commit is contained in:
parent
10106e8e12
commit
56114a5f6d
9 changed files with 960 additions and 379 deletions
|
@ -25,6 +25,7 @@ z3_add_component(spacer
|
|||
spacer_quant_generalizer.cpp
|
||||
spacer_callback.cpp
|
||||
spacer_json.cpp
|
||||
spacer_iuc_proof.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
arith_tactics
|
||||
core_tactics
|
||||
|
|
|
@ -23,6 +23,7 @@ Notes:
|
|||
#include"ast/rewriter/expr_replacer.h"
|
||||
#include"muz/spacer/spacer_unsat_core_learner.h"
|
||||
#include"muz/spacer/spacer_unsat_core_plugin.h"
|
||||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
|
||||
namespace spacer {
|
||||
void itp_solver::push ()
|
||||
|
@ -261,11 +262,11 @@ void itp_solver::get_itp_core (expr_ref_vector &core)
|
|||
B.insert (a);
|
||||
}
|
||||
|
||||
proof_ref pr(m);
|
||||
pr = get_proof ();
|
||||
|
||||
if (m_iuc == 0)
|
||||
{
|
||||
proof_ref pr(m);
|
||||
pr = get_proof ();
|
||||
|
||||
// old code
|
||||
farkas_learner learner_old;
|
||||
learner_old.set_split_literals(m_split_literals);
|
||||
|
@ -277,7 +278,19 @@ void itp_solver::get_itp_core (expr_ref_vector &core)
|
|||
else
|
||||
{
|
||||
// new code
|
||||
unsat_core_learner learner(m, m_print_farkas_stats, m_iuc_debug_proof);
|
||||
// preprocess proof in order to get a proof which is better suited for unsat-core-extraction
|
||||
proof_ref pr(get_proof(), m);
|
||||
|
||||
spacer::reduce_hypotheses(pr);
|
||||
STRACE("spacer.unsat_core_learner",
|
||||
verbose_stream() << "Reduced proof:\n" << mk_ismt2_pp(pr, m) << "\n";
|
||||
);
|
||||
|
||||
// construct proof object with contains partition information
|
||||
iuc_proof iuc_pr(m, get_proof(), B);
|
||||
|
||||
// configure learner
|
||||
unsat_core_learner learner(m, iuc_pr, m_print_farkas_stats, m_iuc_debug_proof);
|
||||
|
||||
if (m_iuc_arith == 0 || m_iuc_arith > 3)
|
||||
{
|
||||
|
@ -311,31 +324,12 @@ void itp_solver::get_itp_core (expr_ref_vector &core)
|
|||
learner.register_plugin(plugin_lemma);
|
||||
}
|
||||
|
||||
learner.compute_unsat_core(pr, B, core);
|
||||
// compute interpolating unsat core
|
||||
learner.compute_unsat_core(core);
|
||||
|
||||
// postprocessing, TODO: elim_proxies should be done inside iuc_proof
|
||||
elim_proxies (core);
|
||||
simplify_bounds (core); // XXX potentially redundant
|
||||
|
||||
// // debug
|
||||
// expr_ref_vector core2(m);
|
||||
// unsat_core_learner learner2(m);
|
||||
//
|
||||
// unsat_core_plugin_farkas_lemma* plugin_farkas_lemma2 = alloc(unsat_core_plugin_farkas_lemma, learner2, m_split_literals);
|
||||
// learner2.register_plugin(plugin_farkas_lemma2);
|
||||
// unsat_core_plugin_lemma* plugin_lemma2 = alloc(unsat_core_plugin_lemma, learner2);
|
||||
// learner2.register_plugin(plugin_lemma2);
|
||||
// learner2.compute_unsat_core(pr, B, core2);
|
||||
//
|
||||
// elim_proxies (core2);
|
||||
// simplify_bounds (core2);
|
||||
//
|
||||
// IF_VERBOSE(2,
|
||||
// verbose_stream () << "Itp Core:\n"
|
||||
// << mk_pp (mk_and (core), m) << "\n";);
|
||||
// IF_VERBOSE(2,
|
||||
// verbose_stream () << "Itp Core2:\n"
|
||||
// << mk_pp (mk_and (core2), m) << "\n";);
|
||||
//SASSERT(mk_and (core) == mk_and (core2));
|
||||
}
|
||||
|
||||
IF_VERBOSE(2,
|
||||
|
|
235
src/muz/spacer/spacer_iuc_proof.cpp
Normal file
235
src/muz/spacer/spacer_iuc_proof.cpp
Normal file
|
@ -0,0 +1,235 @@
|
|||
|
||||
|
||||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/array_decl_plugin.h"
|
||||
#include "muz/spacer/spacer_proof_utils.h"
|
||||
|
||||
namespace spacer {
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* init
|
||||
* ====================================
|
||||
*/
|
||||
iuc_proof::iuc_proof(ast_manager& m, proof* pr, expr_set& b_conjuncts) : m(m), m_pr(pr,m)
|
||||
{
|
||||
// init A-marks and B-marks
|
||||
collect_symbols_b(b_conjuncts);
|
||||
compute_marks(b_conjuncts);
|
||||
}
|
||||
|
||||
proof* iuc_proof::get()
|
||||
{
|
||||
return m_pr.get();
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for computing symbol colors
|
||||
* ====================================
|
||||
*/
|
||||
class collect_pure_proc {
|
||||
func_decl_set& m_symbs;
|
||||
public:
|
||||
collect_pure_proc(func_decl_set& s):m_symbs(s) {}
|
||||
|
||||
void operator()(app* a) {
|
||||
if (a->get_family_id() == null_family_id) {
|
||||
m_symbs.insert(a->get_decl());
|
||||
}
|
||||
}
|
||||
void operator()(var*) {}
|
||||
void operator()(quantifier*) {}
|
||||
};
|
||||
|
||||
void iuc_proof::collect_symbols_b(expr_set& b_conjuncts)
|
||||
{
|
||||
expr_mark visited;
|
||||
collect_pure_proc proc(m_symbols_b);
|
||||
for (expr_set::iterator it = b_conjuncts.begin(); it != b_conjuncts.end(); ++it)
|
||||
{
|
||||
for_each_expr(proc, visited, *it);
|
||||
}
|
||||
}
|
||||
|
||||
class is_pure_expr_proc {
|
||||
func_decl_set const& m_symbs;
|
||||
array_util m_au;
|
||||
public:
|
||||
struct non_pure {};
|
||||
|
||||
is_pure_expr_proc(func_decl_set const& s, ast_manager& m):
|
||||
m_symbs(s),
|
||||
m_au (m)
|
||||
{}
|
||||
|
||||
void operator()(app* a) {
|
||||
if (a->get_family_id() == null_family_id) {
|
||||
if (!m_symbs.contains(a->get_decl())) {
|
||||
throw non_pure();
|
||||
}
|
||||
}
|
||||
else if (a->get_family_id () == m_au.get_family_id () &&
|
||||
a->is_app_of (a->get_family_id (), OP_ARRAY_EXT)) {
|
||||
throw non_pure();
|
||||
}
|
||||
}
|
||||
void operator()(var*) {}
|
||||
void operator()(quantifier*) {}
|
||||
};
|
||||
|
||||
// requires that m_symbols_b has already been computed, which is done during initialization.
|
||||
bool iuc_proof::only_contains_symbols_b(expr* expr) const
|
||||
{
|
||||
is_pure_expr_proc proc(m_symbols_b, m);
|
||||
try {
|
||||
for_each_expr(proc, expr);
|
||||
}
|
||||
catch (is_pure_expr_proc::non_pure)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for computing which premises
|
||||
* have been used to derive the conclusions
|
||||
* ====================================
|
||||
*/
|
||||
|
||||
void iuc_proof::compute_marks(expr_set& b_conjuncts)
|
||||
{
|
||||
ProofIteratorPostOrder it(m_pr, m);
|
||||
while (it.hasNext())
|
||||
{
|
||||
proof* currentNode = it.next();
|
||||
|
||||
if (m.get_num_parents(currentNode) == 0)
|
||||
{
|
||||
switch(currentNode->get_decl_kind())
|
||||
{
|
||||
|
||||
case PR_ASSERTED: // currentNode is an axiom
|
||||
{
|
||||
if (b_conjuncts.contains(m.get_fact(currentNode)))
|
||||
{
|
||||
m_b_mark.mark(currentNode, true);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_a_mark.mark(currentNode, true);
|
||||
}
|
||||
break;
|
||||
}
|
||||
// currentNode is a hypothesis:
|
||||
case PR_HYPOTHESIS:
|
||||
{
|
||||
m_h_mark.mark(currentNode, true);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// collect from parents whether derivation of current node contains A-axioms, B-axioms and hypothesis
|
||||
bool need_to_mark_a = false;
|
||||
bool need_to_mark_b = false;
|
||||
bool need_to_mark_h = false;
|
||||
|
||||
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i)
|
||||
{
|
||||
SASSERT(m.is_proof(currentNode->get_arg(i)));
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
|
||||
need_to_mark_a = need_to_mark_a || m_a_mark.is_marked(premise);
|
||||
need_to_mark_b = need_to_mark_b || m_b_mark.is_marked(premise);
|
||||
need_to_mark_h = need_to_mark_h || m_h_mark.is_marked(premise);
|
||||
}
|
||||
|
||||
// if current node is application of lemma, we know that all hypothesis are removed
|
||||
if(currentNode->get_decl_kind() == PR_LEMMA)
|
||||
{
|
||||
need_to_mark_h = false;
|
||||
}
|
||||
|
||||
// save results
|
||||
m_a_mark.mark(currentNode, need_to_mark_a);
|
||||
m_b_mark.mark(currentNode, need_to_mark_b);
|
||||
m_h_mark.mark(currentNode, need_to_mark_h);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool iuc_proof::is_a_marked(proof* p)
|
||||
{
|
||||
return m_a_mark.is_marked(p);
|
||||
}
|
||||
bool iuc_proof::is_b_marked(proof* p)
|
||||
{
|
||||
return m_b_mark.is_marked(p);
|
||||
}
|
||||
bool iuc_proof::is_h_marked(proof* p)
|
||||
{
|
||||
return m_h_mark.is_marked(p);
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for dot printing
|
||||
* ====================================
|
||||
*/
|
||||
void iuc_proof::pp_dot()
|
||||
{
|
||||
pp_proof_dot(m, m_pr, this);
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* statistics
|
||||
* ====================================
|
||||
*/
|
||||
|
||||
void iuc_proof::print_farkas_stats()
|
||||
{
|
||||
unsigned farkas_counter = 0;
|
||||
unsigned farkas_counter2 = 0;
|
||||
|
||||
ProofIteratorPostOrder it3(m_pr, m);
|
||||
while (it3.hasNext())
|
||||
{
|
||||
proof* currentNode = it3.next();
|
||||
|
||||
// if node is theory lemma
|
||||
if (is_farkas_lemma(m, currentNode))
|
||||
{
|
||||
farkas_counter++;
|
||||
|
||||
// check whether farkas lemma is to be interpolated (could potentially miss farkas lemmas, which are interpolated, because we potentially don't want to use the lowest cut)
|
||||
bool has_blue_nonred_parent = false;
|
||||
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i)
|
||||
{
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
if (!is_a_marked(premise) && is_b_marked(premise))
|
||||
{
|
||||
has_blue_nonred_parent = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (has_blue_nonred_parent && is_a_marked(currentNode))
|
||||
{
|
||||
SASSERT(is_b_marked(currentNode));
|
||||
farkas_counter2++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
verbose_stream() << "\nThis proof contains " << farkas_counter << " Farkas lemmas. " << farkas_counter2 << " Farkas lemmas participate in the lowest cut\n";
|
||||
}
|
||||
}
|
65
src/muz/spacer/spacer_iuc_proof.h
Normal file
65
src/muz/spacer/spacer_iuc_proof.h
Normal file
|
@ -0,0 +1,65 @@
|
|||
#ifndef IUC_PROOF_H_
|
||||
#define IUC_PROOF_H_
|
||||
|
||||
#include "ast/ast.h"
|
||||
|
||||
namespace spacer {
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
typedef obj_hashtable<func_decl> func_decl_set;
|
||||
|
||||
/*
|
||||
* an iuc_proof is a proof together with information of the coloring of the axioms.
|
||||
*/
|
||||
class iuc_proof
|
||||
{
|
||||
public:
|
||||
|
||||
iuc_proof(ast_manager& m, proof* pr, expr_set& b_conjuncts);
|
||||
|
||||
proof* get();
|
||||
|
||||
/*
|
||||
* returns whether symbol contains only symbols which occur in B.
|
||||
*/
|
||||
bool only_contains_symbols_b(expr* expr) const;
|
||||
|
||||
bool is_a_marked(proof* p);
|
||||
bool is_b_marked(proof* p);
|
||||
bool is_h_marked(proof* p);
|
||||
|
||||
bool is_b_pure (proof *p)
|
||||
{return !is_h_marked (p) && only_contains_symbols_b (m.get_fact (p));}
|
||||
|
||||
/*
|
||||
* print dot-representation to file proof.dot
|
||||
* use Graphviz's dot with option -Tpdf to convert dot-representation into pdf
|
||||
*/
|
||||
void pp_dot();
|
||||
|
||||
void print_farkas_stats();
|
||||
private:
|
||||
ast_manager& m;
|
||||
proof_ref m_pr;
|
||||
|
||||
ast_mark m_a_mark;
|
||||
ast_mark m_b_mark;
|
||||
ast_mark m_h_mark;
|
||||
|
||||
func_decl_set m_symbols_b; // symbols, which occur in any b-asserted formula
|
||||
|
||||
// collect symbols occuring in B
|
||||
void collect_symbols_b(expr_set& b_conjuncts);
|
||||
|
||||
// compute for each formula of the proof whether it derives from A and whether it derives from B
|
||||
void compute_marks(expr_set& b_conjuncts);
|
||||
|
||||
void pp_dot_to_stream(std::ofstream& dotstream);
|
||||
std::string escape_dot(const std::string &s);
|
||||
|
||||
void post_process_dot(std::string dot_filepath, std::ofstream& dotstream);
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif /* IUC_PROOF_H_ */
|
535
src/muz/spacer/spacer_proof_utils.cpp
Normal file
535
src/muz/spacer/spacer_proof_utils.cpp
Normal file
|
@ -0,0 +1,535 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Arie Gurfinkel
|
||||
|
||||
Module Name:
|
||||
|
||||
spacer_proof_utils.cpp
|
||||
|
||||
Abstract:
|
||||
Utilities to traverse and manipulate proofs
|
||||
|
||||
Author:
|
||||
Bernhard Gleiss
|
||||
Arie Gurfinkel
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include "muz/spacer/spacer_proof_utils.h"
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
||||
#include "ast/proof_checker/proof_checker.h"
|
||||
#include <unordered_map>
|
||||
#include "params.h"
|
||||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
|
||||
namespace spacer {
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for proof traversal
|
||||
* ====================================
|
||||
*/
|
||||
ProofIteratorPostOrder::ProofIteratorPostOrder(proof* root, ast_manager& manager) : m(manager)
|
||||
{m_todo.push_back(root);}
|
||||
|
||||
bool ProofIteratorPostOrder::hasNext()
|
||||
{return !m_todo.empty();}
|
||||
|
||||
/*
|
||||
* iterative post-order depth-first search (DFS) through the proof DAG
|
||||
*/
|
||||
proof* ProofIteratorPostOrder::next()
|
||||
{
|
||||
while (!m_todo.empty()) {
|
||||
proof* currentNode = m_todo.back();
|
||||
|
||||
// if we haven't already visited the current unit
|
||||
if (!m_visited.is_marked(currentNode)) {
|
||||
bool existsUnvisitedParent = false;
|
||||
|
||||
// add unprocessed premises to stack for DFS. If there is at least one unprocessed premise, don't compute the result
|
||||
// for currentProof now, but wait until those unprocessed premises are processed.
|
||||
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i) {
|
||||
SASSERT(m.is_proof(currentNode->get_arg(i)));
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
|
||||
// if we haven't visited the current premise yet
|
||||
if (!m_visited.is_marked(premise)) {
|
||||
// add it to the stack
|
||||
m_todo.push_back(premise);
|
||||
existsUnvisitedParent = true;
|
||||
}
|
||||
}
|
||||
|
||||
// if we already visited all parent-inferences, we can visit the inference too
|
||||
if (!existsUnvisitedParent) {
|
||||
m_visited.mark(currentNode, true);
|
||||
m_todo.pop_back();
|
||||
return currentNode;
|
||||
}
|
||||
} else {
|
||||
m_todo.pop_back();
|
||||
}
|
||||
}
|
||||
// we have already iterated through all inferences
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for dot printing
|
||||
* ====================================
|
||||
*/
|
||||
void pp_proof_dot_to_stream(ast_manager& m, std::ofstream& dotstream, proof* pr, iuc_proof* iuc_pr = nullptr);
|
||||
std::string escape_dot(const std::string &s);
|
||||
void pp_proof_post_process_dot(std::string dot_filepath, std::ofstream &dotstream);
|
||||
|
||||
void pp_proof_dot(ast_manager& m, proof* pr, iuc_proof* iuc_pr)
|
||||
{
|
||||
// open temporary dot-file
|
||||
std::string dotfile_path = "proof.dot";
|
||||
std::ofstream dotstream(dotfile_path);
|
||||
|
||||
// dump dot representation to stream
|
||||
pp_proof_dot_to_stream(m, dotstream, pr, iuc_pr);
|
||||
|
||||
// post process dot-file, TODO: factor this out to a different place
|
||||
pp_proof_post_process_dot(dotfile_path,dotstream);
|
||||
}
|
||||
|
||||
void pp_proof_dot_to_stream(ast_manager& m, std::ofstream& dotstream, proof* pr, iuc_proof* iuc_pr)
|
||||
{
|
||||
dotstream << "digraph proof { \n";
|
||||
std::unordered_map<unsigned, unsigned> id_to_small_id;
|
||||
unsigned counter = 0;
|
||||
|
||||
ProofIteratorPostOrder it2(pr, m);
|
||||
while (it2.hasNext())
|
||||
{
|
||||
proof* currentNode = it2.next();
|
||||
|
||||
SASSERT(id_to_small_id.find(currentNode->get_id()) == id_to_small_id.end());
|
||||
id_to_small_id.insert(std::make_pair(currentNode->get_id(), counter));
|
||||
|
||||
std::string color = "white";
|
||||
if (iuc_pr != nullptr)
|
||||
{
|
||||
if (iuc_pr->is_a_marked(currentNode) && !iuc_pr->is_b_marked(currentNode))
|
||||
{
|
||||
color = "red";
|
||||
}
|
||||
else if(iuc_pr->is_b_marked(currentNode) && !iuc_pr->is_a_marked(currentNode))
|
||||
{
|
||||
color = "blue";
|
||||
}
|
||||
else if(iuc_pr->is_b_marked(currentNode) && iuc_pr->is_a_marked(currentNode))
|
||||
{
|
||||
color = "purple";
|
||||
}
|
||||
}
|
||||
|
||||
// compute label
|
||||
params_ref p;
|
||||
p.set_uint("max_depth", 4294967295u);
|
||||
p.set_uint("min_alias_size", 4294967295u);
|
||||
|
||||
std::ostringstream label_ostream;
|
||||
label_ostream << mk_pp(m.get_fact(currentNode),m,p) << "\n";
|
||||
std::string label = escape_dot(label_ostream.str());
|
||||
|
||||
// compute edge-label
|
||||
std::string edge_label = "";
|
||||
if (m.get_num_parents(currentNode) == 0)
|
||||
{
|
||||
switch (currentNode->get_decl_kind())
|
||||
{
|
||||
case PR_ASSERTED:
|
||||
edge_label = "asserted:";
|
||||
break;
|
||||
case PR_HYPOTHESIS:
|
||||
edge_label = "hyp:";
|
||||
color = "grey";
|
||||
break;
|
||||
default:
|
||||
if (currentNode->get_decl_kind() == PR_TH_LEMMA)
|
||||
{
|
||||
edge_label = "th_axiom:";
|
||||
func_decl* d = currentNode->get_decl();
|
||||
symbol sym;
|
||||
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
|
||||
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
|
||||
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
|
||||
{
|
||||
edge_label = "th_axiom(farkas):";
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
edge_label = "unknown axiom-type:";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (currentNode->get_decl_kind() == PR_LEMMA)
|
||||
{
|
||||
edge_label = "lemma:";
|
||||
}
|
||||
else if (currentNode->get_decl_kind() == PR_TH_LEMMA)
|
||||
{
|
||||
func_decl* d = currentNode->get_decl();
|
||||
symbol sym;
|
||||
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
|
||||
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
|
||||
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
|
||||
{
|
||||
edge_label = "th_lemma(farkas):";
|
||||
}
|
||||
else
|
||||
{
|
||||
edge_label = "th_lemma(other):";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// generate entry for node in dot-file
|
||||
dotstream << "node_" << counter << " "
|
||||
<< "["
|
||||
<< "shape=box,style=\"filled\","
|
||||
<< "label=\"" << edge_label << " " << label << "\", "
|
||||
<< "fillcolor=\"" << color << "\""
|
||||
<< "]\n";
|
||||
|
||||
// add entry for each edge to that node
|
||||
for (unsigned i = m.get_num_parents(currentNode); i > 0 ; --i)
|
||||
{
|
||||
proof* premise = to_app(currentNode->get_arg(i-1));
|
||||
unsigned premise_small_id = id_to_small_id[premise->get_id()];
|
||||
dotstream << "node_" << premise_small_id
|
||||
<< " -> "
|
||||
<< "node_" << counter
|
||||
<< ";\n";
|
||||
}
|
||||
|
||||
++counter;
|
||||
}
|
||||
dotstream << "\n}" << std::endl;
|
||||
}
|
||||
|
||||
std::string escape_dot(const std::string &s)
|
||||
{
|
||||
std::string res;
|
||||
res.reserve(s.size()); // preallocate
|
||||
for (auto c : s) {
|
||||
if (c == '\n')
|
||||
res.append("\\l");
|
||||
else
|
||||
res.push_back(c);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void pp_proof_post_process_dot(std::string dot_filepath, std::ofstream &dotstream)
|
||||
{
|
||||
// replace variables in the dotfiles with nicer descriptions (hack: hard coded replacement for now)
|
||||
std::vector<std::vector<std::string> > predicates;
|
||||
std::vector<std::string> l1 = {"L1","i","n","A"};
|
||||
predicates.push_back(l1);
|
||||
std::vector<std::string> l2 = {"L2","j","m","B"};
|
||||
predicates.push_back(l2);
|
||||
|
||||
for(auto& predicate : predicates)
|
||||
{
|
||||
std::string predicate_name = predicate[0];
|
||||
for (unsigned i=0; i+1 < predicate.size(); ++i)
|
||||
{
|
||||
std::string new_name = predicate[i+1];
|
||||
std::string substring0 = predicate_name + "_" + std::to_string(i) + "_0";
|
||||
std::string substringN = predicate_name + "_" + std::to_string(i) + "_n";
|
||||
|
||||
std::string command0 = "sed -i '.bak' 's/" + substring0 + "/" + new_name + "/g' " + dot_filepath;
|
||||
verbose_stream() << command0 << std::endl;
|
||||
system(command0.c_str());
|
||||
|
||||
std::string commandN = "sed -i '.bak' s/" + substringN + "/" + new_name + "\\'" + "/g " + dot_filepath;
|
||||
verbose_stream() << commandN << std::endl;
|
||||
system(commandN.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
verbose_stream() << "end of postprocessing";
|
||||
}
|
||||
|
||||
/*
|
||||
* ====================================
|
||||
* methods for reducing hypothesis
|
||||
* ====================================
|
||||
*/
|
||||
|
||||
class reduce_hypotheses {
|
||||
ast_manager &m;
|
||||
// tracking all created expressions
|
||||
expr_ref_vector m_pinned;
|
||||
|
||||
// cache for the transformation
|
||||
obj_map<proof, proof*> m_cache;
|
||||
|
||||
// map from unit literals to their hypotheses-free derivations
|
||||
obj_map<expr, proof*> m_units;
|
||||
|
||||
// -- all hypotheses in the the proof
|
||||
obj_hashtable<expr> m_hyps;
|
||||
|
||||
// marks hypothetical proofs
|
||||
ast_mark m_hypmark;
|
||||
|
||||
|
||||
// stack
|
||||
ptr_vector<proof> m_todo;
|
||||
|
||||
void reset()
|
||||
{
|
||||
m_cache.reset();
|
||||
m_units.reset();
|
||||
m_hyps.reset();
|
||||
m_hypmark.reset();
|
||||
m_pinned.reset();
|
||||
}
|
||||
|
||||
bool compute_mark1(proof *pr)
|
||||
{
|
||||
bool hyp_mark = false;
|
||||
// lemmas clear all hypotheses
|
||||
if (!m.is_lemma(pr)) {
|
||||
for (unsigned i = 0, sz = m.get_num_parents(pr); i < sz; ++i) {
|
||||
if (m_hypmark.is_marked(m.get_parent(pr, i))) {
|
||||
hyp_mark = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
m_hypmark.mark(pr, hyp_mark);
|
||||
return hyp_mark;
|
||||
}
|
||||
|
||||
void compute_marks(proof* pr)
|
||||
{
|
||||
proof *p;
|
||||
ProofIteratorPostOrder pit(pr, m);
|
||||
while (pit.hasNext()) {
|
||||
p = pit.next();
|
||||
if (m.is_hypothesis(p)) {
|
||||
m_hypmark.mark(p, true);
|
||||
m_hyps.insert(m.get_fact(p));
|
||||
} else {
|
||||
bool hyp_mark = compute_mark1(p);
|
||||
// collect units that are hyp-free and are used as hypotheses somewhere
|
||||
if (!hyp_mark && m.has_fact(p) && m_hyps.contains(m.get_fact(p)))
|
||||
{ m_units.insert(m.get_fact(p), p); }
|
||||
}
|
||||
}
|
||||
}
|
||||
void find_units(proof *pr)
|
||||
{
|
||||
// optional. not implemented yet.
|
||||
}
|
||||
|
||||
void reduce(proof* pf, proof_ref &out)
|
||||
{
|
||||
proof *res = NULL;
|
||||
|
||||
m_todo.reset();
|
||||
m_todo.push_back(pf);
|
||||
ptr_buffer<proof> args;
|
||||
bool dirty = false;
|
||||
|
||||
while (!m_todo.empty()) {
|
||||
proof *p, *tmp, *pp;
|
||||
unsigned todo_sz;
|
||||
|
||||
p = m_todo.back();
|
||||
if (m_cache.find(p, tmp)) {
|
||||
res = tmp;
|
||||
m_todo.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
dirty = false;
|
||||
args.reset();
|
||||
todo_sz = m_todo.size();
|
||||
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
||||
pp = m.get_parent(p, i);
|
||||
if (m_cache.find(pp, tmp)) {
|
||||
args.push_back(tmp);
|
||||
dirty = dirty || pp != tmp;
|
||||
} else {
|
||||
m_todo.push_back(pp);
|
||||
}
|
||||
}
|
||||
|
||||
if (todo_sz < m_todo.size()) { continue; }
|
||||
else { m_todo.pop_back(); }
|
||||
|
||||
if (m.is_hypothesis(p)) {
|
||||
// hyp: replace by a corresponding unit
|
||||
if (m_units.find(m.get_fact(p), tmp)) {
|
||||
res = tmp;
|
||||
} else { res = p; }
|
||||
}
|
||||
|
||||
else if (!dirty) { res = p; }
|
||||
|
||||
else if (m.is_lemma(p)) {
|
||||
//lemma: reduce the premise; remove reduced consequences from conclusion
|
||||
SASSERT(args.size() == 1);
|
||||
res = mk_lemma_core(args.get(0), m.get_fact(p));
|
||||
compute_mark1(res);
|
||||
} else if (m.is_unit_resolution(p)) {
|
||||
// unit: reduce untis; reduce the first premise; rebuild unit resolution
|
||||
res = mk_unit_resolution_core(args.size(), args.c_ptr());
|
||||
compute_mark1(res);
|
||||
} else {
|
||||
// other: reduce all premises; reapply
|
||||
if (m.has_fact(p)) { args.push_back(to_app(m.get_fact(p))); }
|
||||
SASSERT(p->get_decl()->get_arity() == args.size());
|
||||
res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
|
||||
m_pinned.push_back(res);
|
||||
compute_mark1(res);
|
||||
}
|
||||
|
||||
SASSERT(res);
|
||||
m_cache.insert(p, res);
|
||||
|
||||
if (m.has_fact(res) && m.is_false(m.get_fact(res))) { break; }
|
||||
}
|
||||
|
||||
out = res;
|
||||
}
|
||||
|
||||
// returns true if (hypothesis (not a)) would be reduced
|
||||
bool is_reduced(expr *a)
|
||||
{
|
||||
expr_ref e(m);
|
||||
if (m.is_not(a)) { e = to_app(a)->get_arg(0); }
|
||||
else { e = m.mk_not(a); }
|
||||
|
||||
return m_units.contains(e);
|
||||
}
|
||||
proof *mk_lemma_core(proof *pf, expr *fact)
|
||||
{
|
||||
ptr_buffer<expr> args;
|
||||
expr_ref lemma(m);
|
||||
|
||||
if (m.is_or(fact)) {
|
||||
for (unsigned i = 0, sz = to_app(fact)->get_num_args(); i < sz; ++i) {
|
||||
expr *a = to_app(fact)->get_arg(i);
|
||||
if (!is_reduced(a))
|
||||
{ args.push_back(a); }
|
||||
}
|
||||
} else if (!is_reduced(fact))
|
||||
{ args.push_back(fact); }
|
||||
|
||||
|
||||
if (args.size() == 0) { return pf; }
|
||||
else if (args.size() == 1) {
|
||||
lemma = args.get(0);
|
||||
} else {
|
||||
lemma = m.mk_or(args.size(), args.c_ptr());
|
||||
}
|
||||
proof* res = m.mk_lemma(pf, lemma);
|
||||
m_pinned.push_back(res);
|
||||
|
||||
// XXX this is wrong because lemma is a proof and m_hyps only
|
||||
// XXX contains expressions.
|
||||
// XXX Not sure this is ever needed.
|
||||
if (m_hyps.contains(lemma)) {
|
||||
m_units.insert(lemma, res);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
proof *mk_unit_resolution_core(unsigned num_args, proof* const *args)
|
||||
{
|
||||
|
||||
ptr_buffer<proof> pf_args;
|
||||
pf_args.push_back(args [0]);
|
||||
|
||||
app *cls_fact = to_app(m.get_fact(args[0]));
|
||||
ptr_buffer<expr> cls;
|
||||
if (m.is_or(cls_fact)) {
|
||||
for (unsigned i = 0, sz = cls_fact->get_num_args(); i < sz; ++i)
|
||||
{ cls.push_back(cls_fact->get_arg(i)); }
|
||||
} else { cls.push_back(cls_fact); }
|
||||
|
||||
// construct new resolvent
|
||||
ptr_buffer<expr> new_fact_cls;
|
||||
bool found;
|
||||
// XXX quadratic
|
||||
for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
|
||||
found = false;
|
||||
for (unsigned j = 1; j < num_args; ++j) {
|
||||
if (m.is_complement(cls.get(i), m.get_fact(args [j]))) {
|
||||
found = true;
|
||||
pf_args.push_back(args [j]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
new_fact_cls.push_back(cls.get(i));
|
||||
}
|
||||
}
|
||||
|
||||
SASSERT(new_fact_cls.size() + pf_args.size() - 1 == cls.size());
|
||||
expr_ref new_fact(m);
|
||||
new_fact = mk_or(m, new_fact_cls.size(), new_fact_cls.c_ptr());
|
||||
|
||||
// create new proof step
|
||||
proof *res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr(), new_fact);
|
||||
m_pinned.push_back(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
// reduce all units, if any unit reduces to false return true and put its proof into out
|
||||
bool reduce_units(proof_ref &out)
|
||||
{
|
||||
proof_ref res(m);
|
||||
for (auto entry : m_units) {
|
||||
reduce(entry.get_value(), res);
|
||||
if (m.is_false(m.get_fact(res))) {
|
||||
out = res;
|
||||
return true;
|
||||
}
|
||||
res.reset();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
reduce_hypotheses(ast_manager &m) : m(m), m_pinned(m) {}
|
||||
|
||||
|
||||
void operator()(proof_ref &pr)
|
||||
{
|
||||
compute_marks(pr);
|
||||
if (!reduce_units(pr)) {
|
||||
reduce(pr.get(), pr);
|
||||
}
|
||||
reset();
|
||||
}
|
||||
};
|
||||
void reduce_hypotheses(proof_ref &pr)
|
||||
{
|
||||
ast_manager &m = pr.get_manager();
|
||||
class reduce_hypotheses hypred(m);
|
||||
hypred(pr);
|
||||
DEBUG_CODE(proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
SASSERT(pc.check(pr, side));
|
||||
);
|
||||
}
|
||||
}
|
53
src/muz/spacer/spacer_proof_utils.h
Normal file
53
src/muz/spacer/spacer_proof_utils.h
Normal file
|
@ -0,0 +1,53 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Arie Gurfinkel
|
||||
|
||||
Module Name:
|
||||
|
||||
spacer_proof_utils.cpp
|
||||
|
||||
Abstract:
|
||||
Utilities to traverse and manipulate proofs
|
||||
|
||||
Author:
|
||||
Bernhard Gleiss
|
||||
Arie Gurfinkel
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _SPACER_PROOF_UTILS_H_
|
||||
#define _SPACER_PROOF_UTILS_H_
|
||||
#include "ast/ast.h"
|
||||
|
||||
namespace spacer {
|
||||
|
||||
bool is_farkas_lemma(ast_manager& m, proof* pr);
|
||||
/*
|
||||
* iterator, which traverses the proof in depth-first post-order.
|
||||
*/
|
||||
class ProofIteratorPostOrder {
|
||||
public:
|
||||
ProofIteratorPostOrder(proof* refutation, ast_manager& manager);
|
||||
bool hasNext();
|
||||
proof* next();
|
||||
|
||||
private:
|
||||
ptr_vector<proof> m_todo;
|
||||
ast_mark m_visited; // the proof nodes we have already visited
|
||||
|
||||
ast_manager& m;
|
||||
};
|
||||
|
||||
/*
|
||||
* prints the proof pr in dot representation to the file proof.dot
|
||||
* if iuc_pr is not nullptr, then it is queried for coloring partitions
|
||||
*/
|
||||
class iuc_proof;
|
||||
void pp_proof_dot(ast_manager& m, proof* pr, iuc_proof* iuc_pr = nullptr);
|
||||
|
||||
|
||||
|
||||
void reduce_hypotheses(proof_ref &pr);
|
||||
}
|
||||
#endif
|
|
@ -19,16 +19,18 @@ Revision History:
|
|||
|
||||
#include "muz/spacer/spacer_unsat_core_learner.h"
|
||||
#include "muz/spacer/spacer_unsat_core_plugin.h"
|
||||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
|
||||
#include "muz/spacer/spacer_util.h"
|
||||
|
||||
|
||||
namespace spacer
|
||||
{
|
||||
|
||||
|
||||
unsat_core_learner::~unsat_core_learner()
|
||||
{
|
||||
std::for_each(m_plugins.begin(), m_plugins.end(), delete_proc<unsat_core_plugin>());
|
||||
|
||||
}
|
||||
|
||||
void unsat_core_learner::register_plugin(unsat_core_plugin* plugin)
|
||||
|
@ -36,60 +38,16 @@ void unsat_core_learner::register_plugin(unsat_core_plugin* plugin)
|
|||
m_plugins.push_back(plugin);
|
||||
}
|
||||
|
||||
void unsat_core_learner::compute_unsat_core(proof *root, expr_set& asserted_b, expr_ref_vector& unsat_core)
|
||||
void unsat_core_learner::compute_unsat_core(expr_ref_vector& unsat_core)
|
||||
{
|
||||
// transform proof in order to get a proof which is better suited for unsat-core-extraction
|
||||
proof_ref pr(root, m);
|
||||
|
||||
reduce_hypotheses(pr);
|
||||
STRACE("spacer.unsat_core_learner",
|
||||
verbose_stream() << "Reduced proof:\n" << mk_ismt2_pp(pr, m) << "\n";
|
||||
);
|
||||
|
||||
// compute symbols occurring in B
|
||||
collect_symbols_b(asserted_b);
|
||||
|
||||
// traverse proof
|
||||
proof_post_order it(root, m);
|
||||
proof_post_order it(m_pr.get(), m);
|
||||
while (it.hasNext())
|
||||
{
|
||||
proof* currentNode = it.next();
|
||||
|
||||
if (m.get_num_parents(currentNode) == 0)
|
||||
if (m.get_num_parents(currentNode) > 0)
|
||||
{
|
||||
switch(currentNode->get_decl_kind())
|
||||
{
|
||||
|
||||
case PR_ASSERTED: // currentNode is an axiom
|
||||
{
|
||||
if (asserted_b.contains(m.get_fact(currentNode)))
|
||||
{
|
||||
m_b_mark.mark(currentNode, true);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_a_mark.mark(currentNode, true);
|
||||
}
|
||||
break;
|
||||
}
|
||||
// currentNode is a hypothesis:
|
||||
case PR_HYPOTHESIS:
|
||||
{
|
||||
m_h_mark.mark(currentNode, true);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// collect from parents whether derivation of current node contains A-axioms, B-axioms and hypothesis
|
||||
bool need_to_mark_a = false;
|
||||
bool need_to_mark_b = false;
|
||||
bool need_to_mark_h = false;
|
||||
bool need_to_mark_closed = true;
|
||||
|
||||
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i)
|
||||
|
@ -97,31 +55,18 @@ void unsat_core_learner::compute_unsat_core(proof *root, expr_set& asserted_b, e
|
|||
SASSERT(m.is_proof(currentNode->get_arg(i)));
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
|
||||
need_to_mark_a = need_to_mark_a || m_a_mark.is_marked(premise);
|
||||
need_to_mark_b = need_to_mark_b || m_b_mark.is_marked(premise);
|
||||
need_to_mark_h = need_to_mark_h || m_h_mark.is_marked(premise);
|
||||
need_to_mark_closed = need_to_mark_closed && (!m_b_mark.is_marked(premise) || m_closed.is_marked(premise));
|
||||
need_to_mark_closed = need_to_mark_closed && (!m_pr.is_b_marked(premise) || m_closed.is_marked(premise));
|
||||
}
|
||||
|
||||
// if current node is application of lemma, we know that all hypothesis are removed
|
||||
if(currentNode->get_decl_kind() == PR_LEMMA)
|
||||
{
|
||||
need_to_mark_h = false;
|
||||
}
|
||||
|
||||
// save results
|
||||
m_a_mark.mark(currentNode, need_to_mark_a);
|
||||
m_b_mark.mark(currentNode, need_to_mark_b);
|
||||
m_h_mark.mark(currentNode, need_to_mark_h);
|
||||
// save result
|
||||
m_closed.mark(currentNode, need_to_mark_closed);
|
||||
}
|
||||
|
||||
// we have now collected all necessary information, so we can visit the node
|
||||
// if the node mixes A-reasoning and B-reasoning and contains non-closed premises
|
||||
if (m_a_mark.is_marked(currentNode) && m_b_mark.is_marked(currentNode) && !m_closed.is_marked(currentNode))
|
||||
if (m_pr.is_a_marked(currentNode) && m_pr.is_b_marked(currentNode) && !m_closed.is_marked(currentNode))
|
||||
{
|
||||
compute_partial_core(currentNode); // then we need to compute a partial core
|
||||
// SASSERT(!(m_a_mark.is_marked(currentNode) && m_b_mark.is_marked(currentNode)) || m_closed.is_marked(currentNode)); TODO: doesn't hold anymore if we do the mincut-thing!
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -133,170 +78,14 @@ void unsat_core_learner::compute_unsat_core(proof *root, expr_set& asserted_b, e
|
|||
// count both number of all Farkas lemmas and number of Farkas lemmas in the cut
|
||||
if (m_print_farkas_stats)
|
||||
{
|
||||
unsigned farkas_counter = 0;
|
||||
unsigned farkas_counter2 = 0;
|
||||
|
||||
ProofIteratorPostOrder it3(root, m);
|
||||
while (it3.hasNext())
|
||||
{
|
||||
proof* currentNode = it3.next();
|
||||
|
||||
// if node is theory lemma
|
||||
if (currentNode->get_decl_kind() == PR_TH_LEMMA)
|
||||
{
|
||||
func_decl* d = currentNode->get_decl();
|
||||
symbol sym;
|
||||
// and theory lemma is Farkas lemma
|
||||
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
|
||||
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
|
||||
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
|
||||
{
|
||||
farkas_counter++;
|
||||
|
||||
// check whether farkas lemma is to be interpolated (could potentially miss farkas lemmas, which are interpolated, because we potentially don't want to use the lowest cut)
|
||||
bool has_no_mixed_parents = true;
|
||||
for (unsigned i = 0; i < m.get_num_parents(currentNode); ++i)
|
||||
{
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
if (is_a_marked(premise) && is_b_marked(premise))
|
||||
{
|
||||
has_no_mixed_parents = false;
|
||||
m_pr.print_farkas_stats();
|
||||
}
|
||||
}
|
||||
if (has_no_mixed_parents && is_a_marked(currentNode) && is_b_marked(currentNode))
|
||||
{
|
||||
farkas_counter2++;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
verbose_stream() << "\nThis proof contains " << farkas_counter << " Farkas lemmas. " << farkas_counter2 << " Farkas lemmas participate in the lowest cut\n";
|
||||
}
|
||||
|
||||
//TODO remove this
|
||||
if(m_iuc_debug_proof)
|
||||
{
|
||||
// print proof for debugging
|
||||
verbose_stream() << "Proof:\n";
|
||||
std::unordered_map<unsigned, unsigned> id_to_small_id;
|
||||
unsigned counter = 0;
|
||||
|
||||
proof_post_order it2(root, m);
|
||||
while (it2.hasNext())
|
||||
{
|
||||
proof* currentNode = it2.next();
|
||||
|
||||
SASSERT(id_to_small_id.find(currentNode->get_id()) == id_to_small_id.end());
|
||||
id_to_small_id.insert(std::make_pair(currentNode->get_id(), counter));
|
||||
|
||||
verbose_stream() << counter << " ";
|
||||
verbose_stream() << "[";
|
||||
if (is_a_marked(currentNode))
|
||||
{
|
||||
verbose_stream() << "a";
|
||||
}
|
||||
if (is_b_marked(currentNode))
|
||||
{
|
||||
verbose_stream() << "b";
|
||||
}
|
||||
if (is_h_marked(currentNode))
|
||||
{
|
||||
verbose_stream() << "h";
|
||||
}
|
||||
if (is_closed(currentNode))
|
||||
{
|
||||
verbose_stream() << "c";
|
||||
}
|
||||
verbose_stream() << "] ";
|
||||
|
||||
if (m.get_num_parents(currentNode) == 0)
|
||||
{
|
||||
switch (currentNode->get_decl_kind())
|
||||
{
|
||||
case PR_ASSERTED:
|
||||
verbose_stream() << "asserted";
|
||||
break;
|
||||
case PR_HYPOTHESIS:
|
||||
verbose_stream() << "hypothesis";
|
||||
break;
|
||||
default:
|
||||
if (currentNode->get_decl_kind() == PR_TH_LEMMA)
|
||||
{
|
||||
verbose_stream() << "th_axiom";
|
||||
func_decl* d = currentNode->get_decl();
|
||||
symbol sym;
|
||||
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
|
||||
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
|
||||
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
|
||||
{
|
||||
verbose_stream() << "(farkas)";
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
verbose_stream() << "unknown axiom-type";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (currentNode->get_decl_kind() == PR_LEMMA)
|
||||
{
|
||||
verbose_stream() << "lemma";
|
||||
}
|
||||
else if (currentNode->get_decl_kind() == PR_TH_LEMMA)
|
||||
{
|
||||
verbose_stream() << "th_lemma";
|
||||
func_decl* d = currentNode->get_decl();
|
||||
symbol sym;
|
||||
if (d->get_num_parameters() >= 2 && // the Farkas coefficients are saved in the parameters of step
|
||||
d->get_parameter(0).is_symbol(sym) && sym == "arith" && // the first two parameters are "arith", "farkas",
|
||||
d->get_parameter(1).is_symbol(sym) && sym == "farkas")
|
||||
{
|
||||
verbose_stream() << "(farkas)";
|
||||
}
|
||||
else
|
||||
{
|
||||
verbose_stream() << "(other)";
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
verbose_stream() << "step";
|
||||
}
|
||||
verbose_stream() << " from ";
|
||||
for (unsigned i = m.get_num_parents(currentNode); i > 0 ; --i)
|
||||
{
|
||||
proof* premise = to_app(currentNode->get_arg(i));
|
||||
unsigned premise_small_id = id_to_small_id[premise->get_id()];
|
||||
if (i > 1)
|
||||
{
|
||||
verbose_stream() << premise_small_id << ", ";
|
||||
}
|
||||
else
|
||||
{
|
||||
verbose_stream() << premise_small_id;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
// if (currentNode->get_decl_kind() == PR_TH_LEMMA || (is_a_marked(currentNode) && is_b_marked(currentNode)) || is_h_marked(currentNode) || (!is_a_marked(currentNode) && !is_b_marked(currentNode)))
|
||||
if (false)
|
||||
{
|
||||
verbose_stream() << "\n";
|
||||
}
|
||||
else
|
||||
{
|
||||
verbose_stream() << ": " << mk_pp(m.get_fact(currentNode), m) << "\n";
|
||||
}
|
||||
++counter;
|
||||
}
|
||||
}
|
||||
|
||||
verbose_stream() << std::endl;
|
||||
|
||||
// move all lemmas into vector
|
||||
for (expr* const* it = m_unsat_core.begin(); it != m_unsat_core.end(); ++it)
|
||||
{
|
||||
|
@ -322,19 +111,6 @@ void unsat_core_learner::finalize()
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
bool unsat_core_learner::is_a_marked(proof* p)
|
||||
{
|
||||
return m_a_mark.is_marked(p);
|
||||
}
|
||||
bool unsat_core_learner::is_b_marked(proof* p)
|
||||
{
|
||||
return m_b_mark.is_marked(p);
|
||||
}
|
||||
bool unsat_core_learner::is_h_marked(proof* p)
|
||||
{
|
||||
return m_h_mark.is_marked(p);
|
||||
}
|
||||
bool unsat_core_learner::is_closed(proof*p)
|
||||
{
|
||||
return m_closed.is_marked(p);
|
||||
|
@ -344,75 +120,13 @@ void unsat_core_learner::set_closed(proof* p, bool value)
|
|||
m_closed.mark(p, value);
|
||||
}
|
||||
|
||||
void unsat_core_learner::add_lemma_to_core(expr* lemma)
|
||||
bool unsat_core_learner::is_b_open(proof *p)
|
||||
{
|
||||
m_unsat_core.push_back(lemma);
|
||||
return m_pr.is_b_marked(p) && !is_closed (p);
|
||||
}
|
||||
|
||||
|
||||
class collect_pure_proc {
|
||||
func_decl_set& m_symbs;
|
||||
public:
|
||||
collect_pure_proc(func_decl_set& s):m_symbs(s) {}
|
||||
|
||||
void operator()(app* a) {
|
||||
if (a->get_family_id() == null_family_id) {
|
||||
m_symbs.insert(a->get_decl());
|
||||
}
|
||||
}
|
||||
void operator()(var*) {}
|
||||
void operator()(quantifier*) {}
|
||||
};
|
||||
|
||||
void unsat_core_learner::collect_symbols_b(const expr_set& axioms_b)
|
||||
void unsat_core_learner::add_lemma_to_core(expr* lemma)
|
||||
{
|
||||
expr_mark visited;
|
||||
collect_pure_proc proc(m_symbols_b);
|
||||
for (expr_set::iterator it = axioms_b.begin(); it != axioms_b.end(); ++it)
|
||||
{
|
||||
for_each_expr(proc, visited, *it);
|
||||
m_unsat_core.push_back(lemma);
|
||||
}
|
||||
}
|
||||
|
||||
class is_pure_expr_proc {
|
||||
func_decl_set const& m_symbs;
|
||||
array_util m_au;
|
||||
public:
|
||||
struct non_pure {};
|
||||
|
||||
is_pure_expr_proc(func_decl_set const& s, ast_manager& m):
|
||||
m_symbs(s),
|
||||
m_au (m)
|
||||
{}
|
||||
|
||||
void operator()(app* a) {
|
||||
if (a->get_family_id() == null_family_id) {
|
||||
if (!m_symbs.contains(a->get_decl())) {
|
||||
throw non_pure();
|
||||
}
|
||||
}
|
||||
else if (a->get_family_id () == m_au.get_family_id () &&
|
||||
a->is_app_of (a->get_family_id (), OP_ARRAY_EXT)) {
|
||||
throw non_pure();
|
||||
}
|
||||
}
|
||||
void operator()(var*) {}
|
||||
void operator()(quantifier*) {}
|
||||
};
|
||||
|
||||
bool unsat_core_learner::only_contains_symbols_b(expr* expr) const
|
||||
{
|
||||
is_pure_expr_proc proc(m_symbols_b, m);
|
||||
try {
|
||||
for_each_expr(proc, expr);
|
||||
}
|
||||
catch (is_pure_expr_proc::non_pure)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -20,21 +20,23 @@ Revision History:
|
|||
|
||||
#include "ast/ast.h"
|
||||
#include "muz/spacer/spacer_util.h"
|
||||
#include "ast/proofs/proof_utils.h"
|
||||
#include "muz/spacer/spacer_proof_utils.h"
|
||||
|
||||
namespace spacer {
|
||||
|
||||
|
||||
class unsat_core_plugin;
|
||||
class iuc_proof;
|
||||
class unsat_core_learner
|
||||
{
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
|
||||
public:
|
||||
unsat_core_learner(ast_manager& m, bool print_farkas_stats = false, bool iuc_debug_proof = false) : m(m), m_unsat_core(m), m_print_farkas_stats(print_farkas_stats), m_iuc_debug_proof(iuc_debug_proof) {};
|
||||
unsat_core_learner(ast_manager& m, iuc_proof& pr, bool print_farkas_stats = false, bool iuc_debug_proof = false) : m(m), m_pr(pr), m_unsat_core(m), m_print_farkas_stats(print_farkas_stats), m_iuc_debug_proof(iuc_debug_proof) {};
|
||||
virtual ~unsat_core_learner();
|
||||
|
||||
ast_manager& m;
|
||||
iuc_proof& m_pr;
|
||||
|
||||
/*
|
||||
* register a plugin for computation of partial unsat cores
|
||||
|
@ -45,48 +47,29 @@ namespace spacer {
|
|||
/*
|
||||
* compute unsat core using the registered unsat-core-plugins
|
||||
*/
|
||||
void compute_unsat_core(proof* root, expr_set& asserted_b, expr_ref_vector& unsat_core);
|
||||
void compute_unsat_core(expr_ref_vector& unsat_core);
|
||||
|
||||
/*
|
||||
* getter/setter methods for data structures exposed to plugins
|
||||
* the following invariants can be assumed and need to be maintained by the plugins:
|
||||
* - a node is a-marked iff it is derived using at least one asserted proof step from A.
|
||||
* - a node is b-marked iff its derivation contains no asserted proof steps from A and
|
||||
* no hypothesis (with the additional complication that lemmas conceptually remove hypothesis)
|
||||
* - a node is h-marked, iff it is derived using at least one hypothesis
|
||||
* the following invariant can be assumed and need to be maintained by the plugins:
|
||||
* - a node is closed, iff it has already been interpolated, i.e. its contribution is
|
||||
* already covered by the unsat-core.
|
||||
*/
|
||||
bool is_a_marked(proof* p);
|
||||
bool is_b_marked(proof* p);
|
||||
bool is_h_marked(proof* p);
|
||||
|
||||
bool is_closed(proof* p);
|
||||
void set_closed(proof* p, bool value);
|
||||
|
||||
bool is_b_open (proof *p);
|
||||
|
||||
/*
|
||||
* adds a lemma to the unsat core
|
||||
*/
|
||||
void add_lemma_to_core(expr* lemma);
|
||||
|
||||
/*
|
||||
* helper method, which can be used by plugins
|
||||
* returns true iff all symbols of expr occur in some b-asserted formula.
|
||||
* must only be called after a call to collect_symbols_b.
|
||||
*/
|
||||
bool only_contains_symbols_b(expr* expr) const;
|
||||
bool is_b_pure (proof *p)
|
||||
{return !is_h_marked (p) && only_contains_symbols_b (m.get_fact (p));}
|
||||
bool is_b_open (proof *p)
|
||||
{ return is_b_marked (p) && !is_closed (p); }
|
||||
|
||||
|
||||
private:
|
||||
ptr_vector<unsat_core_plugin> m_plugins;
|
||||
func_decl_set m_symbols_b; // symbols, which occur in any b-asserted formula
|
||||
void collect_symbols_b(const expr_set& axioms_b);
|
||||
|
||||
ast_mark m_a_mark;
|
||||
ast_mark m_b_mark;
|
||||
ast_mark m_h_mark;
|
||||
ast_mark m_closed;
|
||||
|
||||
expr_ref_vector m_unsat_core; // collects the lemmas of the unsat-core, will at the end be inserted into unsat_core.
|
||||
|
|
|
@ -30,6 +30,7 @@ Revision History:
|
|||
#include "muz/spacer/spacer_matrix.h"
|
||||
#include "muz/spacer/spacer_unsat_core_plugin.h"
|
||||
#include "muz/spacer/spacer_unsat_core_learner.h"
|
||||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
|
||||
namespace spacer
|
||||
{
|
||||
|
@ -37,8 +38,8 @@ namespace spacer
|
|||
|
||||
void unsat_core_plugin_lemma::compute_partial_core(proof* step)
|
||||
{
|
||||
SASSERT(m_learner.is_a_marked(step));
|
||||
SASSERT(m_learner.is_b_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_a_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_b_marked(step));
|
||||
|
||||
for (unsigned i = 0; i < m_learner.m.get_num_parents(step); ++i)
|
||||
{
|
||||
|
@ -48,7 +49,7 @@ void unsat_core_plugin_lemma::compute_partial_core(proof* step)
|
|||
if (m_learner.is_b_open (premise))
|
||||
{
|
||||
// by IH, premises that are AB marked are already closed
|
||||
SASSERT(!m_learner.is_a_marked(premise));
|
||||
SASSERT(!m_learner.m_pr.is_a_marked(premise));
|
||||
add_lowest_split_to_core(premise);
|
||||
}
|
||||
}
|
||||
|
@ -75,13 +76,13 @@ void unsat_core_plugin_lemma::add_lowest_split_to_core(proof* step) const
|
|||
// the step is b-marked and not closed.
|
||||
// by I.H. the step must be already visited
|
||||
// so if it is also a-marked, it must be closed
|
||||
SASSERT(m_learner.is_b_marked(pf));
|
||||
SASSERT(!m_learner.is_a_marked(pf));
|
||||
SASSERT(m_learner.m_pr.is_b_marked(pf));
|
||||
SASSERT(!m_learner.m_pr.is_a_marked(pf));
|
||||
|
||||
// the current step needs to be interpolated:
|
||||
expr* fact = m_learner.m.get_fact(pf);
|
||||
// if we trust the current step and we are able to use it
|
||||
if (m_learner.is_b_pure (pf) &&
|
||||
if (m_learner.m_pr.is_b_pure (pf) &&
|
||||
(m.is_asserted(pf) || is_literal(m, fact)))
|
||||
{
|
||||
// just add it to the core
|
||||
|
@ -109,8 +110,8 @@ void unsat_core_plugin_lemma::add_lowest_split_to_core(proof* step) const
|
|||
void unsat_core_plugin_farkas_lemma::compute_partial_core(proof* step)
|
||||
{
|
||||
ast_manager &m = m_learner.m;
|
||||
SASSERT(m_learner.is_a_marked(step));
|
||||
SASSERT(m_learner.is_b_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_a_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_b_marked(step));
|
||||
// XXX this assertion should be true so there is no need to check for it
|
||||
SASSERT (!m_learner.is_closed (step));
|
||||
func_decl* d = step->get_decl();
|
||||
|
@ -162,7 +163,7 @@ void unsat_core_plugin_farkas_lemma::compute_partial_core(proof* step)
|
|||
rational coef;
|
||||
VERIFY(params[i].is_rational(coef));
|
||||
|
||||
bool b_pure = m_learner.is_b_pure (prem);
|
||||
bool b_pure = m_learner.m_pr.is_b_pure (prem);
|
||||
verbose_stream() << (b_pure?"B":"A") << " " << coef << " " << mk_pp(m_learner.m.get_fact(prem), m_learner.m) << "\n";
|
||||
}
|
||||
);
|
||||
|
@ -176,9 +177,9 @@ void unsat_core_plugin_farkas_lemma::compute_partial_core(proof* step)
|
|||
|
||||
if (m_learner.is_b_open (premise))
|
||||
{
|
||||
SASSERT(!m_learner.is_a_marked(premise));
|
||||
SASSERT(!m_learner.m_pr.is_a_marked(premise));
|
||||
|
||||
if (m_learner.is_b_pure (step))
|
||||
if (m_learner.m_pr.is_b_pure (step))
|
||||
{
|
||||
if (!m_use_constant_from_a)
|
||||
{
|
||||
|
@ -287,8 +288,8 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
|
||||
void unsat_core_plugin_farkas_lemma_optimized::compute_partial_core(proof* step)
|
||||
{
|
||||
SASSERT(m_learner.is_a_marked(step));
|
||||
SASSERT(m_learner.is_b_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_a_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_b_marked(step));
|
||||
|
||||
func_decl* d = step->get_decl();
|
||||
symbol sym;
|
||||
|
@ -315,7 +316,7 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
rational coef;
|
||||
VERIFY(params[i].is_rational(coef));
|
||||
|
||||
bool b_pure = m_learner.is_b_pure (prem);
|
||||
bool b_pure = m_learner.m_pr.is_b_pure (prem);
|
||||
verbose_stream() << (b_pure?"B":"A") << " " << coef << " " << mk_pp(m_learner.m.get_fact(prem), m_learner.m) << "\n";
|
||||
}
|
||||
);
|
||||
|
@ -326,11 +327,11 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
SASSERT(m_learner.m.is_proof(step->get_arg(i)));
|
||||
proof * premise = m.get_parent (step, i);
|
||||
|
||||
if (m_learner.is_b_marked(premise) && !m_learner.is_closed(premise))
|
||||
if (m_learner.m_pr.is_b_marked(premise) && !m_learner.is_closed(premise))
|
||||
{
|
||||
SASSERT(!m_learner.is_a_marked(premise));
|
||||
SASSERT(!m_learner.m_pr.is_a_marked(premise));
|
||||
|
||||
if (m_learner.only_contains_symbols_b(m_learner.m.get_fact(premise)) && !m_learner.is_h_marked(premise))
|
||||
if (m_learner.m_pr.only_contains_symbols_b(m_learner.m.get_fact(premise)) && !m_learner.m_pr.is_h_marked(premise))
|
||||
{
|
||||
rational coefficient;
|
||||
VERIFY(params[i].is_rational(coefficient));
|
||||
|
@ -603,8 +604,8 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
{
|
||||
ptr_vector<proof> todo;
|
||||
|
||||
SASSERT(m_learner.is_a_marked(step));
|
||||
SASSERT(m_learner.is_b_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_a_marked(step));
|
||||
SASSERT(m_learner.m_pr.is_b_marked(step));
|
||||
SASSERT(m.get_num_parents(step) > 0);
|
||||
SASSERT(!m_learner.is_closed(step));
|
||||
todo.push_back(step);
|
||||
|
@ -641,7 +642,7 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
{
|
||||
proof* premise = m.get_parent (step, i);
|
||||
{
|
||||
if (m_learner.is_b_marked(premise))
|
||||
if (m_learner.m_pr.is_b_marked(premise))
|
||||
{
|
||||
todo_subproof.push_back(premise);
|
||||
}
|
||||
|
@ -655,19 +656,19 @@ void unsat_core_plugin_farkas_lemma::compute_linear_combination(const vector<rat
|
|||
// if we need to deal with the node
|
||||
if (!m_learner.is_closed(current))
|
||||
{
|
||||
SASSERT(!m_learner.is_a_marked(current)); // by I.H. the step must be already visited
|
||||
SASSERT(!m_learner.m_pr.is_a_marked(current)); // by I.H. the step must be already visited
|
||||
|
||||
// and the current step needs to be interpolated:
|
||||
if (m_learner.is_b_marked(current))
|
||||
if (m_learner.m_pr.is_b_marked(current))
|
||||
{
|
||||
// if we trust the current step and we are able to use it
|
||||
if (m_learner.is_b_pure (current) &&
|
||||
if (m_learner.m_pr.is_b_pure (current) &&
|
||||
(m.is_asserted(current) ||
|
||||
is_literal(m, m.get_fact(current))))
|
||||
{
|
||||
// we found a leaf of the subproof, so
|
||||
// 1) we add corresponding edges
|
||||
if (m_learner.is_a_marked(step))
|
||||
if (m_learner.m_pr.is_a_marked(step))
|
||||
{
|
||||
add_edge(nullptr, current); // current is sink
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue