3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00
This commit is contained in:
Nikolaj Bjorner 2015-11-13 15:13:09 -05:00
commit 54bb33615e
11 changed files with 770 additions and 82 deletions

View file

@ -90,7 +90,7 @@ FPMATH="Default"
FPMATH_FLAGS="-mfpmath=sse -msse -msse2"
def check_output(cmd):
return (subprocess.Popen(cmd, stdout=subprocess.PIPE).communicate()[0]).decode("utf-8").rstrip('\r\n')
return (subprocess.Popen(cmd, stdout=subprocess.PIPE).communicate()[0]).decode(sys.stdout.encoding).rstrip('\r\n')
def git_hash():
try:

View file

@ -96,7 +96,7 @@ if sys.version < '3':
return s
else:
def _to_pystr(s):
return s.decode('utf-8')
return s.decode(sys.stdout.encoding)
def init(PATH):
global _lib

View file

@ -23,6 +23,8 @@ Revision History:
#include"api_context.h"
#include"api_model.h"
#include"cancel_eh.h"
#include"scoped_timer.h"
#include"rlimit.h"
extern "C" {
@ -34,7 +36,7 @@ extern "C" {
mk_c(c)->push();
Z3_CATCH;
}
void Z3_API Z3_pop(Z3_context c, unsigned num_scopes) {
Z3_TRY;
LOG_Z3_pop(c, num_scopes);
@ -62,7 +64,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_assert_cnstr(c, a);
RESET_ERROR_CODE();
CHECK_FORMULA(a,);
CHECK_FORMULA(a,);
mk_c(c)->assert_cnstr(to_expr(a));
Z3_CATCH;
}
@ -75,17 +77,22 @@ extern "C" {
cancel_eh<smt::kernel> eh(mk_c(c)->get_smt_kernel());
api::context::set_interruptable si(*(mk_c(c)), eh);
flet<bool> _model(mk_c(c)->fparams().m_model, true);
unsigned timeout = mk_c(c)->params().m_timeout;
unsigned rlimit = mk_c(c)->params().m_rlimit;
lbool result;
try {
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(mk_c(c)->m().limit(), rlimit);
model_ref _m;
result = mk_c(c)->check(_m);
if (m) {
if (_m) {
Z3_model_ref * m_ref = alloc(Z3_model_ref);
Z3_model_ref * m_ref = alloc(Z3_model_ref);
m_ref->m_model = _m;
// Must bump reference counter for backward compatibility reasons.
// Don't need to invoke save_object, since the counter was bumped
m_ref->inc_ref();
m_ref->inc_ref();
*m = of_model(m_ref);
}
else {
@ -100,21 +107,21 @@ extern "C" {
RETURN_Z3_check_and_get_model static_cast<Z3_lbool>(result);
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
Z3_lbool Z3_API Z3_check(Z3_context c) {
Z3_TRY;
// This is just syntax sugar...
RESET_ERROR_CODE();
// This is just syntax sugar...
RESET_ERROR_CODE();
CHECK_SEARCHING(c);
Z3_lbool r = Z3_check_and_get_model(c, 0);
return r;
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
Z3_lbool Z3_API Z3_check_assumptions(Z3_context c,
unsigned num_assumptions, Z3_ast const assumptions[],
Z3_model * m, Z3_ast* proof,
Z3_lbool Z3_API Z3_check_assumptions(Z3_context c,
unsigned num_assumptions, Z3_ast const assumptions[],
Z3_model * m, Z3_ast* proof,
unsigned* core_size, Z3_ast core[]) {
Z3_TRY;
LOG_Z3_check_assumptions(c, num_assumptions, assumptions, m, proof, core_size, core);
@ -130,11 +137,11 @@ extern "C" {
model_ref _m;
mk_c(c)->get_smt_kernel().get_model(_m);
if (_m) {
Z3_model_ref * m_ref = alloc(Z3_model_ref);
Z3_model_ref * m_ref = alloc(Z3_model_ref);
m_ref->m_model = _m;
// Must bump reference counter for backward compatibility reasons.
// Don't need to invoke save_object, since the counter was bumped
m_ref->inc_ref();
m_ref->inc_ref();
*m = of_model(m_ref);
}
else {
@ -159,7 +166,7 @@ extern "C" {
else if (proof) {
*proof = 0; // breaks abstraction.
}
RETURN_Z3_check_assumptions static_cast<Z3_lbool>(result);
RETURN_Z3_check_assumptions static_cast<Z3_lbool>(result);
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
@ -185,7 +192,7 @@ extern "C" {
symbol const& get_label() const { return m_label; }
expr* get_literal() { return m_literal.get(); }
};
typedef vector<labeled_literal> labels;
Z3_literals Z3_API Z3_get_relevant_labels(Z3_context c) {
@ -196,7 +203,7 @@ extern "C" {
ast_manager& m = mk_c(c)->m();
expr_ref_vector lits(m);
mk_c(c)->get_smt_kernel().get_relevant_labels(0, labl_syms);
mk_c(c)->get_smt_kernel().get_relevant_labeled_literals(mk_c(c)->fparams().m_at_labels_cex, lits);
mk_c(c)->get_smt_kernel().get_relevant_labeled_literals(mk_c(c)->fparams().m_at_labels_cex, lits);
labels* lbls = alloc(labels);
SASSERT(labl_syms.size() == lits.size());
for (unsigned i = 0; i < lits.size(); ++i) {
@ -212,12 +219,12 @@ extern "C" {
RESET_ERROR_CODE();
ast_manager& m = mk_c(c)->m();
expr_ref_vector lits(m);
mk_c(c)->get_smt_kernel().get_relevant_literals(lits);
mk_c(c)->get_smt_kernel().get_relevant_literals(lits);
labels* lbls = alloc(labels);
for (unsigned i = 0; i < lits.size(); ++i) {
lbls->push_back(labeled_literal(m,lits[i].get()));
}
RETURN_Z3(reinterpret_cast<Z3_literals>(lbls));
RETURN_Z3(reinterpret_cast<Z3_literals>(lbls));
Z3_CATCH_RETURN(0);
}
@ -227,12 +234,12 @@ extern "C" {
RESET_ERROR_CODE();
ast_manager& m = mk_c(c)->m();
expr_ref_vector lits(m);
mk_c(c)->get_smt_kernel().get_guessed_literals(lits);
mk_c(c)->get_smt_kernel().get_guessed_literals(lits);
labels* lbls = alloc(labels);
for (unsigned i = 0; i < lits.size(); ++i) {
lbls->push_back(labeled_literal(m,lits[i].get()));
}
RETURN_Z3(reinterpret_cast<Z3_literals>(lbls));
RETURN_Z3(reinterpret_cast<Z3_literals>(lbls));
Z3_CATCH_RETURN(0);
}
@ -248,7 +255,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_num_literals(c, lbls);
RESET_ERROR_CODE();
return reinterpret_cast<labels*>(lbls)->size();
return reinterpret_cast<labels*>(lbls)->size();
Z3_CATCH_RETURN(0);
}
@ -256,7 +263,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_get_label_symbol(c, lbls, idx);
RESET_ERROR_CODE();
return of_symbol((*reinterpret_cast<labels*>(lbls))[idx].get_label());
return of_symbol((*reinterpret_cast<labels*>(lbls))[idx].get_label());
Z3_CATCH_RETURN(0);
}
@ -274,7 +281,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_disable_literal(c, lbls, idx);
RESET_ERROR_CODE();
(*reinterpret_cast<labels*>(lbls))[idx].disable();
(*reinterpret_cast<labels*>(lbls))[idx].disable();
Z3_CATCH;
}
@ -348,4 +355,4 @@ void Z3_display_statistics(Z3_context c, std::ostream& s) {
void Z3_display_istatistics(Z3_context c, std::ostream& s) {
mk_c(c)->get_smt_kernel().display_istatistics(s);
}

View file

@ -22,7 +22,7 @@ Revision History:
#include"ast.h"
inline sort* get_array_range(sort const * s) {
inline sort* get_array_range(sort const * s) {
return to_sort(s->get_parameter(s->get_num_parameters() - 1).get_ast());
}
@ -104,20 +104,20 @@ class array_decl_plugin : public decl_plugin {
}
//
// Contract for sort:
// parameters[0] - 1st dimension
// Contract for sort:
// parameters[0] - 1st dimension
// ...
// parameters[n-1] - nth dimension
// parameters[n] - range
//
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
//
// Contract for func_decl:
// parameters[0] - array sort
// Contract for others:
// no parameters
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
virtual void get_op_names(svector<builtin_name> & op_names, symbol const & logic);
@ -184,6 +184,11 @@ public:
sort * mk_array_sort(sort* dom, sort* range) { return mk_array_sort(1, &dom, range); }
sort * mk_array_sort(unsigned arity, sort* const* domain, sort* range);
app * mk_as_array(sort * s, func_decl * f) {
parameter param(f);
return m_manager.mk_app(m_fid, OP_AS_ARRAY, 1, &param, 0, 0, s);
}
};

View file

@ -2648,9 +2648,8 @@ void fpa2bv_converter::mk_to_fp_signed(func_decl * f, unsigned num, expr * const
SASSERT(num == 2);
SASSERT(m_util.is_float(f->get_range()));
SASSERT(m_bv_util.is_bv(args[0]));
SASSERT(m_bv_util.is_bv(args[1]));
SASSERT(is_app_of(args[0], m_util.get_family_id(), OP_FPA_INTERNAL_RM));
SASSERT(m_bv_util.is_bv(args[1]));
expr_ref bv_rm(m), x(m);
bv_rm = to_app(args[0])->get_arg(0);

View file

@ -84,7 +84,7 @@ br_status bool_rewriter::mk_nflat_and_core(unsigned num_args, expr * const * arg
ptr_buffer<expr> buffer;
expr_fast_mark1 neg_lits;
expr_fast_mark2 pos_lits;
for (unsigned i = 0; i < num_args; i++) {
expr * arg = args[i];
if (m().is_true(arg)) {
@ -120,9 +120,9 @@ br_status bool_rewriter::mk_nflat_and_core(unsigned num_args, expr * const * arg
}
buffer.push_back(arg);
}
unsigned sz = buffer.size();
switch(sz) {
case 0:
result = m().mk_true();
@ -208,9 +208,9 @@ br_status bool_rewriter::mk_nflat_or_core(unsigned num_args, expr * const * args
}
buffer.push_back(arg);
}
unsigned sz = buffer.size();
switch(sz) {
case 0:
result = m().mk_false();
@ -222,7 +222,7 @@ br_status bool_rewriter::mk_nflat_or_core(unsigned num_args, expr * const * args
if (m_local_ctx && m_local_ctx_cost <= m_local_ctx_limit) {
neg_lits.reset();
pos_lits.reset();
if (local_ctx_simp(sz, buffer.c_ptr(), result))
if (local_ctx_simp(sz, buffer.c_ptr(), result))
return BR_DONE;
}
if (s) {
@ -273,11 +273,11 @@ expr * bool_rewriter::mk_or_app(unsigned num_args, expr * const * args) {
/**
\brief Auxiliary method for local_ctx_simp.
Replace args[i] by true if marked in neg_lits.
Replace args[i] by false if marked in pos_lits.
*/
bool bool_rewriter::simp_nested_not_or(unsigned num_args, expr * const * args,
bool bool_rewriter::simp_nested_not_or(unsigned num_args, expr * const * args,
expr_fast_mark1 & neg_lits, expr_fast_mark2 & pos_lits, expr_ref & result) {
ptr_buffer<expr> new_args;
bool simp = false;
@ -307,13 +307,13 @@ bool bool_rewriter::simp_nested_not_or(unsigned num_args, expr * const * args,
}
if (simp) {
switch(new_args.size()) {
case 0:
result = m().mk_true();
case 0:
result = m().mk_true();
return true;
case 1:
mk_not(new_args[0], result);
case 1:
mk_not(new_args[0], result);
return true;
default:
default:
result = m().mk_not(m().mk_or(new_args.size(), new_args.c_ptr()));
return true;
}
@ -358,7 +358,7 @@ void bool_rewriter::mk_nested_ite(expr * c, expr * t, expr * e, expr_ref & resul
result = t;
return;
}
if (m().is_false(c)) {
result = e;
return;
@ -368,7 +368,7 @@ void bool_rewriter::mk_nested_ite(expr * c, expr * t, expr * e, expr_ref & resul
result = t;
return;
}
if (m().is_bool(t)) {
if (m().is_true(t)) {
if (m().is_false(e)) {
@ -384,13 +384,13 @@ void bool_rewriter::mk_nested_ite(expr * c, expr * t, expr * e, expr_ref & resul
return;
}
expr_ref tmp(m());
mk_not(e, tmp);
mk_not(e, tmp);
result = m().mk_not(m().mk_or(c, tmp));
return;
}
if (m().is_true(e)) {
expr_ref tmp(m());
mk_not(c, tmp);
mk_not(c, tmp);
result = m().mk_or(tmp, t);
return;
}
@ -406,7 +406,7 @@ void bool_rewriter::mk_nested_ite(expr * c, expr * t, expr * e, expr_ref & resul
result = m().mk_or(c, e);
return;
}
if (m().is_complement_core(t, e)) { // t = not(e)
if (m().is_complement_core(t, e)) { // t = not(e)
mk_eq(c, t, result);
return;
}
@ -443,8 +443,8 @@ bool bool_rewriter::simp_nested_eq_ite(expr * t, expr_fast_mark1 & neg_lits, exp
expr * new_e = simp_arg(to_app(t)->get_arg(2), neg_lits, pos_lits, modified);
if (!modified)
return false;
// It is not safe to invoke mk_ite here, since it can recursively call
// local_ctx_simp by
// It is not safe to invoke mk_ite here, since it can recursively call
// local_ctx_simp by
// - transforming the ITE into an OR
// - and invoked mk_or, that will invoke local_ctx_simp
// mk_ite(new_c, new_t, new_e, result);
@ -522,7 +522,7 @@ bool bool_rewriter::local_ctx_simp(unsigned num_args, expr * const * args, expr_
PUSH_NEW_ARG(arg); \
} \
}
m_local_ctx_cost += 2*num_args;
#if 0
static unsigned counter = 0;
@ -567,9 +567,9 @@ bool bool_rewriter::local_ctx_simp(unsigned num_args, expr * const * args, expr_
/**
\brief Apply simplification if ite is an if-then-else tree where every leaf is a value.
This is an efficient way to
This is an efficient way to
*/
br_status bool_rewriter::try_ite_value(app * ite, app * val, expr_ref & result) {
SASSERT(m().is_ite(ite));
@ -585,7 +585,7 @@ br_status bool_rewriter::try_ite_value(app * ite, app * val, expr_ref & result)
tout << t << " " << e << " " << val << "\n";);
result = m().mk_false();
return BR_DONE;
}
}
if (t == val && e == val) {
result = m().mk_true();
@ -598,7 +598,7 @@ br_status bool_rewriter::try_ite_value(app * ite, app * val, expr_ref & result)
}
SASSERT(e == val);
mk_not(ite->get_arg(0), result);
return BR_DONE;
}
@ -642,14 +642,14 @@ static bool is_ite_value_tree_neq_value(ast_manager & m, app * ite, app * val) {
return true;
}
#endif
#endif
br_status bool_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (lhs == rhs) {
result = m().mk_true();
return BR_DONE;
}
if (m().are_distinct(lhs, rhs)) {
result = m().mk_false();
return BR_DONE;
@ -662,7 +662,7 @@ br_status bool_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
// return BR_DONE;
// }
r = try_ite_value(to_app(lhs), to_app(rhs), result);
CTRACE("try_ite_value", r != BR_FAILED,
CTRACE("try_ite_value", r != BR_FAILED,
tout << mk_ismt2_pp(lhs, m()) << "\n" << mk_ismt2_pp(rhs, m()) << "\n--->\n" << mk_ismt2_pp(result, m()) << "\n";);
}
else if (m().is_ite(rhs) && m().is_value(lhs)) {
@ -671,7 +671,7 @@ br_status bool_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
// return BR_DONE;
// }
r = try_ite_value(to_app(rhs), to_app(lhs), result);
CTRACE("try_ite_value", r != BR_FAILED,
CTRACE("try_ite_value", r != BR_FAILED,
tout << mk_ismt2_pp(lhs, m()) << "\n" << mk_ismt2_pp(rhs, m()) << "\n--->\n" << mk_ismt2_pp(result, m()) << "\n";);
}
if (r != BR_FAILED)
@ -708,6 +708,19 @@ br_status bool_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
result = m().mk_eq(lhs, rhs);
return BR_DONE;
}
expr *la, *lb, *ra, *rb;
// fold (iff (iff a b) (iff (not a) b)) to false
if (m().is_iff(lhs, la, lb) && m().is_iff(rhs, ra, rb)) {
expr *n;
if ((la == ra && ((m().is_not(rb, n) && n == lb) ||
(m().is_not(lb, n) && n == rb))) ||
(lb == rb && ((m().is_not(ra, n) && n == la) ||
(m().is_not(la, n) && n == ra)))) {
result = m().mk_false();
return BR_DONE;
}
}
}
return BR_FAILED;
}
@ -756,13 +769,13 @@ br_status bool_rewriter::mk_distinct_core(unsigned num_args, expr * const * args
result = m().mk_and(new_diseqs.size(), new_diseqs.c_ptr());
return BR_REWRITE3;
}
return BR_FAILED;
}
br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & result) {
bool s = false;
// (ite (not c) a b) ==> (ite c b a)
if (m().is_not(c)) {
c = to_app(c)->get_arg(0);
@ -788,7 +801,7 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
result = t;
return BR_DONE;
}
if (m().is_false(c)) {
result = e;
return BR_DONE;
@ -814,18 +827,18 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
return BR_DONE;
}
expr_ref tmp(m());
mk_not(c, tmp);
mk_not(c, tmp);
mk_and(tmp, e, result);
return BR_DONE;
}
if (m().is_true(e)) {
expr_ref tmp(m());
mk_not(c, tmp);
mk_not(c, tmp);
mk_or(tmp, t, result);
return BR_DONE;
}
if (m().is_false(e)) {
mk_and(c, t, result);
mk_and(c, t, result);
return BR_DONE;
}
if (c == e) {
@ -833,10 +846,10 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
return BR_DONE;
}
if (c == t) {
mk_or(c, e, result);
mk_or(c, e, result);
return BR_DONE;
}
if (m().is_complement_core(t, e)) { // t = not(e)
if (m().is_complement_core(t, e)) { // t = not(e)
mk_eq(c, t, result);
return BR_DONE;
}
@ -863,10 +876,10 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
result = m().mk_ite(new_c, to_app(t)->get_arg(1), e);
return BR_REWRITE1;
}
if (m().is_ite(e)) {
// (ite c1 (ite c2 t1 t2) (ite c3 t1 t2)) ==> (ite (or (and c1 c2) (and (not c1) c3)) t1 t2)
if (to_app(t)->get_arg(1) == to_app(e)->get_arg(1) &&
if (to_app(t)->get_arg(1) == to_app(e)->get_arg(1) &&
to_app(t)->get_arg(2) == to_app(e)->get_arg(2)) {
expr_ref and1(m());
expr_ref and2(m());
@ -879,9 +892,9 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
result = m().mk_ite(new_c, to_app(t)->get_arg(1), to_app(t)->get_arg(2));
return BR_REWRITE1;
}
// (ite c1 (ite c2 t1 t2) (ite c3 t2 t1)) ==> (ite (or (and c1 c2) (and (not c1) (not c3))) t1 t2)
if (to_app(t)->get_arg(1) == to_app(e)->get_arg(2) &&
if (to_app(t)->get_arg(1) == to_app(e)->get_arg(2) &&
to_app(t)->get_arg(2) == to_app(e)->get_arg(1)) {
expr_ref and1(m());
expr_ref and2(m());
@ -922,10 +935,10 @@ br_status bool_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & re
result = m().mk_ite(c, t, e);
return BR_DONE;
}
return BR_FAILED;
}
br_status bool_rewriter::mk_not_core(expr * t, expr_ref & result) {
if (m().is_not(t)) {
result = to_app(t)->get_arg(0);

View file

@ -0,0 +1,377 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
bvarray2uf_rewriter.cpp
Abstract:
Rewriter that rewrites bit-vector arrays into bit-vector
(uninterpreted) functions.
Author:
Christoph (cwinter) 2015-11-04
Notes:
--*/
#include"cooperate.h"
#include"bv_decl_plugin.h"
#include"array_decl_plugin.h"
#include"params.h"
#include"ast_pp.h"
#include"bvarray2uf_rewriter.h"
// [1] C. M. Wintersteiger, Y. Hamadi, and L. de Moura: Efficiently Solving
// Quantified Bit-Vector Formulas, in Formal Methods in System Design,
// vol. 42, no. 1, pp. 3-23, Springer, 2013.
bvarray2uf_rewriter_cfg::bvarray2uf_rewriter_cfg(ast_manager & m, params_ref const & p) :
m_manager(m),
m_out(m),
m_bindings(m),
m_bv_util(m),
m_array_util(m),
m_emc(0),
m_fmc(0),
extra_assertions(m) {
updt_params(p);
// We need to make sure that the mananger has the BV and array plugins loaded.
symbol s_bv("bv");
if (!m_manager.has_plugin(s_bv))
m_manager.register_plugin(s_bv, alloc(bv_decl_plugin));
symbol s_array("array");
if (!m_manager.has_plugin(s_array))
m_manager.register_plugin(s_array, alloc(array_decl_plugin));
}
bvarray2uf_rewriter_cfg::~bvarray2uf_rewriter_cfg() {
for (obj_map<expr, func_decl*>::iterator it = m_arrays_fs.begin();
it != m_arrays_fs.end();
it++)
m_manager.dec_ref(it->m_value);
}
void bvarray2uf_rewriter_cfg::reset() {}
sort * bvarray2uf_rewriter_cfg::get_index_sort(expr * e) {
return get_index_sort(m_manager.get_sort(e));
}
sort * bvarray2uf_rewriter_cfg::get_index_sort(sort * s) {
SASSERT(s->get_num_parameters() >= 2);
unsigned total_width = 0;
for (unsigned i = 0; i < s->get_num_parameters() - 1; i++) {
parameter const & p = s->get_parameter(i);
SASSERT(p.is_ast() && is_sort(to_sort(p.get_ast())));
SASSERT(m_bv_util.is_bv_sort(to_sort(p.get_ast())));
total_width += m_bv_util.get_bv_size(to_sort(p.get_ast()));
}
return m_bv_util.mk_sort(total_width);
}
sort * bvarray2uf_rewriter_cfg::get_value_sort(expr * e) {
return get_value_sort(m_manager.get_sort(e));
}
sort * bvarray2uf_rewriter_cfg::get_value_sort(sort * s) {
SASSERT(s->get_num_parameters() >= 2);
parameter const & p = s->get_parameter(s->get_num_parameters() - 1);
SASSERT(p.is_ast() && is_sort(to_sort(p.get_ast())));
return to_sort(p.get_ast());
}
bool bvarray2uf_rewriter_cfg::is_bv_array(expr * e) {
return is_bv_array(m_manager.get_sort(e));
}
bool bvarray2uf_rewriter_cfg::is_bv_array(sort * s) {
if (!m_array_util.is_array(s))
return false;
SASSERT(s->get_num_parameters() >= 2);
for (unsigned i = 0; i < s->get_num_parameters(); i++) {
parameter const & p = s->get_parameter(i);
if (!p.is_ast() || !is_sort(to_sort(p.get_ast())) ||
!m_bv_util.is_bv_sort(to_sort(p.get_ast())))
return false;
}
return true;
}
func_decl_ref bvarray2uf_rewriter_cfg::mk_uf_for_array(expr * e) {
SASSERT(is_bv_array(e));
if (m_array_util.is_as_array(e))
return func_decl_ref(static_cast<func_decl*>(to_app(e)->get_decl()->get_parameter(0).get_ast()), m_manager);
else {
app * a = to_app(e);
func_decl * bv_f = 0;
if (!m_arrays_fs.find(e, bv_f)) {
sort * domain = get_index_sort(a);
sort * range = get_value_sort(a);
bv_f = m_manager.mk_fresh_func_decl("f_t", "", 1, &domain, range);
if (is_uninterp_const(e)) {
if (m_emc)
m_emc->insert(to_app(e)->get_decl(),
m_array_util.mk_as_array(m_manager.get_sort(e), bv_f));
}
else if (m_fmc)
m_fmc->insert(bv_f);
m_arrays_fs.insert(e, bv_f);
m_manager.inc_ref(bv_f);
}
return func_decl_ref(bv_f, m_manager);
}
}
br_status bvarray2uf_rewriter_cfg::reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
br_status res = BR_FAILED;
if (m_manager.is_eq(f) && is_bv_array(f->get_domain()[0])) {
SASSERT(num == 2);
// From [1]: Finally, we replace equations of the form t = s,
// where t and s are arrays, with \forall x . f_t(x) = f_s(x).
func_decl_ref f_t(mk_uf_for_array(args[0]), m_manager);
func_decl_ref f_s(mk_uf_for_array(args[1]), m_manager);
sort * sorts[1] = { get_index_sort(m_manager.get_sort(args[0])) };
symbol names[1] = { symbol("x") };
var_ref x(m_manager.mk_var(0, sorts[0]), m_manager);
expr_ref body(m_manager);
body = m_manager.mk_eq(m_manager.mk_app(f_t, x.get()), m_manager.mk_app(f_s, x.get()));
result = m_manager.mk_forall(1, sorts, names, body);
res = BR_DONE;
}
else if (m_manager.is_distinct(f) && is_bv_array(f->get_domain()[0])) {
result = m_manager.mk_distinct_expanded(num, args);
res = BR_REWRITE1;
}
else if (f->get_family_id() == null_family_id) {
TRACE("bvarray2uf_rw", tout << "UF APP: " << f->get_name() << std::endl; );
bool has_bv_arrays = false;
func_decl_ref f_t(m_manager);
for (unsigned i = 0; i < num; i++) {
if (is_bv_array(args[i])) {
SASSERT(m_array_util.is_as_array(args[i]));
has_bv_arrays = true;
}
}
expr_ref t(m_manager);
t = m_manager.mk_app(f, num, args);
if (is_bv_array(t)) {
// From [1]: For every array term t we create a fresh uninterpreted function f_t.
f_t = mk_uf_for_array(t);
result = m_array_util.mk_as_array(m_manager.get_sort(t), f_t);
res = BR_DONE;
}
else if (has_bv_arrays) {
result = t;
res = BR_DONE;
}
else
res = BR_FAILED;
}
else if (m_array_util.get_family_id() == f->get_family_id()) {
TRACE("bvarray2uf_rw", tout << "APP: " << f->get_name() << std::endl; );
if (m_array_util.is_select(f)) {
SASSERT(num == 2);
expr * t = args[0];
expr * i = args[1];
TRACE("bvarray2uf_rw", tout <<
"select; array: " << mk_ismt2_pp(t, m()) <<
" index: " << mk_ismt2_pp(i, m()) << std::endl;);
if (!is_bv_array(t))
res = BR_FAILED;
else {
// From [1]: Then, we replace terms of the form select(t, i) with f_t(i).
func_decl_ref f_t(mk_uf_for_array(t), m_manager);
result = m_manager.mk_app(f_t, i);
res = BR_DONE;
}
}
else {
if (!is_bv_array(f->get_range()))
res = BR_FAILED;
else {
if (m_array_util.is_const(f)) {
SASSERT(num == 1);
expr_ref t(m_manager.mk_app(f, num, args), m_manager);
expr * v = args[0];
func_decl_ref f_t(mk_uf_for_array(t), m_manager);
result = m_array_util.mk_as_array(f->get_range(), f_t);
res = BR_DONE;
// Add \forall x . f_t(x) = v
sort * sorts[1] = { get_index_sort(f->get_range()) };
symbol names[1] = { symbol("x") };
var_ref x(m_manager.mk_var(0, sorts[0]), m_manager);
expr_ref body(m_manager);
body = m_manager.mk_eq(m_manager.mk_app(f_t, x.get()), v);
expr_ref frllx(m_manager.mk_forall(1, sorts, names, body), m_manager);
extra_assertions.push_back(frllx);
}
else if (m_array_util.is_as_array(f)) {
res = BR_FAILED;
}
else if (m_array_util.is_map(f)) {
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_ast());
expr_ref t(m_manager.mk_app(f, num, args), m_manager);
func_decl_ref f_t(mk_uf_for_array(t), m_manager);
func_decl_ref map_f(to_func_decl(f->get_parameter(0).get_ast()), m_manager);
func_decl_ref_vector ss(m_manager);
for (unsigned i = 0; i < num; i++) {
SASSERT(m_array_util.is_array(args[i]));
func_decl_ref fd(mk_uf_for_array(args[i]), m_manager);
ss.push_back(fd);
}
// Add \forall x . f_t(x) = map_f(a[x], b[x], ...)
sort * sorts[1] = { get_index_sort(f->get_range()) };
symbol names[1] = { symbol("x") };
var_ref x(m_manager.mk_var(0, sorts[0]), m_manager);
expr_ref_vector new_args(m_manager);
for (unsigned i = 0; i < num; i++)
new_args.push_back(m_manager.mk_app(ss[i].get(), x.get()));
expr_ref body(m_manager);
body = m_manager.mk_eq(m_manager.mk_app(f_t, x.get()),
m_manager.mk_app(map_f, num, new_args.c_ptr()));
expr_ref frllx(m_manager.mk_forall(1, sorts, names, body), m_manager);
extra_assertions.push_back(frllx);
result = m_array_util.mk_as_array(f->get_range(), f_t);
res = BR_DONE;
}
else if (m_array_util.is_store(f)) {
SASSERT(num == 3);
expr * s = args[0];
expr * i = args[1];
expr * v = args[2];
TRACE("bvarray2uf_rw", tout <<
"store; array: " << mk_ismt2_pp(s, m()) <<
" index: " << mk_ismt2_pp(i, m()) <<
" value: " << mk_ismt2_pp(v, m()) << std::endl;);
if (!is_bv_array(s))
res = BR_FAILED;
else {
expr_ref t(m_manager.mk_app(f, num, args), m_manager);
// From [1]: For every term t of the form store(s, i, v), we add the universal
// formula \forall x . x = i \vee f_t(x) = f_s(x), and the ground atom f_t(i) = v.
func_decl_ref f_s(mk_uf_for_array(s), m_manager);
func_decl_ref f_t(mk_uf_for_array(t), m_manager);
result = m_array_util.mk_as_array(f->get_range(), f_t);
res = BR_DONE;
sort * sorts[1] = { get_index_sort(f->get_range()) };
symbol names[1] = { symbol("x") };
var_ref x(m_manager.mk_var(0, sorts[0]), m_manager);
expr_ref body(m_manager);
body = m_manager.mk_or(m_manager.mk_eq(x, i),
m_manager.mk_eq(m_manager.mk_app(f_t, x.get()),
m_manager.mk_app(f_s, x.get())));
expr_ref frllx(m_manager.mk_forall(1, sorts, names, body), m_manager);
extra_assertions.push_back(frllx);
expr_ref ground_atom(m_manager);
ground_atom = m_manager.mk_eq(m_manager.mk_app(f_t, i), v);
extra_assertions.push_back(ground_atom);
TRACE("bvarray2uf_rw", tout << "ground atom: " << mk_ismt2_pp(ground_atom, m()) << std::endl; );
}
}
else {
NOT_IMPLEMENTED_YET();
res = BR_FAILED;
}
}
}
}
CTRACE("bvarray2uf_rw", res==BR_DONE, tout << "result: " << mk_ismt2_pp(result, m()) << std::endl; );
return res;
}
bool bvarray2uf_rewriter_cfg::pre_visit(expr * t)
{
TRACE("bvarray2uf_rw_q", tout << "pre_visit: " << mk_ismt2_pp(t, m()) << std::endl;);
if (is_quantifier(t)) {
quantifier * q = to_quantifier(t);
TRACE("bvarray2uf_rw_q", tout << "pre_visit quantifier [" << q->get_id() << "]: " << mk_ismt2_pp(q->get_expr(), m()) << std::endl;);
sort_ref_vector new_bindings(m_manager);
for (unsigned i = 0; i < q->get_num_decls(); i++)
new_bindings.push_back(q->get_decl_sort(i));
SASSERT(new_bindings.size() == q->get_num_decls());
m_bindings.append(new_bindings);
}
return true;
}
bool bvarray2uf_rewriter_cfg::reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
unsigned curr_sz = m_bindings.size();
SASSERT(old_q->get_num_decls() <= curr_sz);
unsigned num_decls = old_q->get_num_decls();
unsigned old_sz = curr_sz - num_decls;
string_buffer<> name_buffer;
ptr_buffer<sort> new_decl_sorts;
sbuffer<symbol> new_decl_names;
for (unsigned i = 0; i < num_decls; i++) {
symbol const & n = old_q->get_decl_name(i);
sort * s = old_q->get_decl_sort(i);
NOT_IMPLEMENTED_YET();
}
result = m().mk_quantifier(old_q->is_forall(), new_decl_sorts.size(), new_decl_sorts.c_ptr(), new_decl_names.c_ptr(),
new_body, old_q->get_weight(), old_q->get_qid(), old_q->get_skid(),
old_q->get_num_patterns(), new_patterns, old_q->get_num_no_patterns(), new_no_patterns);
result_pr = 0;
m_bindings.shrink(old_sz);
TRACE("bvarray2uf_rw_q", tout << "reduce_quantifier[" << old_q->get_depth() << "]: " <<
mk_ismt2_pp(old_q->get_expr(), m()) << std::endl <<
" new body: " << mk_ismt2_pp(new_body, m()) << std::endl;
tout << "result = " << mk_ismt2_pp(result, m()) << std::endl;);
return true;
}
bool bvarray2uf_rewriter_cfg::reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
if (t->get_idx() >= m_bindings.size())
return false;
expr_ref new_exp(m());
sort * s = t->get_sort();
NOT_IMPLEMENTED_YET();
result = new_exp;
result_pr = 0;
TRACE("bvarray2uf_rw_q", tout << "reduce_var: " << mk_ismt2_pp(t, m()) << " -> " << mk_ismt2_pp(result, m()) << std::endl;);
return true;
}

View file

@ -0,0 +1,87 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
bvarray2uf_rewriter.h
Abstract:
Rewriter that rewrites bit-vector arrays into bit-vector
(uninterpreted) functions.
Author:
Christoph (cwinter) 2015-11-04
Notes:
--*/
#ifndef BVARRAY2UF_REWRITER_H_
#define BVARRAY2UF_REWRITER_H_
#include"rewriter_def.h"
#include"extension_model_converter.h"
#include"filter_model_converter.h"
class bvarray2uf_rewriter_cfg : public default_rewriter_cfg {
ast_manager & m_manager;
expr_ref_vector m_out;
sort_ref_vector m_bindings;
bv_util m_bv_util;
array_util m_array_util;
extension_model_converter * m_emc;
filter_model_converter * m_fmc;
obj_map<expr, func_decl*> m_arrays_fs;
public:
bvarray2uf_rewriter_cfg(ast_manager & m, params_ref const & p);
~bvarray2uf_rewriter_cfg();
ast_manager & m() const { return m_manager; }
void updt_params(params_ref const & p) {}
void reset();
bool pre_visit(expr * t);
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr);
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr);
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr);
expr_ref_vector extra_assertions;
void set_mcs(extension_model_converter * emc, filter_model_converter * fmc) { m_emc = emc; m_fmc = fmc; }
protected:
sort * get_index_sort(expr * e);
sort * get_index_sort(sort * s);
sort * get_value_sort(expr * e);
sort * get_value_sort(sort * s);
bool is_bv_array(expr * e);
bool is_bv_array(sort * e);
func_decl_ref mk_uf_for_array(expr * e);
};
template class rewriter_tpl<bvarray2uf_rewriter_cfg>;
struct bvarray2uf_rewriter : public rewriter_tpl<bvarray2uf_rewriter_cfg> {
bvarray2uf_rewriter_cfg m_cfg;
bvarray2uf_rewriter(ast_manager & m, params_ref const & p) :
rewriter_tpl<bvarray2uf_rewriter_cfg>(m, m.proofs_enabled(), m_cfg),
m_cfg(m, p) {
}
void set_mcs(extension_model_converter * emc, filter_model_converter * fmc) { m_cfg.set_mcs(emc, fmc); }
};
#endif

View file

@ -0,0 +1,168 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
bvarray2uf_tactic.cpp
Abstract:
Tactic that rewrites bit-vector arrays into bit-vector
(uninterpreted) functions.
Author:
Christoph (cwinter) 2015-11-04
Notes:
--*/
#include"tactical.h"
#include"bv_decl_plugin.h"
#include"expr_replacer.h"
#include"extension_model_converter.h"
#include"filter_model_converter.h"
#include"ast_smt2_pp.h"
#include"bvarray2uf_tactic.h"
#include"bvarray2uf_rewriter.h"
class bvarray2uf_tactic : public tactic {
struct imp {
ast_manager & m_manager;
bool m_produce_models;
bool m_produce_proofs;
bool m_produce_cores;
volatile bool m_cancel;
bvarray2uf_rewriter m_rw;
ast_manager & m() { return m_manager; }
imp(ast_manager & m, params_ref const & p) :
m_manager(m),
m_produce_models(false),
m_cancel(false),
m_produce_proofs(false),
m_produce_cores(false),
m_rw(m, p) {
updt_params(p);
}
void set_cancel(bool f) {
m_cancel = f;
}
void checkpoint() {
if (m_cancel)
throw tactic_exception(TACTIC_CANCELED_MSG);
}
void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core)
{
SASSERT(g->is_well_sorted());
tactic_report report("bvarray2uf", *g);
mc = 0; pc = 0; core = 0; result.reset();
fail_if_proof_generation("bvarray2uf", g);
fail_if_unsat_core_generation("bvarray2uf", g);
TRACE("bvarray2uf", tout << "Before: " << std::endl; g->display(tout); );
m_produce_models = g->models_enabled();
if (m_produce_models) {
extension_model_converter * emc = alloc(extension_model_converter, m_manager);
filter_model_converter * fmc = alloc(filter_model_converter, m_manager);
mc = concat(emc, fmc);
m_rw.set_mcs(emc, fmc);
}
m_rw.reset();
expr_ref new_curr(m_manager);
proof_ref new_pr(m_manager);
unsigned size = g->size();
for (unsigned idx = 0; idx < size; idx++) {
if (g->inconsistent())
break;
expr * curr = g->form(idx);
m_rw(curr, new_curr, new_pr);
//if (m_produce_proofs) {
// proof * pr = g->pr(idx);
// new_pr = m.mk_modus_ponens(pr, new_pr);
//}
g->update(idx, new_curr, new_pr, g->dep(idx));
}
for (unsigned i = 0; i < m_rw.m_cfg.extra_assertions.size(); i++)
g->assert_expr(m_rw.m_cfg.extra_assertions[i].get());
g->inc_depth();
result.push_back(g.get());
TRACE("bvarray2uf", tout << "After: " << std::endl; g->display(tout););
SASSERT(g->is_well_sorted());
}
void updt_params(params_ref const & p) {
}
};
imp * m_imp;
params_ref m_params;
public:
bvarray2uf_tactic(ast_manager & m, params_ref const & p) :
m_params(p) {
m_imp = alloc(imp, m, p);
}
virtual tactic * translate(ast_manager & m) {
return alloc(bvarray2uf_tactic, m, m_params);
}
virtual ~bvarray2uf_tactic() {
dealloc(m_imp);
}
virtual void updt_params(params_ref const & p) {
m_params = p;
m_imp->updt_params(p);
}
virtual void collect_param_descrs(param_descrs & r) {
insert_produce_models(r);
}
virtual void operator()(goal_ref const & in,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
(*m_imp)(in, result, mc, pc, core);
}
virtual void cleanup() {
ast_manager & m = m_imp->m();
imp * d = alloc(imp, m, m_params);
#pragma omp critical (tactic_cancel)
{
std::swap(d, m_imp);
}
dealloc(d);
}
virtual void set_cancel(bool f) {
if (m_imp)
m_imp->set_cancel(f);
}
};
tactic * mk_bvarray2uf_tactic(ast_manager & m, params_ref const & p) {
return clean(alloc(bvarray2uf_tactic, m, p));
}

View file

@ -0,0 +1,33 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
bvarray2ufbvarray2uf_tactic.h
Abstract:
Tactic that rewrites bit-vector arrays into bit-vector
(uninterpreted) functions.
Author:
Christoph (cwinter) 2015-11-04
Notes:
--*/
#ifndef BV_ARRAY2UF_TACTIC_H_
#define BV_ARRAY2UF_TACTIC_H_
#include"params.h"
class ast_manager;
class tactic;
tactic * mk_bvarray2uf_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("bvarray2uf", "Rewrite bit-vector arrays into bit-vector (uninterpreted) functions.", "mk_bvarray2uf_tactic(m, p)")
*/
#endif

View file

@ -25,6 +25,7 @@ Notes:
#include"max_bv_sharing_tactic.h"
#include"bv_size_reduction_tactic.h"
#include"reduce_args_tactic.h"
#include"qfbv_tactic.h"
tactic * mk_qfufbv_tactic(ast_manager & m, params_ref const & p) {
params_ref main_p;
@ -41,13 +42,11 @@ tactic * mk_qfufbv_tactic(ast_manager & m, params_ref const & p) {
);
tactic * st = using_params(and_then(preamble_st,
mk_smt_tactic()),
cond(mk_is_qfbv_probe(),
mk_qfbv_tactic(m),
mk_smt_tactic())),
main_p);
//cond(is_qfbv(),
// and_then(mk_bit_blaster(m),
// mk_sat_solver(m)),
// mk_smt_solver())
st->updt_params(p);
return st;
}