3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-29 18:52:29 +00:00

Add finite set API functions to access term constructors from finite_set_decl_plugin.h (#7996)

* Initial plan

* Add C API for finite sets

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add Python bindings for finite sets

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add C++ bindings for finite sets

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add documentation for finite set API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
Copilot 2025-10-23 17:10:47 +02:00 committed by GitHub
parent 4c67a7271e
commit 541a554ecd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 700 additions and 1 deletions

154
FINITE_SET_API.md Normal file
View file

@ -0,0 +1,154 @@
# Finite Set API Documentation
This document describes the finite set API added to Z3.
## Overview
The finite set API provides term constructors for finite sets as defined in `finite_set_decl_plugin.h`.
These are distinct from the existing array-based sets and provide a more direct representation for finite sets.
## C API
All functions are declared in `src/api/z3_api.h` and implemented in `src/api/api_finite_set.cpp`.
### Sort Constructor
- `Z3_sort Z3_mk_finite_set_sort(Z3_context c, Z3_sort elem_sort)` - Create a finite set sort over element sort
### Sort Queries
- `bool Z3_is_finite_set_sort(Z3_context c, Z3_sort s)` - Check if a sort is a finite set sort
- `Z3_sort Z3_get_finite_set_sort_basis(Z3_context c, Z3_sort s)` - Get the element sort of a finite set sort
### Term Constructors
- `Z3_ast Z3_mk_finite_set_empty(Z3_context c, Z3_sort set_sort)` - Create an empty finite set
- `Z3_ast Z3_mk_finite_set_singleton(Z3_context c, Z3_ast elem)` - Create a singleton set
- `Z3_ast Z3_mk_finite_set_union(Z3_context c, Z3_ast s1, Z3_ast s2)` - Create the union of two sets
- `Z3_ast Z3_mk_finite_set_intersect(Z3_context c, Z3_ast s1, Z3_ast s2)` - Create the intersection
- `Z3_ast Z3_mk_finite_set_difference(Z3_context c, Z3_ast s1, Z3_ast s2)` - Create the set difference
- `Z3_ast Z3_mk_finite_set_member(Z3_context c, Z3_ast elem, Z3_ast set)` - Check membership
- `Z3_ast Z3_mk_finite_set_size(Z3_context c, Z3_ast set)` - Get the cardinality
- `Z3_ast Z3_mk_finite_set_subset(Z3_context c, Z3_ast s1, Z3_ast s2)` - Check subset relation
- `Z3_ast Z3_mk_finite_set_map(Z3_context c, Z3_ast f, Z3_ast set)` - Apply function to all elements
- `Z3_ast Z3_mk_finite_set_filter(Z3_context c, Z3_ast f, Z3_ast set)` - Filter set with predicate
- `Z3_ast Z3_mk_finite_set_range(Z3_context c, Z3_ast low, Z3_ast high)` - Create range [low, high)
## Python API
All functions are available in `z3.py`:
### Classes
- `FiniteSetSortRef` - Finite set sort reference
- `FiniteSetRef` - Finite set expression reference
### Functions
- `FiniteSetSort(elem_sort)` - Create finite set sort
- `FiniteSetEmpty(set_sort)` - Create empty set
- `FiniteSetSingleton(elem)` - Create singleton set
- `FiniteSetUnion(s1, s2)` - Union (also `s1 | s2`)
- `FiniteSetIntersect(s1, s2)` - Intersection (also `s1 & s2`)
- `FiniteSetDifference(s1, s2)` - Difference (also `s1 - s2`)
- `FiniteSetMember(elem, set)` - Membership test
- `FiniteSetSize(set)` - Cardinality
- `FiniteSetSubset(s1, s2)` - Subset test
- `FiniteSetMap(f, set)` - Map function over set
- `FiniteSetFilter(f, set)` - Filter set
- `FiniteSetRange(low, high)` - Create range
- `is_finite_set(expr)` - Check if expression is a finite set
- `is_finite_set_sort(sort)` - Check if sort is a finite set sort
### Example
```python
from z3 import *
# Create a finite set sort over integers
int_set = FiniteSetSort(IntSort())
# Create sets
a = Const('a', int_set)
b = Const('b', int_set)
s1 = FiniteSetSingleton(IntVal(1))
# Use operators
union = a | b
intersect = a & b
diff = a - b
# Use with solver
solver = Solver()
solver.add(FiniteSetSize(a) == 2)
solver.add(FiniteSetMember(IntVal(1), a))
print(solver.check())
print(solver.model())
```
## C++ API
All functions are declared and implemented inline in `src/api/c++/z3++.h`:
### Context Methods
- `sort context::finite_set_sort(sort& s)` - Create finite set sort
### Free Functions
- `expr finite_set_empty(sort const& s)` - Create empty set
- `expr finite_set_singleton(expr const& e)` - Create singleton
- `expr finite_set_union(expr const& a, expr const& b)` - Union
- `expr finite_set_intersect(expr const& a, expr const& b)` - Intersection
- `expr finite_set_difference(expr const& a, expr const& b)` - Difference
- `expr finite_set_member(expr const& e, expr const& s)` - Membership
- `expr finite_set_size(expr const& s)` - Size
- `expr finite_set_subset(expr const& a, expr const& b)` - Subset
- `expr finite_set_map(expr const& f, expr const& s)` - Map
- `expr finite_set_filter(expr const& f, expr const& s)` - Filter
- `expr finite_set_range(expr const& low, expr const& high)` - Range
### Example
```cpp
#include <z3++.h>
z3::context c;
z3::sort int_sort = c.int_sort();
z3::sort fs_sort = c.finite_set_sort(int_sort);
z3::expr a = c.constant("a", fs_sort);
z3::expr b = c.constant("b", fs_sort);
z3::expr union_ab = finite_set_union(a, b);
z3::solver s(c);
s.add(finite_set_size(a) == 2);
std::cout << s.check() << std::endl;
```
## Other Language Bindings
The C#, Java, JavaScript, OCaml, and Julia bindings are auto-generated from the C API through
the `scripts/update_api.py` script during the build process. The `def_API` macros in `z3_api.h`
provide the metadata needed for auto-generation.
## Implementation Details
- The finite set plugin is registered in `src/ast/reg_decl_plugins.cpp`
- The `finite_set_util` is added to the API context in `src/api/api_context.h`
- Core implementation is in `src/ast/finite_set_decl_plugin.h/cpp`
## SMT-LIB2 Syntax
The finite set operations map to SMT-LIB2 symbols:
- `set.empty` - empty set
- `set.singleton` - singleton set
- `set.union` - union
- `set.intersect` - intersection
- `set.difference` - difference
- `set.in` - membership
- `set.size` - cardinality
- `set.subset` - subset
- `set.map` - map operation
- `set.filter` - filter operation
- `set.range` - integer range

View file

@ -44,6 +44,7 @@ z3_add_component(api
api_context.cpp
api_datalog.cpp
api_datatype.cpp
api_finite_set.cpp
api_fpa.cpp
api_goal.cpp
api_log.cpp

View file

@ -133,6 +133,7 @@ namespace api {
m_fpa_util(m()),
m_sutil(m()),
m_recfun(m()),
m_finite_set_util(m()),
m_ast_trail(m()),
m_pmanager(m_limit) {

View file

@ -31,6 +31,7 @@ Revision History:
#include "ast/fpa_decl_plugin.h"
#include "ast/recfun_decl_plugin.h"
#include "ast/special_relations_decl_plugin.h"
#include "ast/finite_set_decl_plugin.h"
#include "ast/rewriter/seq_rewriter.h"
#include "params/smt_params.h"
#include "smt/smt_kernel.h"
@ -77,6 +78,7 @@ namespace api {
fpa_util m_fpa_util;
seq_util m_sutil;
recfun::util m_recfun;
finite_set_util m_finite_set_util;
// Support for old solver API
smt_params m_fparams;
@ -146,6 +148,7 @@ namespace api {
datatype_util& dtutil() { return m_dt_plugin->u(); }
seq_util& sutil() { return m_sutil; }
recfun::util& recfun() { return m_recfun; }
finite_set_util& fsutil() { return m_finite_set_util; }
family_id get_basic_fid() const { return basic_family_id; }
family_id get_array_fid() const { return m_array_fid; }
family_id get_arith_fid() const { return arith_family_id; }

169
src/api/api_finite_set.cpp Normal file
View file

@ -0,0 +1,169 @@
/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
api_finite_set.cpp
Abstract:
API for finite sets.
Author:
Copilot 2025-01-21
Revision History:
--*/
#include "api/z3.h"
#include "api/api_log_macros.h"
#include "api/api_context.h"
#include "api/api_util.h"
#include "ast/ast_pp.h"
extern "C" {
Z3_sort Z3_API Z3_mk_finite_set_sort(Z3_context c, Z3_sort elem_sort) {
Z3_TRY;
LOG_Z3_mk_finite_set_sort(c, elem_sort);
RESET_ERROR_CODE();
parameter param(to_sort(elem_sort));
sort* ty = mk_c(c)->m().mk_sort(mk_c(c)->fsutil().get_family_id(), FINITE_SET_SORT, 1, &param);
mk_c(c)->save_ast_trail(ty);
RETURN_Z3(of_sort(ty));
Z3_CATCH_RETURN(nullptr);
}
bool Z3_API Z3_is_finite_set_sort(Z3_context c, Z3_sort s) {
Z3_TRY;
LOG_Z3_is_finite_set_sort(c, s);
RESET_ERROR_CODE();
return mk_c(c)->fsutil().is_finite_set(to_sort(s));
Z3_CATCH_RETURN(false);
}
Z3_sort Z3_API Z3_get_finite_set_sort_basis(Z3_context c, Z3_sort s) {
Z3_TRY;
LOG_Z3_get_finite_set_sort_basis(c, s);
RESET_ERROR_CODE();
sort* elem_sort = nullptr;
if (!mk_c(c)->fsutil().is_finite_set(to_sort(s), elem_sort)) {
SET_ERROR_CODE(Z3_INVALID_ARG, "expected finite set sort");
RETURN_Z3(nullptr);
}
RETURN_Z3(of_sort(elem_sort));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_empty(Z3_context c, Z3_sort set_sort) {
Z3_TRY;
LOG_Z3_mk_finite_set_empty(c, set_sort);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_empty(to_sort(set_sort));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_singleton(Z3_context c, Z3_ast elem) {
Z3_TRY;
LOG_Z3_mk_finite_set_singleton(c, elem);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_singleton(to_expr(elem));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_union(Z3_context c, Z3_ast s1, Z3_ast s2) {
Z3_TRY;
LOG_Z3_mk_finite_set_union(c, s1, s2);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_union(to_expr(s1), to_expr(s2));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_intersect(Z3_context c, Z3_ast s1, Z3_ast s2) {
Z3_TRY;
LOG_Z3_mk_finite_set_intersect(c, s1, s2);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_intersect(to_expr(s1), to_expr(s2));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_difference(Z3_context c, Z3_ast s1, Z3_ast s2) {
Z3_TRY;
LOG_Z3_mk_finite_set_difference(c, s1, s2);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_difference(to_expr(s1), to_expr(s2));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_member(Z3_context c, Z3_ast elem, Z3_ast set) {
Z3_TRY;
LOG_Z3_mk_finite_set_member(c, elem, set);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_in(to_expr(elem), to_expr(set));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_size(Z3_context c, Z3_ast set) {
Z3_TRY;
LOG_Z3_mk_finite_set_size(c, set);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_size(to_expr(set));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_subset(Z3_context c, Z3_ast s1, Z3_ast s2) {
Z3_TRY;
LOG_Z3_mk_finite_set_subset(c, s1, s2);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_subset(to_expr(s1), to_expr(s2));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_map(Z3_context c, Z3_ast f, Z3_ast set) {
Z3_TRY;
LOG_Z3_mk_finite_set_map(c, f, set);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_map(to_expr(f), to_expr(set));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_filter(Z3_context c, Z3_ast f, Z3_ast set) {
Z3_TRY;
LOG_Z3_mk_finite_set_filter(c, f, set);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_filter(to_expr(f), to_expr(set));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
Z3_ast Z3_API Z3_mk_finite_set_range(Z3_context c, Z3_ast low, Z3_ast high) {
Z3_TRY;
LOG_Z3_mk_finite_set_range(c, low, high);
RESET_ERROR_CODE();
app* a = mk_c(c)->fsutil().mk_range(to_expr(low), to_expr(high));
mk_c(c)->save_ast_trail(a);
RETURN_Z3(of_ast(a));
Z3_CATCH_RETURN(nullptr);
}
};

View file

@ -274,6 +274,10 @@ namespace z3 {
\brief Return a regular expression sort over sequences \c seq_sort.
*/
sort re_sort(sort& seq_sort);
/**
\brief Return a finite set sort over element sort \c s.
*/
sort finite_set_sort(sort& s);
/**
\brief Return an array sort for arrays from \c d to \c r.
@ -3494,6 +3498,7 @@ namespace z3 {
inline sort context::char_sort() { Z3_sort s = Z3_mk_char_sort(m_ctx); check_error(); return sort(*this, s); }
inline sort context::seq_sort(sort& s) { Z3_sort r = Z3_mk_seq_sort(m_ctx, s); check_error(); return sort(*this, r); }
inline sort context::re_sort(sort& s) { Z3_sort r = Z3_mk_re_sort(m_ctx, s); check_error(); return sort(*this, r); }
inline sort context::finite_set_sort(sort& s) { Z3_sort r = Z3_mk_finite_set_sort(m_ctx, s); check_error(); return sort(*this, r); }
inline sort context::fpa_sort(unsigned ebits, unsigned sbits) { Z3_sort s = Z3_mk_fpa_sort(m_ctx, ebits, sbits); check_error(); return sort(*this, s); }
template<>
@ -4065,6 +4070,54 @@ namespace z3 {
MK_EXPR2(Z3_mk_set_subset, a, b);
}
// finite set operations
inline expr finite_set_empty(sort const& s) {
Z3_ast r = Z3_mk_finite_set_empty(s.ctx(), s);
s.check_error();
return expr(s.ctx(), r);
}
inline expr finite_set_singleton(expr const& e) {
MK_EXPR1(Z3_mk_finite_set_singleton, e);
}
inline expr finite_set_union(expr const& a, expr const& b) {
MK_EXPR2(Z3_mk_finite_set_union, a, b);
}
inline expr finite_set_intersect(expr const& a, expr const& b) {
MK_EXPR2(Z3_mk_finite_set_intersect, a, b);
}
inline expr finite_set_difference(expr const& a, expr const& b) {
MK_EXPR2(Z3_mk_finite_set_difference, a, b);
}
inline expr finite_set_member(expr const& e, expr const& s) {
MK_EXPR2(Z3_mk_finite_set_member, e, s);
}
inline expr finite_set_size(expr const& s) {
MK_EXPR1(Z3_mk_finite_set_size, s);
}
inline expr finite_set_subset(expr const& a, expr const& b) {
MK_EXPR2(Z3_mk_finite_set_subset, a, b);
}
inline expr finite_set_map(expr const& f, expr const& s) {
MK_EXPR2(Z3_mk_finite_set_map, f, s);
}
inline expr finite_set_filter(expr const& f, expr const& s) {
MK_EXPR2(Z3_mk_finite_set_filter, f, s);
}
inline expr finite_set_range(expr const& low, expr const& high) {
MK_EXPR2(Z3_mk_finite_set_range, low, high);
}
// sequence and regular expression operations.
// union is +
// concat is overloaded to handle sequences and regular expressions

View file

@ -678,6 +678,8 @@ def is_sort(s : Any) -> bool:
def _to_sort_ref(s, ctx):
if z3_debug():
_z3_assert(isinstance(s, Sort), "Z3 Sort expected")
if Z3_is_finite_set_sort(ctx.ref(), s):
return FiniteSetSortRef(s, ctx)
k = _sort_kind(ctx, s)
if k == Z3_BOOL_SORT:
return BoolSortRef(s, ctx)
@ -1184,7 +1186,11 @@ def _to_expr_ref(a, ctx):
k = Z3_get_ast_kind(ctx_ref, a)
if k == Z3_QUANTIFIER_AST:
return QuantifierRef(a, ctx)
sk = Z3_get_sort_kind(ctx_ref, Z3_get_sort(ctx_ref, a))
# Check for finite set sort before checking sort kind
s = Z3_get_sort(ctx_ref, a)
if Z3_is_finite_set_sort(ctx_ref, s):
return FiniteSetRef(a, ctx)
sk = Z3_get_sort_kind(ctx_ref, s)
if sk == Z3_BOOL_SORT:
return BoolRef(a, ctx)
if sk == Z3_INT_SORT:
@ -5147,6 +5153,217 @@ def IsSubset(a, b):
return BoolRef(Z3_mk_set_subset(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
#########################################
#
# Finite Sets
#
#########################################
class FiniteSetSortRef(SortRef):
"""Finite set sort."""
def element_sort(self):
"""Return the element sort of this finite set sort."""
return _to_sort_ref(Z3_get_finite_set_sort_basis(self.ctx_ref(), self.ast), self.ctx)
def cast(self, val):
"""Try to cast val as a finite set expression."""
if is_expr(val):
if self.eq(val.sort()):
return val
else:
_z3_assert(False, "Cannot cast to finite set sort")
if isinstance(val, set):
elem_sort = self.element_sort()
result = FiniteSetEmpty(self)
for e in val:
result = FiniteSetUnion(result, FiniteSetSingleton(_py2expr(e, self.ctx, elem_sort)))
return result
_z3_assert(False, "Cannot cast to finite set sort")
def subsort(self, other):
return False
def is_int(self):
return False
def is_bool(self):
return False
def is_datatype(self):
return False
def is_array(self):
return False
def is_bv(self):
return False
def is_finite_set(a):
"""Return True if a is a Z3 finite set expression.
>>> s = FiniteSetSort(IntSort())
>>> is_finite_set(FiniteSetEmpty(s))
True
>>> is_finite_set(IntVal(1))
False
"""
return isinstance(a, FiniteSetRef)
def is_finite_set_sort(s):
"""Return True if s is a Z3 finite set sort.
>>> is_finite_set_sort(FiniteSetSort(IntSort()))
True
>>> is_finite_set_sort(IntSort())
False
"""
return isinstance(s, FiniteSetSortRef)
class FiniteSetRef(ExprRef):
"""Finite set expression."""
def sort(self):
return FiniteSetSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
def __or__(self, other):
"""Return the union of self and other."""
return FiniteSetUnion(self, other)
def __and__(self, other):
"""Return the intersection of self and other."""
return FiniteSetIntersect(self, other)
def __sub__(self, other):
"""Return the set difference of self and other."""
return FiniteSetDifference(self, other)
def FiniteSetSort(elem_sort):
"""Create a finite set sort over element sort elem_sort.
>>> s = FiniteSetSort(IntSort())
>>> s
FiniteSet(Int)
"""
return FiniteSetSortRef(Z3_mk_finite_set_sort(elem_sort.ctx_ref(), elem_sort.ast), elem_sort.ctx)
def FiniteSetEmpty(set_sort):
"""Create an empty finite set of the given sort.
>>> s = FiniteSetSort(IntSort())
>>> FiniteSetEmpty(s)
set.empty
"""
ctx = set_sort.ctx
return FiniteSetRef(Z3_mk_finite_set_empty(ctx.ref(), set_sort.ast), ctx)
def FiniteSetSingleton(elem):
"""Create a singleton finite set containing elem.
>>> FiniteSetSingleton(IntVal(1))
set.singleton(1)
"""
ctx = elem.ctx
return FiniteSetRef(Z3_mk_finite_set_singleton(ctx.ref(), elem.as_ast()), ctx)
def FiniteSetUnion(s1, s2):
"""Create the union of two finite sets.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> b = Const('b', FiniteSetSort(IntSort()))
>>> FiniteSetUnion(a, b)
set.union(a, b)
"""
ctx = _ctx_from_ast_arg_list([s1, s2])
return FiniteSetRef(Z3_mk_finite_set_union(ctx.ref(), s1.as_ast(), s2.as_ast()), ctx)
def FiniteSetIntersect(s1, s2):
"""Create the intersection of two finite sets.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> b = Const('b', FiniteSetSort(IntSort()))
>>> FiniteSetIntersect(a, b)
set.intersect(a, b)
"""
ctx = _ctx_from_ast_arg_list([s1, s2])
return FiniteSetRef(Z3_mk_finite_set_intersect(ctx.ref(), s1.as_ast(), s2.as_ast()), ctx)
def FiniteSetDifference(s1, s2):
"""Create the set difference of two finite sets.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> b = Const('b', FiniteSetSort(IntSort()))
>>> FiniteSetDifference(a, b)
set.difference(a, b)
"""
ctx = _ctx_from_ast_arg_list([s1, s2])
return FiniteSetRef(Z3_mk_finite_set_difference(ctx.ref(), s1.as_ast(), s2.as_ast()), ctx)
def FiniteSetMember(elem, set):
"""Check if elem is a member of the finite set.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> FiniteSetMember(IntVal(1), a)
set.in(1, a)
"""
ctx = _ctx_from_ast_arg_list([elem, set])
return BoolRef(Z3_mk_finite_set_member(ctx.ref(), elem.as_ast(), set.as_ast()), ctx)
def FiniteSetSize(set):
"""Get the size (cardinality) of a finite set.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> FiniteSetSize(a)
set.size(a)
"""
ctx = set.ctx
return ArithRef(Z3_mk_finite_set_size(ctx.ref(), set.as_ast()), ctx)
def FiniteSetSubset(s1, s2):
"""Check if s1 is a subset of s2.
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> b = Const('b', FiniteSetSort(IntSort()))
>>> FiniteSetSubset(a, b)
set.subset(a, b)
"""
ctx = _ctx_from_ast_arg_list([s1, s2])
return BoolRef(Z3_mk_finite_set_subset(ctx.ref(), s1.as_ast(), s2.as_ast()), ctx)
def FiniteSetMap(f, set):
"""Apply function f to all elements of the finite set.
>>> f = Function('f', IntSort(), IntSort())
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> FiniteSetMap(f, a)
set.map(f, a)
"""
ctx = _ctx_from_ast_arg_list([f, set])
return FiniteSetRef(Z3_mk_finite_set_map(ctx.ref(), f.as_ast(), set.as_ast()), ctx)
def FiniteSetFilter(f, set):
"""Filter a finite set using predicate f.
>>> f = Function('f', IntSort(), BoolSort())
>>> a = Const('a', FiniteSetSort(IntSort()))
>>> FiniteSetFilter(f, a)
set.filter(f, a)
"""
ctx = _ctx_from_ast_arg_list([f, set])
return FiniteSetRef(Z3_mk_finite_set_filter(ctx.ref(), f.as_ast(), set.as_ast()), ctx)
def FiniteSetRange(low, high):
"""Create a finite set of integers in the range [low, high).
>>> FiniteSetRange(IntVal(0), IntVal(5))
set.range(0, 5)
"""
ctx = _ctx_from_ast_arg_list([low, high])
return FiniteSetRef(Z3_mk_finite_set_range(ctx.ref(), low.as_ast(), high.as_ast()), ctx)
#########################################
#
# Datatypes

View file

@ -3389,6 +3389,107 @@ extern "C" {
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2);
/**@}*/
/** @name Finite Sets */
/**@{*/
/**
\brief Create a finite set sort.
def_API('Z3_mk_finite_set_sort', SORT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort Z3_API Z3_mk_finite_set_sort(Z3_context c, Z3_sort elem_sort);
/**
\brief Check if a sort is a finite set sort.
def_API('Z3_is_finite_set_sort', BOOL, (_in(CONTEXT), _in(SORT)))
*/
bool Z3_API Z3_is_finite_set_sort(Z3_context c, Z3_sort s);
/**
\brief Get the element sort of a finite set sort.
def_API('Z3_get_finite_set_sort_basis', SORT, (_in(CONTEXT), _in(SORT)))
*/
Z3_sort Z3_API Z3_get_finite_set_sort_basis(Z3_context c, Z3_sort s);
/**
\brief Create an empty finite set of the given sort.
def_API('Z3_mk_finite_set_empty', AST, (_in(CONTEXT), _in(SORT)))
*/
Z3_ast Z3_API Z3_mk_finite_set_empty(Z3_context c, Z3_sort set_sort);
/**
\brief Create a singleton finite set.
def_API('Z3_mk_finite_set_singleton', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_singleton(Z3_context c, Z3_ast elem);
/**
\brief Create the union of two finite sets.
def_API('Z3_mk_finite_set_union', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_union(Z3_context c, Z3_ast s1, Z3_ast s2);
/**
\brief Create the intersection of two finite sets.
def_API('Z3_mk_finite_set_intersect', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_intersect(Z3_context c, Z3_ast s1, Z3_ast s2);
/**
\brief Create the set difference of two finite sets.
def_API('Z3_mk_finite_set_difference', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_difference(Z3_context c, Z3_ast s1, Z3_ast s2);
/**
\brief Check if an element is a member of a finite set.
def_API('Z3_mk_finite_set_member', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_member(Z3_context c, Z3_ast elem, Z3_ast set);
/**
\brief Get the size (cardinality) of a finite set.
def_API('Z3_mk_finite_set_size', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_size(Z3_context c, Z3_ast set);
/**
\brief Check if one finite set is a subset of another.
def_API('Z3_mk_finite_set_subset', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_subset(Z3_context c, Z3_ast s1, Z3_ast s2);
/**
\brief Apply a function to all elements of a finite set.
def_API('Z3_mk_finite_set_map', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_map(Z3_context c, Z3_ast f, Z3_ast set);
/**
\brief Filter a finite set using a predicate.
def_API('Z3_mk_finite_set_filter', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_filter(Z3_context c, Z3_ast f, Z3_ast set);
/**
\brief Create a finite set of integers in the range [low, high).
def_API('Z3_mk_finite_set_range', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_finite_set_range(Z3_context c, Z3_ast low, Z3_ast high);
/**@}*/
/** @name Numerals */
/**@{*/
/**