3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 11:25:51 +00:00

Add arith_decls for underspecified operators

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-12-26 11:35:00 -08:00
parent 2a286541e0
commit 53df82c314
3 changed files with 94 additions and 105 deletions

View file

@ -35,6 +35,7 @@ enum arith_sort_kind {
enum arith_op_kind {
OP_NUM, // rational & integers
OP_IRRATIONAL_ALGEBRAIC_NUM, // irrationals that are roots of polynomials with integer coefficients
//
OP_LE,
OP_GE,
OP_LT,
@ -67,6 +68,15 @@ enum arith_op_kind {
// constants
OP_PI,
OP_E,
// under-specified symbols
OP_0_PW_0_INT, // 0^0 for integers
OP_0_PW_0_REAL, // 0^0 for reals
OP_NEG_ROOT, // x^n when n is even and x is negative
OP_DIV_0, // x/0
OP_IDIV_0, // x div 0
OP_MOD_0, // x mod 0
OP_U_ASIN, // asin(x) for x < -1 or x > 1
OP_U_ACOS, // acos(x) for x < -1 or x > 1
LAST_ARITH_OP
};
@ -126,7 +136,16 @@ protected:
app * m_pi;
app * m_e;
app * m_0_pw_0_int;
app * m_0_pw_0_real;
func_decl * m_neg_root_decl;
func_decl * m_div_0_decl;
func_decl * m_idiv_0_decl;
func_decl * m_mod_0_decl;
func_decl * m_u_asin_decl;
func_decl * m_u_acos_decl;
ptr_vector<app> m_small_ints;
ptr_vector<app> m_small_reals;
@ -182,6 +201,10 @@ public:
app * mk_e() const { return m_e; }
app * mk_0_pw_0_int() const { return m_0_pw_0_int; }
app * mk_0_pw_0_real() const { return m_0_pw_0_real; }
virtual expr * get_some_value(sort * s);
virtual void set_cancel(bool f);
@ -339,6 +362,15 @@ public:
app * mk_pi() { return plugin().mk_pi(); }
app * mk_e() { return plugin().mk_e(); }
app * mk_0_pw_0_int() { return plugin().mk_0_pw_0_int(); }
app * mk_0_pw_0_real() { return plugin().mk_0_pw_0_real(); }
app * mk_div0(expr * arg) { return m_manager.mk_app(m_afid, OP_DIV_0, arg); }
app * mk_idiv0(expr * arg) { return m_manager.mk_app(m_afid, OP_IDIV_0, arg); }
app * mk_mod0(expr * arg) { return m_manager.mk_app(m_afid, OP_MOD_0, arg); }
app * mk_neg_root(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_NEG_ROOT, arg1, arg2); }
app * mk_u_asin(expr * arg) { return m_manager.mk_app(m_afid, OP_U_ASIN, arg); }
app * mk_u_acos(expr * arg) { return m_manager.mk_app(m_afid, OP_U_ACOS, arg); }
/**
\brief Return the equality (= lhs rhs), but it makes sure that
if one of the arguments is a numeral, then it will be in the right-hand-side;