3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

merge smon with monomial

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-22 16:33:58 -07:00
parent e73296fbe5
commit 53cc8048f7
20 changed files with 312 additions and 633 deletions

View file

@ -30,22 +30,22 @@ void order::order_lemma() {
unsigned start = random();
unsigned sz = rm_ref.size();
for (unsigned i = 0; i < sz && !done(); ++i) {
const smon& rm = c().m_emons.canonical[rm_ref[(i + start) % sz]];
const monomial& rm = c().m_emons[rm_ref[(i + start) % sz]];
order_lemma_on_rmonomial(rm);
}
}
void order::order_lemma_on_rmonomial(const smon& rm) {
void order::order_lemma_on_rmonomial(const monomial& m) {
TRACE("nla_solver_details",
tout << "rm = " << rm << ", orig = " << pp_mon(c(), c().m_emons[rm]););
tout << "m = " << pp_mon(c(), m););
for (auto ac : factorization_factory_imp(rm, c())) {
for (auto ac : factorization_factory_imp(m, c())) {
if (ac.size() != 2)
continue;
if (ac.is_mon())
order_lemma_on_binomial(*ac.mon());
else
order_lemma_on_factorization(rm, ac);
order_lemma_on_factorization(m, ac);
if (done())
break;
}
@ -54,7 +54,7 @@ void order::order_lemma_on_rmonomial(const smon& rm) {
void order::order_lemma_on_binomial(const monomial& ac) {
TRACE("nla_solver", tout << pp_mon(c(), ac););
SASSERT(!check_monomial(ac) && ac.size() == 2);
const rational mult_val = vvr(ac[0]) * vvr(ac[1]);
const rational mult_val = vvr(ac.vars()[0]) * vvr(ac.vars()[1]);
const rational acv = vvr(ac);
bool gt = acv > mult_val;
for (unsigned k = 0; k < 2; k++) {
@ -64,8 +64,8 @@ void order::order_lemma_on_binomial(const monomial& ac) {
}
void order::order_lemma_on_binomial_k(const monomial& m, bool k, bool gt) {
SASSERT(gt == (vvr(m) > vvr(m[0]) * vvr(m[1])));
order_lemma_on_binomial_sign(m, m[k], m[!k], gt ? 1: -1);
SASSERT(gt == (vvr(m) > vvr(m.vars()[0]) * vvr(m.vars()[1])));
order_lemma_on_binomial_sign(m, m.vars()[k], m.vars()[!k], gt ? 1: -1);
}
/**
@ -78,7 +78,7 @@ void order::order_lemma_on_binomial_k(const monomial& m, bool k, bool gt) {
*/
void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, int sign) {
SASSERT(!_().mon_has_zero(xy));
SASSERT(!_().mon_has_zero(xy.vars()));
int sy = rat_sign(vvr(y));
add_empty_lemma();
mk_ineq(y, sy == 1 ? llc::LE : llc::GE); // negate sy
@ -89,7 +89,7 @@ void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, i
void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
SASSERT(m1.size() == 2);
lpvar c = m1[k];
lpvar c = m1.vars()[k];
for (monomial const& m2 : _().m_emons.get_factors_of(c)) {
order_lemma_on_factor_binomial_rm(m1, k, m2);
if (done()) {
@ -99,20 +99,19 @@ void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
}
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd) {
smon const& rm_bd = _().m_emons.canonical[bd];
factor d(_().m_evars.find(ac[k]).var(), factor_type::VAR);
factor d(_().m_evars.find(ac.vars()[k]).var(), factor_type::VAR);
factor b;
if (c().divide(rm_bd, d, b)) {
order_lemma_on_binomial_ac_bd(ac, k, rm_bd, b, d.var());
if (c().divide(bd, d, b)) {
order_lemma_on_binomial_ac_bd(ac, k, bd, b, d.var());
}
}
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const smon& bd, const factor& b, lpvar d) {
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d) {
TRACE("nla_solver",
tout << "ac=" << pp_mon(c(), ac) << "\nrm= " << bd << ", b= " << pp_fac(c(), b) << ", d= " << pp_var(c(), d) << "\n";);
bool p = !k;
lpvar a = ac[p];
lpvar c = ac[k];
lpvar a = ac.vars()[p];
lpvar c = ac.vars()[k];
SASSERT(_().m_evars.find(c).var() == d);
rational acv = vvr(ac);
rational av = vvr(a);
@ -137,7 +136,7 @@ void order::generate_mon_ol(const monomial& ac,
lpvar a,
const rational& c_sign,
lpvar c,
const smon& bd,
const monomial& bd,
const factor& b,
const rational& d_sign,
lpvar d,
@ -159,10 +158,10 @@ void order::generate_mon_ol(const monomial& ac,
// a >< b && c < 0 => ac <> bc
// ac[k] plays the role of c
bool order::order_lemma_on_ac_and_bc(const smon& rm_ac,
bool order::order_lemma_on_ac_and_bc(const monomial& rm_ac,
const factorization& ac_f,
bool k,
const smon& rm_bd) {
const monomial& rm_bd) {
TRACE("nla_solver",
tout << "rm_ac = " << rm_ac << "\n";
tout << "rm_bd = " << rm_bd << "\n";
@ -176,10 +175,8 @@ bool order::order_lemma_on_ac_and_bc(const smon& rm_ac,
// TBD: document what lemma is created here.
void order::order_lemma_on_factorization(const smon& rm, const factorization& ab) {
const monomial& m = _().m_emons[rm];
TRACE("nla_solver", tout << "orig_sign = " << _().m_emons.orig_sign(rm) << "\n";);
rational sign = _().m_emons.orig_sign(rm);
void order::order_lemma_on_factorization(const monomial& m, const factorization& ab) {
rational sign = m.rsign();
for (factor f: ab)
sign *= _().canonize_sign(f);
const rational fv = vvr(ab[0]) * vvr(ab[1]);
@ -194,26 +191,25 @@ void order::order_lemma_on_factorization(const smon& rm, const factorization& ab
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
explain(ab); explain(m);
explain(rm);
TRACE("nla_solver", _().print_lemma(tout););
order_lemma_on_ac_explore(rm, ab, j == 1);
order_lemma_on_ac_explore(m, ab, j == 1);
}
}
bool order::order_lemma_on_ac_explore(const smon& rm, const factorization& ac, bool k) {
bool order::order_lemma_on_ac_explore(const monomial& rm, const factorization& ac, bool k) {
const factor c = ac[k];
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
if (c.is_var()) {
TRACE("nla_solver", tout << "var(c) = " << var(c););
for (monomial const& bc : _().m_emons.get_use_list(c.var())) {
if (order_lemma_on_ac_and_bc(rm ,ac, k, _().m_emons.canonical[bc])) {
if (order_lemma_on_ac_and_bc(rm ,ac, k, bc)) {
return true;
}
}
}
else {
for (monomial const& bc : _().m_emons.get_factors_of(c.var())) {
if (order_lemma_on_ac_and_bc(rm , ac, k, _().m_emons.canonical[bc])) {
if (order_lemma_on_ac_and_bc(rm , ac, k, bc)) {
return true;
}
}
@ -223,11 +219,11 @@ bool order::order_lemma_on_ac_explore(const smon& rm, const factorization& ac, b
// |c_sign| = 1, and c*c_sign > 0
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
void order::generate_ol(const smon& ac,
void order::generate_ol(const monomial& ac,
const factor& a,
int c_sign,
const factor& c,
const smon& bc,
const monomial& bc,
const factor& b,
llc ab_cmp) {
add_empty_lemma();
@ -251,10 +247,10 @@ void order::negate_var_factor_relation(const rational& a_sign, lpvar a, const ra
}
bool order::order_lemma_on_ac_and_bc_and_factors(const smon& ac,
bool order::order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
const factor& a,
const factor& c,
const smon& bc,
const monomial& bc,
const factor& b) {
auto cv = vvr(c);
int c_sign = nla::rat_sign(cv);