3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

merge smon with monomial

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-22 16:33:58 -07:00
parent e73296fbe5
commit 53cc8048f7
20 changed files with 312 additions and 633 deletions

View file

@ -28,7 +28,7 @@ namespace nla {
class core;
struct basics: common {
basics(core *core);
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n);
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
@ -40,47 +40,47 @@ struct basics: common {
-ab = a(-b)
*/
bool basic_sign_lemma(bool derived);
bool basic_lemma_for_mon_zero(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_zero(const monomial& rm, const factorization& f);
void basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f);
void basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f);
// x = 0 or y = 0 -> xy = 0
void basic_lemma_for_mon_non_zero_model_based_rm(const smon& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based_rm(const monomial& rm, const factorization& f);
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
// x = 0 or y = 0 -> xy = 0
bool basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f);
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& rm, const factorization& f);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const monomial& rm, const factorization& f);
void basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f);
bool basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization);
bool basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization);
void basic_lemma_for_mon_model_based(const smon& rm);
void basic_lemma_for_mon_model_based(const monomial& rm);
bool basic_lemma_for_mon_derived(const smon& rm);
bool basic_lemma_for_mon_derived(const monomial& rm);
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basic_lemma_for_mon(const smon& rm, bool derived);
void basic_lemma_for_mon(const monomial& rm, bool derived);
// use basic multiplication properties to create a lemma
bool basic_lemma(bool derived);
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
@ -94,14 +94,14 @@ struct basics: common {
void add_fixed_zero_lemma(const monomial& m, lpvar j);
void negate_strict_sign(lpvar j);
// x != 0 or y = 0 => |xy| >= |y|
void proportion_lemma_model_based(const smon& rm, const factorization& factorization);
void proportion_lemma_model_based(const monomial& rm, const factorization& factorization);
// x != 0 or y = 0 => |xy| >= |y|
bool proportion_lemma_derived(const smon& rm, const factorization& factorization);
bool proportion_lemma_derived(const monomial& rm, const factorization& factorization);
// if there are no zero factors then |m| >= |m[factor_index]|
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void generate_pl(const smon& rm, const factorization& fc, int factor_index);
void generate_pl(const monomial& rm, const factorization& fc, int factor_index);
};
}