3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

merge smon with monomial

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-22 16:33:58 -07:00
parent e73296fbe5
commit 53cc8048f7
20 changed files with 312 additions and 633 deletions

View file

@ -26,8 +26,9 @@ basics::basics(core * c) : common(c) {}
// Monomials m and n vars have the same values, up to "sign"
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
if (vvr(m) == vvr(n) * sign)
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n) {
const rational& sign = m.rsign() * n.rsign();
if (vvr(m) == vvr(n) * sign)
return false;
TRACE("nla_solver", tout << "sign contradiction:\nm = " << m << "n= " << n << "sign: " << sign << "\n";);
generate_sign_lemma(m, n, sign);
@ -35,13 +36,13 @@ bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial
}
void basics::generate_zero_lemmas(const monomial& m) {
SASSERT(!vvr(m).is_zero() && c().product_value(m).is_zero());
SASSERT(!vvr(m).is_zero() && c().product_value(m.vars()).is_zero());
int sign = nla::rat_sign(vvr(m));
unsigned_vector fixed_zeros;
lpvar zero_j = find_best_zero(m, fixed_zeros);
SASSERT(is_set(zero_j));
unsigned zero_power = 0;
for (lpvar j : m){
for (lpvar j : m.vars()){
if (j == zero_j) {
zero_power++;
continue;
@ -91,7 +92,7 @@ void basics::basic_sign_lemma_model_based_one_mon(const monomial& m, int product
generate_zero_lemmas(m);
} else {
add_empty_lemma();
for(lpvar j: m) {
for(lpvar j: m.vars()) {
negate_strict_sign(j);
}
c().mk_ineq(m.var(), product_sign == 1? llc::GT : llc::LT);
@ -122,12 +123,10 @@ bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & exp
}
const monomial& m_v = c().m_emons[v];
smon const& sv_v = c().m_emons.canonical[v];
TRACE("nla_solver_details", tout << "mon = " << pp_mon(c(), m_v););
for (auto const& m_w : c().m_emons.enum_sign_equiv_monomials(v)) {
smon const& sv_w = c().m_emons.canonical[m_w];
if (m_v.var() != m_w.var() && basic_sign_lemma_on_two_monomials(m_v, m_w, sv_v.rsign() * sv_w.rsign()) && done())
for (auto const& m : c().m_emons.enum_sign_equiv_monomials(v)) {
if (m_v.var() != m.var() && basic_sign_lemma_on_two_monomials(m_v, m) && done())
return true;
}
@ -167,7 +166,7 @@ void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rat
// and the bounds on j contain 0 as an inner point
lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
lpvar zero_j = -1;
for (unsigned j : m){
for (unsigned j : m.vars()){
if (vvr(j).is_zero()){
if (c().var_is_fixed_to_zero(j))
fixed_zeros.push_back(j);
@ -189,7 +188,7 @@ void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j,
// we know all the signs
add_empty_lemma();
c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT));
for (unsigned j : m){
for (unsigned j : m.rvars()){
if (j != zero_j) {
negate_strict_sign(j);
}
@ -222,7 +221,7 @@ void basics::negate_strict_sign(lpvar j) {
// here we use the fact
// xy = 0 -> x = 0 or y = 0
bool basics::basic_lemma_for_mon_zero(const smon& rm, const factorization& f) {
bool basics::basic_lemma_for_mon_zero(const monomial& rm, const factorization& f) {
NOT_IMPLEMENTED_YET();
return true;
#if 0
@ -251,7 +250,7 @@ bool basics::basic_lemma(bool derived) {
unsigned sz = rm_ref.size();
for (unsigned j = 0; j < sz; ++j) {
lpvar v = rm_ref[(j + start) % rm_ref.size()];
const smon& r = c().m_emons.canonical[v];
const monomial& r = c().m_emons[v];
SASSERT (!c().check_monomial(c().m_emons[v]));
basic_lemma_for_mon(r, derived);
}
@ -261,13 +260,13 @@ bool basics::basic_lemma(bool derived) {
// Use basic multiplication properties to create a lemma
// for the given monomial.
// "derived" means derived from constraints - the alternative is model based
void basics::basic_lemma_for_mon(const smon& rm, bool derived) {
void basics::basic_lemma_for_mon(const monomial& rm, bool derived) {
if (derived)
basic_lemma_for_mon_derived(rm);
else
basic_lemma_for_mon_model_based(rm);
}
bool basics::basic_lemma_for_mon_derived(const smon& rm) {
bool basics::basic_lemma_for_mon_derived(const monomial& rm) {
if (c().var_is_fixed_to_zero(var(rm))) {
for (auto factorization : factorization_factory_imp(rm, c())) {
if (factorization.is_empty())
@ -293,7 +292,7 @@ bool basics::basic_lemma_for_mon_derived(const smon& rm) {
return false;
}
// x = 0 or y = 0 -> xy = 0
bool basics::basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f) {
bool basics::basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
if (! c().var_is_separated_from_zero(var(rm)))
return false;
@ -317,7 +316,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const smon& rm, const factoriz
}
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f) {
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
lpvar mon_var = c().m_emons[rm.var()].var();
@ -375,64 +374,14 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon&
TRACE("nla_solver", c().print_lemma(tout); );
return true;
}
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f) {
return false;
rational sign = c().m_emons.orig_sign(rm);
lpvar not_one = -1;
TRACE("nla_solver", tout << "f = "; c().print_factorization(f, tout););
for (auto j : f){
TRACE("nla_solver", tout << "j = "; c().print_factor_with_vars(j, tout););
auto v = vvr(j);
if (v == rational(1)) {
continue;
}
if (v == -rational(1)) {
sign = - sign;
continue;
}
if (not_one == static_cast<lpvar>(-1)) {
not_one = var(j);
continue;
}
// if we are here then there are at least two factors with values different from one and minus one: cannot create the lemma
return false;
}
add_empty_lemma();
explain(rm);
for (auto j : f){
lpvar var_j = var(j);
if (not_one == var_j) continue;
c().mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : c().canonize_sign(j) * vvr(j));
}
if (not_one == static_cast<lpvar>(-1)) {
c().mk_ineq( c().m_emons[rm.var()].var(), llc::EQ, sign);
} else {
c().mk_ineq( c().m_emons[rm.var()].var(), -sign, not_one, llc::EQ);
}
TRACE("nla_solver",
tout << "rm = " << rm;
c().print_lemma(tout););
return true;
}
bool basics::basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization) {
bool basics::basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization) {
return
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization) ||
basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(rm, factorization);
return false;
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization);
}
// x != 0 or y = 0 => |xy| >= |y|
void basics::proportion_lemma_model_based(const smon& rm, const factorization& factorization) {
void basics::proportion_lemma_model_based(const monomial& rm, const factorization& factorization) {
rational rmv = abs(vvr(rm));
if (rmv.is_zero()) {
SASSERT(c().has_zero_factor(factorization));
@ -448,7 +397,7 @@ void basics::proportion_lemma_model_based(const smon& rm, const factorization& f
}
}
// x != 0 or y = 0 => |xy| >= |y|
bool basics::proportion_lemma_derived(const smon& rm, const factorization& factorization) {
bool basics::proportion_lemma_derived(const monomial& rm, const factorization& factorization) {
return false;
rational rmv = abs(vvr(rm));
if (rmv.is_zero()) {
@ -473,7 +422,7 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
rational sm = rational(nla::rat_sign(mv));
c().mk_ineq(sm, mon_var, llc::LT);
for (unsigned fi = 0; fi < m.size(); fi ++) {
lpvar j = m[fi];
lpvar j = m.vars()[fi];
if (fi != factor_index) {
c().mk_ineq(j, llc::EQ);
} else {
@ -489,10 +438,10 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
// none of the factors is zero and the product is not zero
// -> |fc[factor_index]| <= |rm|
void basics::generate_pl(const smon& rm, const factorization& fc, int factor_index) {
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = ";
tout << rm;
tout << "fc = "; c().print_factorization(fc, tout);
void basics::generate_pl(const monomial& rm, const factorization& fc, int factor_index) {
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = "
<< pp_mon(c(), rm);
tout << ", fc = "; c().print_factorization(fc, tout);
tout << "orig mon = "; c().print_monomial(c().m_emons[rm.var()], tout););
if (fc.is_mon()) {
generate_pl_on_mon(*fc.mon(), factor_index);
@ -523,7 +472,7 @@ void basics::generate_pl(const smon& rm, const factorization& fc, int factor_ind
TRACE("nla_solver", c().print_lemma(tout); );
}
// here we use the fact xy = 0 -> x = 0 or y = 0
void basics::basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f) {
void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
SASSERT(vvr(rm).is_zero()&& ! c().rm_check(rm));
add_empty_lemma();
@ -544,7 +493,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const smon& rm, const factoriz
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::basic_lemma_for_mon_model_based(const smon& rm) {
void basics::basic_lemma_for_mon_model_based(const monomial& rm) {
TRACE("nla_solver_bl", tout << "rm = " << rm;);
if (vvr(rm).is_zero()) {
for (auto factorization : factorization_factory_imp(rm, c())) {
@ -576,7 +525,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
return false;
}
lpvar jl = -1;
for (auto j : m ) {
for (auto j : m.vars() ) {
if (abs(vvr(j)) == abs_mv) {
jl = j;
break;
@ -585,7 +534,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
if (jl == static_cast<lpvar>(-1))
return false;
lpvar not_one_j = -1;
for (auto j : m ) {
for (auto j : m.vars() ) {
if (j == jl) {
continue;
}
@ -623,7 +572,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
lpvar not_one = -1;
rational sign(1);
TRACE("nla_solver_bl", tout << "m = "; c().print_monomial(m, tout););
for (auto j : m){
for (auto j : m.vars()){
auto v = vvr(j);
if (v == rational(1)) {
continue;
@ -648,7 +597,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
}
add_empty_lemma();
for (auto j : m){
for (auto j : m.vars()){
if (not_one == j) continue;
c().mk_ineq(j, llc::NE, vvr(j));
}
@ -664,7 +613,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
// use the fact that
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f) {
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f) {
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
lpvar mon_var = c().m_emons[rm.var()].var();
@ -722,7 +671,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const sm
return true;
}
void basics::basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f) {
void basics::basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f) {
if (f.is_mon()) {
basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(*f.mon());
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(*f.mon());
@ -734,8 +683,8 @@ void basics::basic_lemma_for_mon_neutral_model_based(const smon& rm, const facto
}
// use the fact
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f) {
rational sign = c().m_emons.orig_sign(rm);
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& rm, const factorization& f) {
rational sign = rm.rsign();
TRACE("nla_solver_bl", tout << "f = "; c().print_factorization(f, tout); tout << ", sign = " << sign << '\n'; );
lpvar not_one = -1;
for (auto j : f){
@ -815,7 +764,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
}
// x = 0 or y = 0 -> xy = 0
void basics::basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f) {
void basics::basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f) {
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
if (f.is_mon())
basic_lemma_for_mon_non_zero_model_based_mf(f);