mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
merge smon with monomial
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
e73296fbe5
commit
53cc8048f7
|
@ -28,7 +28,7 @@ namespace nla {
|
|||
void emonomials::inc_visited() const {
|
||||
++m_visited;
|
||||
if (m_visited == 0) {
|
||||
for (auto& svt : m_canonized) {
|
||||
for (auto& svt : m_monomials) {
|
||||
svt.visited() = 0;
|
||||
}
|
||||
++m_visited;
|
||||
|
@ -45,7 +45,7 @@ namespace nla {
|
|||
m_ve.pop(n);
|
||||
unsigned old_sz = m_lim[m_lim.size() - n];
|
||||
for (unsigned i = m_monomials.size(); i-- > old_sz; ) {
|
||||
monomial const& m = m_monomials[i];
|
||||
monomial & m = m_monomials[i];
|
||||
remove_cg(i, m);
|
||||
m_var2index[m.var()] = UINT_MAX;
|
||||
lpvar last_var = UINT_MAX;
|
||||
|
@ -57,7 +57,7 @@ namespace nla {
|
|||
}
|
||||
}
|
||||
m_monomials.shrink(old_sz);
|
||||
m_canonized.shrink(old_sz);
|
||||
m_monomials.shrink(old_sz);
|
||||
m_region.pop_scope(n);
|
||||
m_lim.shrink(m_lim.size() - n);
|
||||
}
|
||||
|
@ -132,7 +132,7 @@ namespace nla {
|
|||
return m_use_lists[v].m_head;
|
||||
}
|
||||
|
||||
smon const* emonomials::find_canonical(svector<lpvar> const& vars) const {
|
||||
monomial const* emonomials::find_canonical(svector<lpvar> const& vars) const {
|
||||
SASSERT(m_ve.is_root(vars));
|
||||
// find a unique key for dummy monomial
|
||||
lpvar v = m_var2index.size();
|
||||
|
@ -143,19 +143,17 @@ namespace nla {
|
|||
}
|
||||
}
|
||||
unsigned idx = m_monomials.size();
|
||||
m_monomials.push_back(monomial(v, vars.size(), vars.c_ptr()));
|
||||
m_canonized.push_back(smon(v, idx));
|
||||
m_monomials.push_back(monomial(v, vars.size(), vars.c_ptr(), idx));
|
||||
m_var2index.setx(v, idx, UINT_MAX);
|
||||
do_canonize(m_monomials[idx]);
|
||||
smon const* result = nullptr;
|
||||
monomial const* result = nullptr;
|
||||
lpvar w;
|
||||
if (m_cg_table.find(v, w)) {
|
||||
SASSERT(w != v);
|
||||
result = &m_canonized[m_var2index[w]];
|
||||
result = &m_monomials[m_var2index[w]];
|
||||
}
|
||||
m_var2index[v] = UINT_MAX;
|
||||
m_monomials.pop_back();
|
||||
m_canonized.pop_back(); // NB. relies on the pointer m_canonized not to change.
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -170,7 +168,7 @@ namespace nla {
|
|||
do {
|
||||
unsigned idx = c->m_index;
|
||||
c = c->m_next;
|
||||
monomial const& m = m_monomials[idx];
|
||||
monomial & m = m_monomials[idx];
|
||||
if (!is_visited(m)) {
|
||||
set_visited(m);
|
||||
remove_cg(idx, m);
|
||||
|
@ -179,8 +177,8 @@ namespace nla {
|
|||
while (c != first);
|
||||
}
|
||||
|
||||
void emonomials::remove_cg(unsigned idx, monomial const& m) {
|
||||
smon& sv = m_canonized[idx];
|
||||
void emonomials::remove_cg(unsigned idx, monomial& m) {
|
||||
monomial& sv = m_monomials[idx];
|
||||
unsigned next = sv.next();
|
||||
unsigned prev = sv.prev();
|
||||
|
||||
|
@ -194,8 +192,8 @@ namespace nla {
|
|||
}
|
||||
}
|
||||
if (prev != idx) {
|
||||
m_canonized[next].prev() = prev;
|
||||
m_canonized[prev].next() = next;
|
||||
m_monomials[next].prev() = prev;
|
||||
m_monomials[prev].next() = next;
|
||||
sv.next() = idx;
|
||||
sv.prev() = idx;
|
||||
}
|
||||
|
@ -204,7 +202,7 @@ namespace nla {
|
|||
/**
|
||||
\brief insert canonized monomials using v into a congruence table.
|
||||
Prior to insertion, the monomials are canonized according to the current
|
||||
variable equivalences. The canonized monomials (smon) are considered
|
||||
variable equivalences. The canonized monomials (monomial) are considered
|
||||
in the same equivalence class if they have the same set of representative
|
||||
variables. Their signs may differ.
|
||||
*/
|
||||
|
@ -219,7 +217,7 @@ namespace nla {
|
|||
do {
|
||||
unsigned idx = c->m_index;
|
||||
c = c->m_next;
|
||||
monomial const& m = m_monomials[idx];
|
||||
monomial & m = m_monomials[idx];
|
||||
if (!is_visited(m)) {
|
||||
set_visited(m);
|
||||
insert_cg(idx, m);
|
||||
|
@ -228,31 +226,31 @@ namespace nla {
|
|||
while (c != first);
|
||||
}
|
||||
|
||||
void emonomials::insert_cg(unsigned idx, monomial const& m) {
|
||||
void emonomials::insert_cg(unsigned idx, monomial & m) {
|
||||
do_canonize(m);
|
||||
lpvar v = m.var(), w;
|
||||
if (m_cg_table.find(v, w)) {
|
||||
SASSERT(w != v);
|
||||
unsigned idxr = m_var2index[w];
|
||||
unsigned idxl = m_canonized[idxr].prev();
|
||||
m_canonized[idx].next() = idxr;
|
||||
m_canonized[idx].prev() = idxl;
|
||||
m_canonized[idxr].prev() = idx;
|
||||
m_canonized[idxl].next() = idx;
|
||||
unsigned idxl = m_monomials[idxr].prev();
|
||||
m_monomials[idx].next() = idxr;
|
||||
m_monomials[idx].prev() = idxl;
|
||||
m_monomials[idxr].prev() = idx;
|
||||
m_monomials[idxl].next() = idx;
|
||||
}
|
||||
else {
|
||||
m_cg_table.insert(v);
|
||||
SASSERT(m_canonized[idx].next() == idx);
|
||||
SASSERT(m_canonized[idx].prev() == idx);
|
||||
SASSERT(m_monomials[idx].next() == idx);
|
||||
SASSERT(m_monomials[idx].prev() == idx);
|
||||
}
|
||||
}
|
||||
|
||||
void emonomials::set_visited(monomial const& m) const {
|
||||
m_canonized[m_var2index[m.var()]].visited() = m_visited;
|
||||
void emonomials::set_visited(monomial& m) const {
|
||||
m_monomials[m_var2index[m.var()]].visited() = m_visited;
|
||||
}
|
||||
|
||||
bool emonomials::is_visited(monomial const& m) const {
|
||||
return m_visited == m_canonized[m_var2index[m.var()]].visited();
|
||||
return m_visited == m_monomials[m_var2index[m.var()]].visited();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -264,8 +262,7 @@ namespace nla {
|
|||
*/
|
||||
void emonomials::add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
unsigned idx = m_monomials.size();
|
||||
m_monomials.push_back(monomial(v, sz, vs));
|
||||
m_canonized.push_back(smon(v, idx));
|
||||
m_monomials.push_back(monomial(v, sz, vs, idx));
|
||||
lpvar last_var = UINT_MAX;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
lpvar w = vs[i];
|
||||
|
@ -281,33 +278,29 @@ namespace nla {
|
|||
insert_cg(idx, m_monomials[idx]);
|
||||
}
|
||||
|
||||
void emonomials::do_canonize(monomial const& mon) const {
|
||||
unsigned index = m_var2index[mon.var()];
|
||||
smon& svs = m_canonized[index];
|
||||
svs.reset();
|
||||
for (lpvar v : mon) {
|
||||
svs.push_var(m_ve.find(v));
|
||||
void emonomials::do_canonize(monomial & m) const {
|
||||
m.reset_rfields();
|
||||
for (lpvar v : m.vars()) {
|
||||
m.push_rvar(m_ve.find(v));
|
||||
}
|
||||
svs.done_push();
|
||||
m.sort_rvars();
|
||||
}
|
||||
|
||||
bool emonomials::canonize_divides(monomial const& m1, monomial const& m2) const {
|
||||
if (m1.size() > m2.size()) return false;
|
||||
smon const& s1 = canonize(m1);
|
||||
smon const& s2 = canonize(m2);
|
||||
unsigned sz1 = s1.size(), sz2 = s2.size();
|
||||
bool emonomials::canonize_divides(monomial& m, monomial & n) const {
|
||||
if (m.size() > n.size()) return false;
|
||||
unsigned ms = m.size(), ns = n.size();
|
||||
unsigned i = 0, j = 0;
|
||||
while (true) {
|
||||
if (i == sz1) {
|
||||
if (i == ms) {
|
||||
return true;
|
||||
}
|
||||
else if (j == sz2) {
|
||||
else if (j == ns) {
|
||||
return false;
|
||||
}
|
||||
else if (s1[i] == s2[j]) {
|
||||
else if (m.rvars()[i] == n.rvars()[j]) {
|
||||
++i; ++j;
|
||||
}
|
||||
else if (s1[i] < s2[j]) {
|
||||
else if (m.rvars()[i] < n.rvars()[j]) {
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
|
@ -316,16 +309,9 @@ namespace nla {
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::explain_canonized(monomial const& m, lp::explanation& exp) {
|
||||
for (lpvar v : m) {
|
||||
signed_var w = m_ve.find(v);
|
||||
m_ve.explain(signed_var(v, false), w, exp);
|
||||
}
|
||||
}
|
||||
|
||||
// yes, assume that monomials are non-empty.
|
||||
emonomials::pf_iterator::pf_iterator(emonomials const& m, monomial const& mon, bool at_end):
|
||||
m(m), m_mon(&mon), m_it(iterator(m, m.head(mon[0]), at_end)), m_end(iterator(m, m.head(mon[0]), true)) {
|
||||
// yes, assume that monomials are non-empty.
|
||||
emonomials::pf_iterator::pf_iterator(emonomials const& m, monomial & mon, bool at_end):
|
||||
m(m), m_mon(&mon), m_it(iterator(m, m.head(mon.vars()[0]), at_end)), m_end(iterator(m, m.head(mon.vars()[0]), true)) {
|
||||
fast_forward();
|
||||
}
|
||||
|
||||
|
|
|
@ -27,51 +27,6 @@
|
|||
|
||||
namespace nla {
|
||||
|
||||
/**
|
||||
\brief class used to summarize the coefficients to a monomial after
|
||||
canonization with respect to current equalities.
|
||||
*/
|
||||
class smon {
|
||||
lpvar m_var; // variable representing original monomial
|
||||
svector<lpvar> m_rvars;
|
||||
bool m_rsign;
|
||||
unsigned m_next; // next congruent node.
|
||||
unsigned m_prev; // previous congruent node
|
||||
mutable unsigned m_visited;
|
||||
public:
|
||||
smon(lpvar v, unsigned idx): m_var(v), m_rsign(false), m_next(idx), m_prev(idx), m_visited(0) {}
|
||||
lpvar var() const { return m_var; }
|
||||
unsigned next() const { return m_next; }
|
||||
unsigned& next() { return m_next; }
|
||||
unsigned prev() const { return m_prev; }
|
||||
unsigned& prev() { return m_prev; }
|
||||
unsigned visited() const { return m_visited; }
|
||||
unsigned& visited() { return m_visited; }
|
||||
svector<lpvar> const& rvars() const { return m_rvars; }
|
||||
svector<lp::var_index>::const_iterator begin() const { return rvars().begin(); }
|
||||
svector<lp::var_index>::const_iterator end() const { return rvars().end(); }
|
||||
unsigned size() const { return m_rvars.size(); }
|
||||
lpvar operator[](unsigned i) const { return m_rvars[i]; }
|
||||
bool sign() const { return m_rsign; }
|
||||
rational rsign() const { return rational(m_rsign ? -1 : 1); }
|
||||
void reset() { m_rsign = false; m_rvars.reset(); }
|
||||
void push_var(signed_var sv) { m_rsign ^= sv.sign(); m_rvars.push_back(sv.var()); }
|
||||
void done_push() {
|
||||
std::sort(m_rvars.begin(), m_rvars.end());
|
||||
}
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
// out << "v" << var() << " := ";
|
||||
// if (sign()) out << "- ";
|
||||
// for (lpvar v : vars()) out << "v" << v << " ";
|
||||
SASSERT(false);
|
||||
return out;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, smon const& m) { return m.display(out); }
|
||||
|
||||
|
||||
class emonomials : public var_eqs_merge_handler {
|
||||
|
||||
/**
|
||||
|
@ -97,7 +52,7 @@ class emonomials : public var_eqs_merge_handler {
|
|||
hash_canonical(emonomials& em): em(em) {}
|
||||
|
||||
unsigned operator()(lpvar v) const {
|
||||
auto const& vec = em.m_canonized[em.m_var2index[v]].rvars();
|
||||
auto const& vec = em.m_monomials[em.m_var2index[v]].rvars();
|
||||
return string_hash(reinterpret_cast<char const*>(vec.c_ptr()), sizeof(lpvar)*vec.size(), 10);
|
||||
}
|
||||
};
|
||||
|
@ -112,8 +67,8 @@ class emonomials : public var_eqs_merge_handler {
|
|||
emonomials& em;
|
||||
eq_canonical(emonomials& em): em(em) {}
|
||||
bool operator()(lpvar u, lpvar v) const {
|
||||
auto const& uvec = em.m_canonized[em.m_var2index[u]].rvars();
|
||||
auto const& vvec = em.m_canonized[em.m_var2index[v]].rvars();
|
||||
auto const& uvec = em.m_monomials[em.m_var2index[u]].rvars();
|
||||
auto const& vvec = em.m_monomials[em.m_var2index[v]].rvars();
|
||||
return uvec == vvec;
|
||||
}
|
||||
};
|
||||
|
@ -124,7 +79,6 @@ class emonomials : public var_eqs_merge_handler {
|
|||
unsigned_vector m_lim; // backtracking point
|
||||
mutable unsigned m_visited; // timestamp of visited monomials during pf_iterator
|
||||
region m_region; // region for allocating linked lists
|
||||
mutable vector<smon> m_canonized; // canonized versions of signed variables
|
||||
mutable svector<head_tail> m_use_lists; // use list of monomials where variables occur.
|
||||
hash_canonical m_cg_hash;
|
||||
eq_canonical m_cg_eq;
|
||||
|
@ -139,16 +93,16 @@ class emonomials : public var_eqs_merge_handler {
|
|||
|
||||
void remove_cg(lpvar v);
|
||||
void insert_cg(lpvar v);
|
||||
void insert_cg(unsigned idx, monomial const& m);
|
||||
void remove_cg(unsigned idx, monomial const& m);
|
||||
void insert_cg(unsigned idx, monomial & m);
|
||||
void remove_cg(unsigned idx, monomial & m);
|
||||
void rehash_cg(lpvar v) { remove_cg(v); insert_cg(v); }
|
||||
|
||||
void do_canonize(monomial const& m) const;
|
||||
void do_canonize(monomial& m) const;
|
||||
|
||||
cell* head(lpvar v) const;
|
||||
void set_visited(monomial const& m) const;
|
||||
void set_visited(monomial& m) const;
|
||||
bool is_visited(monomial const& m) const;
|
||||
|
||||
|
||||
public:
|
||||
/**
|
||||
\brief emonomials builds on top of var_eqs.
|
||||
|
@ -160,8 +114,7 @@ public:
|
|||
m_visited(0),
|
||||
m_cg_hash(*this),
|
||||
m_cg_eq(*this),
|
||||
m_cg_table(DEFAULT_HASHTABLE_INITIAL_CAPACITY, m_cg_hash, m_cg_eq),
|
||||
canonical(*this) {
|
||||
m_cg_table(DEFAULT_HASHTABLE_INITIAL_CAPACITY, m_cg_hash, m_cg_eq) {
|
||||
m_ve.set_merge_handler(this);
|
||||
}
|
||||
|
||||
|
@ -184,59 +137,23 @@ public:
|
|||
/**
|
||||
\brief retrieve monomial corresponding to variable v from definition v := vs
|
||||
*/
|
||||
monomial const& var2monomial(lpvar v) const { SASSERT(is_monomial_var(v)); return m_monomials[m_var2index[v]]; }
|
||||
|
||||
monomial const& operator[](lpvar v) const { return var2monomial(v); }
|
||||
|
||||
monomial const& operator[](smon const& m) const { return var2monomial(m.var()); }
|
||||
|
||||
bool is_monomial_var(lpvar v) const { return m_var2index.get(v, UINT_MAX) != UINT_MAX; }
|
||||
|
||||
/**
|
||||
\brief retrieve canonized monomial corresponding to variable v from definition v := vs
|
||||
*/
|
||||
smon const& var2canonical(lpvar v) const { return canonize(var2monomial(v)); }
|
||||
|
||||
class canonical {
|
||||
emonomials& m;
|
||||
public:
|
||||
canonical(emonomials& m): m(m) {}
|
||||
smon const& operator[](lpvar v) const { return m.var2canonical(v); }
|
||||
smon const& operator[](monomial const& mon) const { return m.var2canonical(mon.var()); }
|
||||
};
|
||||
|
||||
canonical canonical;
|
||||
|
||||
/**
|
||||
\brief obtain a canonized signed monomial
|
||||
corresponding to current equivalence class.
|
||||
*/
|
||||
smon const& canonize(monomial const& m) const { return m_canonized[m_var2index[m.var()]]; }
|
||||
|
||||
monomial const& operator[](lpvar v) const { return m_monomials[m_var2index[v]]; }
|
||||
monomial & operator[](lpvar v) { return m_monomials[m_var2index[v]]; }
|
||||
|
||||
/**
|
||||
\brief obtain the representative canonized monomial up to sign.
|
||||
*/
|
||||
//smon const& rep(smon const& sv) const { return m_canonized[m_var2index[m_cg_table[sv.var()]]]; }
|
||||
smon const& rep(smon const& sv) const {
|
||||
|
||||
monomial const& rep(monomial const& sv) const {
|
||||
unsigned j = -1;
|
||||
m_cg_table.find(sv.var(), j);
|
||||
return m_canonized[m_var2index[j]];
|
||||
return m_monomials[m_var2index[j]];
|
||||
}
|
||||
|
||||
/**
|
||||
\brief the original sign is defined as a sign of the equivalence class representative.
|
||||
*/
|
||||
rational orig_sign(smon const& sv) const { return rep(sv).rsign(); }
|
||||
|
||||
/**
|
||||
\brief determine if m1 divides m2 over the canonization obtained from merged variables.
|
||||
*/
|
||||
bool canonize_divides(monomial const& m1, monomial const& m2) const;
|
||||
|
||||
/**
|
||||
\brief produce explanation for monomial canonization.
|
||||
*/
|
||||
void explain_canonized(monomial const& m, lp::explanation& exp);
|
||||
bool canonize_divides(monomial & m1, monomial& m2) const;
|
||||
|
||||
/**
|
||||
\brief iterator over monomials that are declared.
|
||||
|
@ -253,7 +170,7 @@ public:
|
|||
bool m_touched;
|
||||
public:
|
||||
iterator(emonomials const& m, cell* c, bool at_end): m(m), m_cell(c), m_touched(at_end || c == nullptr) {}
|
||||
monomial const& operator*() { return m.m_monomials[m_cell->m_index]; }
|
||||
monomial & operator*() { return m.m_monomials[m_cell->m_index]; }
|
||||
iterator& operator++() { m_touched = true; m_cell = m_cell->m_next; return *this; }
|
||||
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
|
||||
bool operator==(iterator const& other) const { return m_cell == other.m_cell && m_touched == other.m_touched; }
|
||||
|
@ -277,15 +194,15 @@ public:
|
|||
*/
|
||||
class pf_iterator {
|
||||
emonomials const& m;
|
||||
monomial const* m_mon; // monomial
|
||||
monomial * m_mon; // monomial
|
||||
iterator m_it; // iterator over the first variable occurs list, ++ filters out elements that are not factors.
|
||||
iterator m_end;
|
||||
|
||||
void fast_forward();
|
||||
public:
|
||||
pf_iterator(emonomials const& m, monomial const& mon, bool at_end);
|
||||
pf_iterator(emonomials const& m, monomial& mon, bool at_end);
|
||||
pf_iterator(emonomials const& m, lpvar v, bool at_end);
|
||||
monomial const& operator*() { return *m_it; }
|
||||
monomial & operator*() { return *m_it; }
|
||||
pf_iterator& operator++() { ++m_it; fast_forward(); return *this; }
|
||||
pf_iterator operator++(int) { pf_iterator tmp = *this; ++*this; return tmp; }
|
||||
bool operator==(pf_iterator const& other) const { return m_it == other.m_it; }
|
||||
|
@ -294,19 +211,19 @@ public:
|
|||
|
||||
class factors_of {
|
||||
emonomials const& m;
|
||||
monomial const* mon;
|
||||
monomial * mon;
|
||||
lpvar m_var;
|
||||
public:
|
||||
factors_of(emonomials const& m, monomial const& mon): m(m), mon(&mon), m_var(UINT_MAX) {}
|
||||
factors_of(emonomials const& m, monomial & mon): m(m), mon(&mon), m_var(UINT_MAX) {}
|
||||
factors_of(emonomials const& m, lpvar v): m(m), mon(nullptr), m_var(v) {}
|
||||
pf_iterator begin() { if (mon) return pf_iterator(m, *mon, false); return pf_iterator(m, m_var, false); }
|
||||
pf_iterator end() { if (mon) return pf_iterator(m, *mon, true); return pf_iterator(m, m_var, true); }
|
||||
};
|
||||
|
||||
factors_of get_factors_of(monomial const& m) const { inc_visited(); return factors_of(*this, m); }
|
||||
factors_of get_factors_of(monomial& m) const { inc_visited(); return factors_of(*this, m); }
|
||||
factors_of get_factors_of(lpvar v) const { inc_visited(); return factors_of(*this, v); }
|
||||
|
||||
smon const* find_canonical(svector<lpvar> const& vars) const;
|
||||
monomial const* find_canonical(svector<lpvar> const& vars) const;
|
||||
|
||||
/**
|
||||
\brief iterator over sign equivalent monomials.
|
||||
|
@ -324,7 +241,7 @@ public:
|
|||
|
||||
sign_equiv_monomials_it& operator++() {
|
||||
m_touched = true;
|
||||
m_index = m.m_canonized[m_index].next();
|
||||
m_index = m.m_monomials[m_index].next();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -355,8 +272,6 @@ public:
|
|||
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(monomial const& m) { return sign_equiv_monomials(*this, m); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(lpvar v) { return enum_sign_equiv_monomials((*this)[v]); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(smon const& sv) { return enum_sign_equiv_monomials(sv.var()); }
|
||||
|
||||
/**
|
||||
\brief display state of emonomials
|
||||
*/
|
||||
|
@ -373,6 +288,7 @@ public:
|
|||
|
||||
void unmerge_eh(signed_var r2, signed_var r1) override;
|
||||
|
||||
bool is_monomial_var(lpvar v) const { return m_var2index.get(v, UINT_MAX) != UINT_MAX; }
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, emonomials const& m) { return m.display(out); }
|
||||
|
|
|
@ -54,7 +54,7 @@ class factorization {
|
|||
public:
|
||||
factorization(const monomial* m): m_mon(m) {
|
||||
if (m != nullptr) {
|
||||
for (lpvar j : *m)
|
||||
for (lpvar j : m->vars())
|
||||
m_vars.push_back(factor(j, factor_type::VAR));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include "util/lp/nla_core.h"
|
||||
namespace nla {
|
||||
|
||||
factorization_factory_imp::factorization_factory_imp(const smon& rm, const core& s) :
|
||||
factorization_factory_imp::factorization_factory_imp(const monomial& rm, const core& s) :
|
||||
factorization_factory(rm.rvars(), &s.m_emons[rm.var()]),
|
||||
m_core(s), m_mon(s.m_emons[rm.var()]), m_rm(rm) { }
|
||||
|
||||
|
|
|
@ -21,14 +21,13 @@
|
|||
#include "util/lp/factorization.h"
|
||||
namespace nla {
|
||||
class core;
|
||||
class smon;
|
||||
|
||||
struct factorization_factory_imp: factorization_factory {
|
||||
const core& m_core;
|
||||
const monomial & m_mon;
|
||||
const smon& m_rm;
|
||||
const monomial& m_rm;
|
||||
|
||||
factorization_factory_imp(const smon& rm, const core& s);
|
||||
factorization_factory_imp(const monomial& rm, const core& s);
|
||||
bool find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const;
|
||||
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
|
||||
};
|
||||
|
|
|
@ -5,24 +5,25 @@
|
|||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/monomial.h"
|
||||
namespace nla {
|
||||
typedef monomial mon_eq;
|
||||
bool check_assignment(mon_eq const& m, variable_map_type & vars) {
|
||||
|
||||
template <typename T>
|
||||
bool check_assignment(T const& m, variable_map_type & vars) {
|
||||
rational r1 = vars[m.var()];
|
||||
if (r1.is_zero()) {
|
||||
for (auto w : m) {
|
||||
for (auto w : m.vars()) {
|
||||
if (vars[w].is_zero())
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
rational r2(1);
|
||||
for (auto w : m) {
|
||||
for (auto w : m.vars()) {
|
||||
r2 *= vars[w];
|
||||
}
|
||||
return r1 == r2;
|
||||
}
|
||||
|
||||
bool check_assignments(const vector<mon_eq> & monomials,
|
||||
template <typename K>
|
||||
bool check_assignments(const K & monomials,
|
||||
const lp::lar_solver& s,
|
||||
variable_map_type & vars) {
|
||||
s.get_model(vars);
|
||||
|
@ -32,4 +33,8 @@ bool check_assignments(const vector<mon_eq> & monomials,
|
|||
return true;
|
||||
}
|
||||
|
||||
template bool check_assignments<vector<mon_eq>>(const vector<mon_eq>&,
|
||||
const lp::lar_solver& s,
|
||||
variable_map_type & vars);
|
||||
|
||||
}
|
||||
|
|
|
@ -8,72 +8,86 @@
|
|||
#include "util/lp/lp_settings.h"
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lar_solver.h"
|
||||
|
||||
#include "util/lp/nla_defs.h"
|
||||
namespace nla {
|
||||
/*
|
||||
* represents definition m_v = v1*v2*...*vn,
|
||||
* where m_vs = [v1, v2, .., vn]
|
||||
*/
|
||||
class monomial {
|
||||
|
||||
class mon_eq {
|
||||
// fields
|
||||
lp::var_index m_v;
|
||||
svector<lp::var_index> m_vs;
|
||||
public:
|
||||
// constructors
|
||||
monomial(lp::var_index v, unsigned sz, lp::var_index const* vs):
|
||||
mon_eq(lp::var_index v, unsigned sz, lp::var_index const* vs):
|
||||
m_v(v), m_vs(sz, vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial(lp::var_index v, const svector<lp::var_index> &vs):
|
||||
mon_eq(lp::var_index v, const svector<lp::var_index> &vs):
|
||||
m_v(v), m_vs(vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial() {}
|
||||
mon_eq() {}
|
||||
|
||||
unsigned var() const { return m_v; }
|
||||
unsigned size() const { return m_vs.size(); }
|
||||
unsigned operator[](unsigned idx) const { return m_vs[idx]; }
|
||||
svector<lp::var_index>::const_iterator begin() const { return m_vs.begin(); }
|
||||
svector<lp::var_index>::const_iterator end() const { return m_vs.end(); }
|
||||
const svector<lp::var_index>& vars() const { return m_vs; }
|
||||
svector<lp::var_index>& vars() { return m_vs; }
|
||||
bool empty() const { return m_vs.empty(); }
|
||||
};
|
||||
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
out << "v" << var() << " := ";
|
||||
for (auto v : *this) {
|
||||
out << "v" << v << " ";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, monomial const& m) {
|
||||
SASSERT(false);
|
||||
return m.display(out);
|
||||
// support the congruence
|
||||
class monomial: public mon_eq {
|
||||
// fields
|
||||
svector<lpvar> m_rvars;
|
||||
bool m_rsign;
|
||||
unsigned m_next; // next congruent node.
|
||||
unsigned m_prev; // previous congruent node
|
||||
mutable unsigned m_visited;
|
||||
public:
|
||||
// constructors
|
||||
monomial(lpvar v, unsigned sz, lpvar const* vs, unsigned idx): monomial(v, svector<lpvar>(sz, vs), idx) {
|
||||
}
|
||||
monomial(lpvar v, const svector<lpvar> &vs, unsigned idx) : mon_eq(v, vs), m_rsign(false), m_next(idx), m_prev(idx), m_visited(0) {
|
||||
std::sort(vars().begin(), vars().end());
|
||||
}
|
||||
|
||||
typedef std::unordered_map<lp::var_index, rational> variable_map_type;
|
||||
|
||||
bool check_assignment(monomial const& m, variable_map_type & vars);
|
||||
|
||||
bool check_assignments(const vector<monomial> & monomimials,
|
||||
unsigned next() const { return m_next; }
|
||||
unsigned& next() { return m_next; }
|
||||
unsigned prev() const { return m_prev; }
|
||||
unsigned& prev() { return m_prev; }
|
||||
unsigned visited() const { return m_visited; }
|
||||
unsigned& visited() { return m_visited; }
|
||||
svector<lpvar> const& rvars() const { return m_rvars; }
|
||||
bool sign() const { return m_rsign; }
|
||||
rational rsign() const { return rational(m_rsign ? -1 : 1); }
|
||||
void reset_rfields() { m_rsign = false; m_rvars.reset(); }
|
||||
void push_rvar(signed_var sv) { m_rsign ^= sv.sign(); m_rvars.push_back(sv.var()); }
|
||||
void sort_rvars() {
|
||||
std::sort(m_rvars.begin(), m_rvars.end());
|
||||
}
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
// out << "v" << var() << " := ";
|
||||
// if (sign()) out << "- ";
|
||||
// for (lpvar v : vars()) out << "v" << v << " ";
|
||||
SASSERT(false);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, monomial const& m) {
|
||||
SASSERT(false);
|
||||
return m.display(out);
|
||||
}
|
||||
|
||||
typedef std::unordered_map<lpvar, rational> variable_map_type;
|
||||
template <typename T>
|
||||
bool check_assignment(T const& m, variable_map_type & vars);
|
||||
template <typename K>
|
||||
bool check_assignments(const K & monomimials,
|
||||
const lp::lar_solver& s,
|
||||
variable_map_type & vars);
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* represents definition m_v = coeff* v1*v2*...*vn,
|
||||
* where m_vs = [v1, v2, .., vn]
|
||||
*/
|
||||
class monomial_coeff {
|
||||
svector<lp::var_index> m_vs;
|
||||
rational m_coeff;
|
||||
public:
|
||||
monomial_coeff(const svector<lp::var_index>& vs, rational const& coeff): m_vs(vs), m_coeff(coeff) {}
|
||||
|
||||
rational const& coeff() const { return m_coeff; }
|
||||
const svector<lp::var_index> & vars() const { return m_vs; }
|
||||
};
|
||||
|
||||
}
|
||||
} // end of namespace nla
|
||||
|
|
|
@ -26,8 +26,9 @@ basics::basics(core * c) : common(c) {}
|
|||
|
||||
// Monomials m and n vars have the same values, up to "sign"
|
||||
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
|
||||
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
|
||||
if (vvr(m) == vvr(n) * sign)
|
||||
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n) {
|
||||
const rational& sign = m.rsign() * n.rsign();
|
||||
if (vvr(m) == vvr(n) * sign)
|
||||
return false;
|
||||
TRACE("nla_solver", tout << "sign contradiction:\nm = " << m << "n= " << n << "sign: " << sign << "\n";);
|
||||
generate_sign_lemma(m, n, sign);
|
||||
|
@ -35,13 +36,13 @@ bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial
|
|||
}
|
||||
|
||||
void basics::generate_zero_lemmas(const monomial& m) {
|
||||
SASSERT(!vvr(m).is_zero() && c().product_value(m).is_zero());
|
||||
SASSERT(!vvr(m).is_zero() && c().product_value(m.vars()).is_zero());
|
||||
int sign = nla::rat_sign(vvr(m));
|
||||
unsigned_vector fixed_zeros;
|
||||
lpvar zero_j = find_best_zero(m, fixed_zeros);
|
||||
SASSERT(is_set(zero_j));
|
||||
unsigned zero_power = 0;
|
||||
for (lpvar j : m){
|
||||
for (lpvar j : m.vars()){
|
||||
if (j == zero_j) {
|
||||
zero_power++;
|
||||
continue;
|
||||
|
@ -91,7 +92,7 @@ void basics::basic_sign_lemma_model_based_one_mon(const monomial& m, int product
|
|||
generate_zero_lemmas(m);
|
||||
} else {
|
||||
add_empty_lemma();
|
||||
for(lpvar j: m) {
|
||||
for(lpvar j: m.vars()) {
|
||||
negate_strict_sign(j);
|
||||
}
|
||||
c().mk_ineq(m.var(), product_sign == 1? llc::GT : llc::LT);
|
||||
|
@ -122,12 +123,10 @@ bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & exp
|
|||
}
|
||||
|
||||
const monomial& m_v = c().m_emons[v];
|
||||
smon const& sv_v = c().m_emons.canonical[v];
|
||||
TRACE("nla_solver_details", tout << "mon = " << pp_mon(c(), m_v););
|
||||
|
||||
for (auto const& m_w : c().m_emons.enum_sign_equiv_monomials(v)) {
|
||||
smon const& sv_w = c().m_emons.canonical[m_w];
|
||||
if (m_v.var() != m_w.var() && basic_sign_lemma_on_two_monomials(m_v, m_w, sv_v.rsign() * sv_w.rsign()) && done())
|
||||
for (auto const& m : c().m_emons.enum_sign_equiv_monomials(v)) {
|
||||
if (m_v.var() != m.var() && basic_sign_lemma_on_two_monomials(m_v, m) && done())
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -167,7 +166,7 @@ void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rat
|
|||
// and the bounds on j contain 0 as an inner point
|
||||
lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
|
||||
lpvar zero_j = -1;
|
||||
for (unsigned j : m){
|
||||
for (unsigned j : m.vars()){
|
||||
if (vvr(j).is_zero()){
|
||||
if (c().var_is_fixed_to_zero(j))
|
||||
fixed_zeros.push_back(j);
|
||||
|
@ -189,7 +188,7 @@ void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j,
|
|||
// we know all the signs
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT));
|
||||
for (unsigned j : m){
|
||||
for (unsigned j : m.rvars()){
|
||||
if (j != zero_j) {
|
||||
negate_strict_sign(j);
|
||||
}
|
||||
|
@ -222,7 +221,7 @@ void basics::negate_strict_sign(lpvar j) {
|
|||
|
||||
// here we use the fact
|
||||
// xy = 0 -> x = 0 or y = 0
|
||||
bool basics::basic_lemma_for_mon_zero(const smon& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_zero(const monomial& rm, const factorization& f) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return true;
|
||||
#if 0
|
||||
|
@ -251,7 +250,7 @@ bool basics::basic_lemma(bool derived) {
|
|||
unsigned sz = rm_ref.size();
|
||||
for (unsigned j = 0; j < sz; ++j) {
|
||||
lpvar v = rm_ref[(j + start) % rm_ref.size()];
|
||||
const smon& r = c().m_emons.canonical[v];
|
||||
const monomial& r = c().m_emons[v];
|
||||
SASSERT (!c().check_monomial(c().m_emons[v]));
|
||||
basic_lemma_for_mon(r, derived);
|
||||
}
|
||||
|
@ -261,13 +260,13 @@ bool basics::basic_lemma(bool derived) {
|
|||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basics::basic_lemma_for_mon(const smon& rm, bool derived) {
|
||||
void basics::basic_lemma_for_mon(const monomial& rm, bool derived) {
|
||||
if (derived)
|
||||
basic_lemma_for_mon_derived(rm);
|
||||
else
|
||||
basic_lemma_for_mon_model_based(rm);
|
||||
}
|
||||
bool basics::basic_lemma_for_mon_derived(const smon& rm) {
|
||||
bool basics::basic_lemma_for_mon_derived(const monomial& rm) {
|
||||
if (c().var_is_fixed_to_zero(var(rm))) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
if (factorization.is_empty())
|
||||
|
@ -293,7 +292,7 @@ bool basics::basic_lemma_for_mon_derived(const smon& rm) {
|
|||
return false;
|
||||
}
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
if (! c().var_is_separated_from_zero(var(rm)))
|
||||
return false;
|
||||
|
@ -317,7 +316,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const smon& rm, const factoriz
|
|||
}
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().m_emons[rm.var()].var();
|
||||
|
@ -375,64 +374,14 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon&
|
|||
TRACE("nla_solver", c().print_lemma(tout); );
|
||||
return true;
|
||||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f) {
|
||||
return false;
|
||||
rational sign = c().m_emons.orig_sign(rm);
|
||||
lpvar not_one = -1;
|
||||
|
||||
TRACE("nla_solver", tout << "f = "; c().print_factorization(f, tout););
|
||||
for (auto j : f){
|
||||
TRACE("nla_solver", tout << "j = "; c().print_factor_with_vars(j, tout););
|
||||
auto v = vvr(j);
|
||||
if (v == rational(1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (v == -rational(1)) {
|
||||
sign = - sign;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (not_one == static_cast<lpvar>(-1)) {
|
||||
not_one = var(j);
|
||||
continue;
|
||||
}
|
||||
|
||||
// if we are here then there are at least two factors with values different from one and minus one: cannot create the lemma
|
||||
return false;
|
||||
}
|
||||
|
||||
add_empty_lemma();
|
||||
explain(rm);
|
||||
|
||||
for (auto j : f){
|
||||
lpvar var_j = var(j);
|
||||
if (not_one == var_j) continue;
|
||||
c().mk_ineq(var_j, llc::NE, j.is_var()? vvr(j) : c().canonize_sign(j) * vvr(j));
|
||||
}
|
||||
|
||||
if (not_one == static_cast<lpvar>(-1)) {
|
||||
c().mk_ineq( c().m_emons[rm.var()].var(), llc::EQ, sign);
|
||||
} else {
|
||||
c().mk_ineq( c().m_emons[rm.var()].var(), -sign, not_one, llc::EQ);
|
||||
}
|
||||
TRACE("nla_solver",
|
||||
tout << "rm = " << rm;
|
||||
c().print_lemma(tout););
|
||||
return true;
|
||||
}
|
||||
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization) {
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization) {
|
||||
return
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization) ||
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(rm, factorization);
|
||||
return false;
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization);
|
||||
}
|
||||
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void basics::proportion_lemma_model_based(const smon& rm, const factorization& factorization) {
|
||||
void basics::proportion_lemma_model_based(const monomial& rm, const factorization& factorization) {
|
||||
rational rmv = abs(vvr(rm));
|
||||
if (rmv.is_zero()) {
|
||||
SASSERT(c().has_zero_factor(factorization));
|
||||
|
@ -448,7 +397,7 @@ void basics::proportion_lemma_model_based(const smon& rm, const factorization& f
|
|||
}
|
||||
}
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool basics::proportion_lemma_derived(const smon& rm, const factorization& factorization) {
|
||||
bool basics::proportion_lemma_derived(const monomial& rm, const factorization& factorization) {
|
||||
return false;
|
||||
rational rmv = abs(vvr(rm));
|
||||
if (rmv.is_zero()) {
|
||||
|
@ -473,7 +422,7 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
|
|||
rational sm = rational(nla::rat_sign(mv));
|
||||
c().mk_ineq(sm, mon_var, llc::LT);
|
||||
for (unsigned fi = 0; fi < m.size(); fi ++) {
|
||||
lpvar j = m[fi];
|
||||
lpvar j = m.vars()[fi];
|
||||
if (fi != factor_index) {
|
||||
c().mk_ineq(j, llc::EQ);
|
||||
} else {
|
||||
|
@ -489,10 +438,10 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
|
|||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void basics::generate_pl(const smon& rm, const factorization& fc, int factor_index) {
|
||||
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = ";
|
||||
tout << rm;
|
||||
tout << "fc = "; c().print_factorization(fc, tout);
|
||||
void basics::generate_pl(const monomial& rm, const factorization& fc, int factor_index) {
|
||||
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = "
|
||||
<< pp_mon(c(), rm);
|
||||
tout << ", fc = "; c().print_factorization(fc, tout);
|
||||
tout << "orig mon = "; c().print_monomial(c().m_emons[rm.var()], tout););
|
||||
if (fc.is_mon()) {
|
||||
generate_pl_on_mon(*fc.mon(), factor_index);
|
||||
|
@ -523,7 +472,7 @@ void basics::generate_pl(const smon& rm, const factorization& fc, int factor_ind
|
|||
TRACE("nla_solver", c().print_lemma(tout); );
|
||||
}
|
||||
// here we use the fact xy = 0 -> x = 0 or y = 0
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
SASSERT(vvr(rm).is_zero()&& ! c().rm_check(rm));
|
||||
add_empty_lemma();
|
||||
|
@ -544,7 +493,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const smon& rm, const factoriz
|
|||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_model_based(const smon& rm) {
|
||||
void basics::basic_lemma_for_mon_model_based(const monomial& rm) {
|
||||
TRACE("nla_solver_bl", tout << "rm = " << rm;);
|
||||
if (vvr(rm).is_zero()) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
|
@ -576,7 +525,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
|
|||
return false;
|
||||
}
|
||||
lpvar jl = -1;
|
||||
for (auto j : m ) {
|
||||
for (auto j : m.vars() ) {
|
||||
if (abs(vvr(j)) == abs_mv) {
|
||||
jl = j;
|
||||
break;
|
||||
|
@ -585,7 +534,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
|
|||
if (jl == static_cast<lpvar>(-1))
|
||||
return false;
|
||||
lpvar not_one_j = -1;
|
||||
for (auto j : m ) {
|
||||
for (auto j : m.vars() ) {
|
||||
if (j == jl) {
|
||||
continue;
|
||||
}
|
||||
|
@ -623,7 +572,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
|
|||
lpvar not_one = -1;
|
||||
rational sign(1);
|
||||
TRACE("nla_solver_bl", tout << "m = "; c().print_monomial(m, tout););
|
||||
for (auto j : m){
|
||||
for (auto j : m.vars()){
|
||||
auto v = vvr(j);
|
||||
if (v == rational(1)) {
|
||||
continue;
|
||||
|
@ -648,7 +597,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
|
|||
}
|
||||
|
||||
add_empty_lemma();
|
||||
for (auto j : m){
|
||||
for (auto j : m.vars()){
|
||||
if (not_one == j) continue;
|
||||
c().mk_ineq(j, llc::NE, vvr(j));
|
||||
}
|
||||
|
@ -664,7 +613,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
|
|||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().m_emons[rm.var()].var();
|
||||
|
@ -722,7 +671,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const sm
|
|||
return true;
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f) {
|
||||
if (f.is_mon()) {
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(*f.mon());
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(*f.mon());
|
||||
|
@ -734,8 +683,8 @@ void basics::basic_lemma_for_mon_neutral_model_based(const smon& rm, const facto
|
|||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f) {
|
||||
rational sign = c().m_emons.orig_sign(rm);
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& rm, const factorization& f) {
|
||||
rational sign = rm.rsign();
|
||||
TRACE("nla_solver_bl", tout << "f = "; c().print_factorization(f, tout); tout << ", sign = " << sign << '\n'; );
|
||||
lpvar not_one = -1;
|
||||
for (auto j : f){
|
||||
|
@ -815,7 +764,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
|
|||
}
|
||||
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
if (f.is_mon())
|
||||
basic_lemma_for_mon_non_zero_model_based_mf(f);
|
||||
|
|
|
@ -28,7 +28,7 @@ namespace nla {
|
|||
class core;
|
||||
struct basics: common {
|
||||
basics(core *core);
|
||||
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign);
|
||||
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n);
|
||||
|
||||
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
|
||||
|
||||
|
@ -40,47 +40,47 @@ struct basics: common {
|
|||
-ab = a(-b)
|
||||
*/
|
||||
bool basic_sign_lemma(bool derived);
|
||||
bool basic_lemma_for_mon_zero(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_zero(const monomial& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const smon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const monomial& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f);
|
||||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f);
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f);
|
||||
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& rm, const factorization& f);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const monomial& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f);
|
||||
|
||||
bool basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization);
|
||||
bool basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization);
|
||||
|
||||
void basic_lemma_for_mon_model_based(const smon& rm);
|
||||
void basic_lemma_for_mon_model_based(const monomial& rm);
|
||||
|
||||
bool basic_lemma_for_mon_derived(const smon& rm);
|
||||
bool basic_lemma_for_mon_derived(const monomial& rm);
|
||||
|
||||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basic_lemma_for_mon(const smon& rm, bool derived);
|
||||
void basic_lemma_for_mon(const monomial& rm, bool derived);
|
||||
// use basic multiplication properties to create a lemma
|
||||
bool basic_lemma(bool derived);
|
||||
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
|
||||
|
@ -94,14 +94,14 @@ struct basics: common {
|
|||
void add_fixed_zero_lemma(const monomial& m, lpvar j);
|
||||
void negate_strict_sign(lpvar j);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void proportion_lemma_model_based(const smon& rm, const factorization& factorization);
|
||||
void proportion_lemma_model_based(const monomial& rm, const factorization& factorization);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool proportion_lemma_derived(const smon& rm, const factorization& factorization);
|
||||
bool proportion_lemma_derived(const monomial& rm, const factorization& factorization);
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
|
||||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void generate_pl(const smon& rm, const factorization& fc, int factor_index);
|
||||
void generate_pl(const monomial& rm, const factorization& fc, int factor_index);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -28,25 +28,23 @@ template <typename T> void common::explain(const T& t) {
|
|||
}
|
||||
template void common::explain<monomial>(const monomial& t);
|
||||
template void common::explain<factor>(const factor& t);
|
||||
template void common::explain<smon>(const smon& t);
|
||||
template void common::explain<factorization>(const factorization& t);
|
||||
|
||||
void common::explain(lpvar j) { c().explain(j, c().current_expl()); }
|
||||
|
||||
template <typename T> rational common::vvr(T const& t) const { return c().vvr(t); }
|
||||
template rational common::vvr<monomial>(monomial const& t) const;
|
||||
template rational common::vvr<smon>(smon const& t) const;
|
||||
template rational common::vvr<factor>(factor const& t) const;
|
||||
rational common::vvr(lpvar t) const { return c().vvr(t); }
|
||||
template <typename T> lpvar common::var(T const& t) const { return c().var(t); }
|
||||
template lpvar common::var<factor>(factor const& t) const;
|
||||
template lpvar common::var<smon>(smon const& t) const;
|
||||
template lpvar common::var<monomial>(monomial const& t) const;
|
||||
void common::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
template <typename T> rational common::canonize_sign(const T& t) const {
|
||||
return c().canonize_sign(t);
|
||||
}
|
||||
|
||||
template rational common::canonize_sign<smon>(const smon& t) const;
|
||||
template rational common::canonize_sign<monomial>(const monomial& t) const;
|
||||
template rational common::canonize_sign<factor>(const factor& t) const;
|
||||
rational common::canonize_sign(lpvar j) const {
|
||||
return c().canonize_sign_of_var(j);
|
||||
|
@ -98,10 +96,7 @@ std::ostream& common::print_product(const T & m, std::ostream& out) const {
|
|||
return c().print_product(m, out);
|
||||
}
|
||||
template
|
||||
std::ostream& common::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
|
||||
template std::ostream& common::print_product<smon>(const smon & m, std::ostream& out) const;
|
||||
|
||||
std::ostream& common::print_product<unsigned_vector>(const unsigned_vector & m, std::ostream& out) const;
|
||||
|
||||
std::ostream& common::print_monomial(const monomial & m, std::ostream& out) const {
|
||||
return c().print_monomial(m, out);
|
||||
|
|
|
@ -87,8 +87,8 @@ struct common {
|
|||
std::ostream& print_var(lpvar, std::ostream& out) const;
|
||||
|
||||
std::ostream& print_monomial(const monomial & m, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const smon &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const smon&, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const monomial &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const monomial&, std::ostream& out) const;
|
||||
bool check_monomial(const monomial&) const;
|
||||
unsigned random();
|
||||
};
|
||||
|
|
|
@ -83,21 +83,20 @@ svector<lpvar> core::sorted_vars(const factor& f) const {
|
|||
return r;
|
||||
}
|
||||
TRACE("nla_solver", tout << "nv";);
|
||||
return m_emons.canonical[f.var()].rvars();
|
||||
return m_emons[f.var()].rvars();
|
||||
}
|
||||
|
||||
// the value of the factor is equal to the value of the variable multiplied
|
||||
// by the canonize_sign
|
||||
rational core::canonize_sign(const factor& f) const {
|
||||
return f.is_var()?
|
||||
canonize_sign_of_var(f.var()) : m_emons.canonical[f.var()].rsign();
|
||||
return f.is_var()? canonize_sign_of_var(f.var()) : m_emons[f.var()].rsign();
|
||||
}
|
||||
|
||||
rational core::canonize_sign_of_var(lpvar j) const {
|
||||
return m_evars.find(j).rsign();
|
||||
}
|
||||
|
||||
rational core::canonize_sign(const smon& m) const {
|
||||
rational core::canonize_sign(const monomial& m) const {
|
||||
return m.rsign();
|
||||
}
|
||||
|
||||
|
@ -116,8 +115,7 @@ void core::pop(unsigned n) {
|
|||
m_emons.pop(n);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
rational core::product_value(const T & m) const {
|
||||
rational core::product_value(const unsigned_vector & m) const {
|
||||
rational r(1);
|
||||
for (auto j : m) {
|
||||
r *= m_lar_solver.get_column_value_rational(j);
|
||||
|
@ -128,18 +126,14 @@ rational core::product_value(const T & m) const {
|
|||
// return true iff the monomial value is equal to the product of the values of the factors
|
||||
bool core::check_monomial(const monomial& m) const {
|
||||
SASSERT(m_lar_solver.get_column_value(m.var()).is_int());
|
||||
return product_value(m) == m_lar_solver.get_column_value_rational(m.var());
|
||||
return product_value(m.vars()) == m_lar_solver.get_column_value_rational(m.var());
|
||||
}
|
||||
|
||||
void core::explain(const monomial& m, lp::explanation& exp) const {
|
||||
for (lpvar j : m)
|
||||
for (lpvar j : m.vars())
|
||||
explain(j, exp);
|
||||
}
|
||||
|
||||
void core::explain(const smon& rm, lp::explanation& exp) const {
|
||||
explain(m_emons[rm.var()], exp);
|
||||
}
|
||||
|
||||
void core::explain(const factor& f, lp::explanation& exp) const {
|
||||
if (f.type() == factor_type::VAR) {
|
||||
explain(f.var(), exp);
|
||||
|
@ -161,8 +155,6 @@ std::ostream& core::print_product(const T & m, std::ostream& out) const {
|
|||
}
|
||||
return out;
|
||||
}
|
||||
template std::ostream& core::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
template std::ostream& core::print_product<smon>(const smon & m, std::ostream& out) const;
|
||||
|
||||
std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
||||
if (f.is_var()) {
|
||||
|
@ -170,7 +162,7 @@ std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
|||
print_var(f.var(), out);
|
||||
} else {
|
||||
out << "PROD, ";
|
||||
print_product(m_emons.canonical[f.var()].rvars(), out);
|
||||
print_product(m_emons[f.var()].rvars(), out);
|
||||
}
|
||||
out << "\n";
|
||||
return out;
|
||||
|
@ -181,7 +173,7 @@ std::ostream & core::print_factor_with_vars(const factor& f, std::ostream& out)
|
|||
print_var(f.var(), out);
|
||||
}
|
||||
else {
|
||||
out << " RM = " << m_emons.canonical[f.var()];
|
||||
out << " RM = " << m_emons[f.var()];
|
||||
out << "\n orig mon = " << m_emons[f.var()];
|
||||
}
|
||||
return out;
|
||||
|
@ -214,7 +206,7 @@ std::ostream& core::print_monomial_with_vars(lpvar v, std::ostream& out) const {
|
|||
|
||||
template <typename T>
|
||||
std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const {
|
||||
print_product(m, out) << "\n";
|
||||
print_product(m.vars(), out) << "\n";
|
||||
for (unsigned k = 0; k < m.size(); k++) {
|
||||
print_var(m[k], out);
|
||||
}
|
||||
|
@ -223,7 +215,7 @@ std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const
|
|||
|
||||
std::ostream& core::print_monomial_with_vars(const monomial& m, std::ostream& out) const {
|
||||
out << "["; print_var(m.var(), out) << "]\n";
|
||||
for (lpvar j: m)
|
||||
for (lpvar j: m.vars())
|
||||
print_var(j, out);
|
||||
out << ")\n";
|
||||
return out;
|
||||
|
@ -569,7 +561,7 @@ bool core::zero_is_an_inner_point_of_bounds(lpvar j) const {
|
|||
|
||||
int core::rat_sign(const monomial& m) const {
|
||||
int sign = 1;
|
||||
for (lpvar j : m) {
|
||||
for (lpvar j : m.vars()) {
|
||||
auto v = vvr(j);
|
||||
if (v.is_neg()) {
|
||||
sign = - sign;
|
||||
|
@ -778,12 +770,12 @@ std::ostream & core::print_factorization(const factorization& f, std::ostream& o
|
|||
|
||||
bool core:: find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const {
|
||||
SASSERT(vars_are_roots(vars));
|
||||
smon const* sv = m_emons.find_canonical(vars);
|
||||
monomial const* sv = m_emons.find_canonical(vars);
|
||||
return sv && (i = sv->var(), true);
|
||||
}
|
||||
|
||||
const monomial* core::find_monomial_of_vars(const svector<lpvar>& vars) const {
|
||||
smon const* sv = m_emons.find_canonical(vars);
|
||||
monomial const* sv = m_emons.find_canonical(vars);
|
||||
return sv ? &m_emons[sv->var()] : nullptr;
|
||||
}
|
||||
|
||||
|
@ -806,7 +798,7 @@ void core::explain_separation_from_zero(lpvar j) {
|
|||
explain_existing_upper_bound(j);
|
||||
}
|
||||
|
||||
int core::get_derived_sign(const smon& rm, const factorization& f) const {
|
||||
int core::get_derived_sign(const monomial& rm, const factorization& f) const {
|
||||
rational sign = rm.rsign(); // this is the flip sign of the variable var(rm)
|
||||
SASSERT(!sign.is_zero());
|
||||
for (const factor& fc: f) {
|
||||
|
@ -818,7 +810,7 @@ int core::get_derived_sign(const smon& rm, const factorization& f) const {
|
|||
}
|
||||
return nla::rat_sign(sign);
|
||||
}
|
||||
void core::trace_print_monomial_and_factorization(const smon& rm, const factorization& f, std::ostream& out) const {
|
||||
void core::trace_print_monomial_and_factorization(const monomial& rm, const factorization& f, std::ostream& out) const {
|
||||
out << "rooted vars: ";
|
||||
print_product(rm.rvars(), out);
|
||||
out << "\n";
|
||||
|
@ -1269,7 +1261,7 @@ bool core:: mon_has_zero(const T& product) const {
|
|||
return false;
|
||||
}
|
||||
|
||||
template bool core::mon_has_zero<monomial>(const monomial& product) const;
|
||||
template bool core::mon_has_zero<unsigned_vector>(const unsigned_vector& product) const;
|
||||
|
||||
|
||||
lp::lp_settings& core::settings() {
|
||||
|
@ -1395,7 +1387,7 @@ template <typename T>
|
|||
void core::trace_print_rms(const T& p, std::ostream& out) {
|
||||
out << "p = {\n";
|
||||
for (auto j : p) {
|
||||
out << "j = " << j << ", rm = " << m_emons.canonical[j] << "\n";
|
||||
out << "j = " << j << ", rm = " << m_emons[j] << "\n";
|
||||
}
|
||||
out << "}";
|
||||
}
|
||||
|
@ -1407,7 +1399,7 @@ void core::print_monomial_stats(const monomial& m, std::ostream& out) {
|
|||
if (abs(vvr(mc.vars()[i])) == rational(1)) {
|
||||
auto vv = mc.vars();
|
||||
vv.erase(vv.begin()+i);
|
||||
smon const* sv = m_emons.find_canonical(vv);
|
||||
monomial const* sv = m_emons.find_canonical(vv);
|
||||
if (!sv) {
|
||||
out << "nf length" << vv.size() << "\n"; ;
|
||||
}
|
||||
|
@ -1444,7 +1436,8 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
auto insert_j = [&](lpvar j) {
|
||||
vars.insert(j);
|
||||
if (m_emons.is_monomial_var(j)) {
|
||||
for (lpvar k : m_emons[j]) vars.insert(k);
|
||||
for (lpvar k : m_emons[j].vars())
|
||||
vars.insert(k);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1462,7 +1455,7 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
return vars;
|
||||
}
|
||||
|
||||
bool core::divide(const smon& bc, const factor& c, factor & b) const {
|
||||
bool core::divide(const monomial& bc, const factor& c, factor & b) const {
|
||||
svector<lpvar> c_vars = sorted_vars(c);
|
||||
TRACE("nla_solver_div",
|
||||
tout << "c_vars = ";
|
||||
|
@ -1479,7 +1472,7 @@ bool core::divide(const smon& bc, const factor& c, factor & b) const {
|
|||
b = factor(b_vars[0], factor_type::VAR);
|
||||
return true;
|
||||
}
|
||||
smon const* sv = m_emons.find_canonical(b_vars);
|
||||
monomial const* sv = m_emons.find_canonical(b_vars);
|
||||
if (!sv) {
|
||||
TRACE("nla_solver_div", tout << "not in rooted";);
|
||||
return false;
|
||||
|
@ -1529,10 +1522,10 @@ void core::print_specific_lemma(const lemma& l, std::ostream& out) const {
|
|||
}
|
||||
|
||||
|
||||
void core::trace_print_ol(const smon& ac,
|
||||
void core::trace_print_ol(const monomial& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b,
|
||||
std::ostream& out) {
|
||||
out << "ac = " << ac << "\n";
|
||||
|
@ -1581,7 +1574,7 @@ std::unordered_map<unsigned, unsigned_vector> core::get_rm_by_arity() {
|
|||
|
||||
|
||||
|
||||
bool core::rm_check(const smon& rm) const {
|
||||
bool core::rm_check(const monomial& rm) const {
|
||||
return check_monomial(m_emons[rm.var()]);
|
||||
}
|
||||
|
||||
|
@ -1639,7 +1632,7 @@ void core::add_abs_bound(lpvar v, llc cmp, rational const& bound) {
|
|||
*/
|
||||
|
||||
|
||||
bool core::find_bfc_to_refine_on_rmonomial(const smon& rm, bfc & bf) {
|
||||
bool core::find_bfc_to_refine_on_rmonomial(const monomial& rm, bfc & bf) {
|
||||
for (auto factorization : factorization_factory_imp(rm, *this)) {
|
||||
if (factorization.size() == 2) {
|
||||
auto a = factorization[0];
|
||||
|
@ -1653,18 +1646,18 @@ bool core::find_bfc_to_refine_on_rmonomial(const smon& rm, bfc & bf) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool core::find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const smon*& rm_found){
|
||||
bool core::find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const monomial*& rm_found){
|
||||
rm_found = nullptr;
|
||||
for (unsigned i: m_to_refine) {
|
||||
const auto& rm = m_emons.canonical[i];
|
||||
const auto& rm = m_emons[i];
|
||||
SASSERT (!check_monomial(m_emons[rm.var()]));
|
||||
if (rm.size() == 2) {
|
||||
sign = rational(1);
|
||||
const monomial & m = m_emons[rm.var()];
|
||||
j = m.var();
|
||||
rm_found = nullptr;
|
||||
bf.m_x = factor(m[0], factor_type::VAR);
|
||||
bf.m_y = factor(m[1], factor_type::VAR);
|
||||
bf.m_x = factor(m.vars()[0], factor_type::VAR);
|
||||
bf.m_y = factor(m.vars()[1], factor_type::VAR);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1684,8 +1677,8 @@ bool core::find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const smon*& rm
|
|||
}
|
||||
|
||||
void core::generate_simple_sign_lemma(const rational& sign, const monomial& m) {
|
||||
SASSERT(sign == nla::rat_sign(product_value(m)));
|
||||
for (lpvar j : m) {
|
||||
SASSERT(sign == nla::rat_sign(product_value(m.vars())));
|
||||
for (lpvar j : m.vars()) {
|
||||
if (vvr(j).is_pos()) {
|
||||
mk_ineq(j, llc::LE);
|
||||
} else {
|
||||
|
@ -1971,7 +1964,7 @@ lbool core::test_check(
|
|||
m_lar_solver.set_status(lp::lp_status::OPTIMAL);
|
||||
return check(l);
|
||||
}
|
||||
template rational core::product_value<monomial>(const monomial & m) const;
|
||||
|
||||
} // end of nla
|
||||
|
||||
|
||||
|
|
|
@ -102,9 +102,9 @@ public:
|
|||
|
||||
lp::impq vv(lpvar j) const { return m_lar_solver.get_column_value(j); }
|
||||
|
||||
lpvar var(smon const& sv) const { return sv.var(); }
|
||||
lpvar var(monomial const& sv) const { return sv.var(); }
|
||||
|
||||
rational vvr(const smon& rm) const { return rm.rsign()*vvr(m_emons[rm.var()]); }
|
||||
rational vvr_rooted(const monomial& m) const { return m.rsign()*vvr(m.var()); }
|
||||
|
||||
rational vvr(const factor& f) const { return f.is_var()? vvr(f.var()) : vvr(m_emons[f.var()]); }
|
||||
|
||||
|
@ -122,10 +122,10 @@ public:
|
|||
|
||||
// the value of the rooted monomias is equal to the value of the m.var() variable multiplied
|
||||
// by the canonize_sign
|
||||
rational canonize_sign(const smon& m) const;
|
||||
rational canonize_sign(const monomial& m) const;
|
||||
|
||||
|
||||
void deregister_monomial_from_smonomials (const monomial & m, unsigned i);
|
||||
void deregister_monomial_from_monomialomials (const monomial & m, unsigned i);
|
||||
|
||||
void deregister_monomial_from_tables(const monomial & m, unsigned i);
|
||||
|
||||
|
@ -135,14 +135,12 @@ public:
|
|||
void pop(unsigned n);
|
||||
|
||||
rational mon_value_by_vars(unsigned i) const;
|
||||
template <typename T>
|
||||
rational product_value(const T & m) const;
|
||||
rational product_value(const unsigned_vector & m) const;
|
||||
|
||||
// return true iff the monomial value is equal to the product of the values of the factors
|
||||
bool check_monomial(const monomial& m) const;
|
||||
|
||||
void explain(const monomial& m, lp::explanation& exp) const;
|
||||
void explain(const smon& rm, lp::explanation& exp) const;
|
||||
void explain(const factor& f, lp::explanation& exp) const;
|
||||
void explain(lpvar j, lp::explanation& exp) const;
|
||||
void explain_existing_lower_bound(lpvar j);
|
||||
|
@ -169,7 +167,7 @@ public:
|
|||
std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const;
|
||||
template <typename T>
|
||||
void trace_print_rms(const T& p, std::ostream& out);
|
||||
void trace_print_monomial_and_factorization(const smon& rm, const factorization& f, std::ostream& out) const;
|
||||
void trace_print_monomial_and_factorization(const monomial& rm, const factorization& f, std::ostream& out) const;
|
||||
void print_monomial_stats(const monomial& m, std::ostream& out);
|
||||
void print_stats(std::ostream& out);
|
||||
std::ostream& print_lemma(std::ostream& out) const;
|
||||
|
@ -177,10 +175,10 @@ public:
|
|||
void print_specific_lemma(const lemma& l, std::ostream& out) const;
|
||||
|
||||
|
||||
void trace_print_ol(const smon& ac,
|
||||
void trace_print_ol(const monomial& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b,
|
||||
std::ostream& out);
|
||||
|
||||
|
@ -243,7 +241,7 @@ public:
|
|||
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
|
||||
|
||||
|
||||
int get_derived_sign(const smon& rm, const factorization& f) const;
|
||||
int get_derived_sign(const monomial& rm, const factorization& f) const;
|
||||
|
||||
|
||||
bool var_has_positive_lower_bound(lpvar j) const;
|
||||
|
@ -312,7 +310,7 @@ public:
|
|||
|
||||
void init_to_refine();
|
||||
|
||||
bool divide(const smon& bc, const factor& c, factor & b) const;
|
||||
bool divide(const monomial& bc, const factor& c, factor & b) const;
|
||||
|
||||
void negate_factor_equality(const factor& c, const factor& d);
|
||||
|
||||
|
@ -320,15 +318,15 @@ public:
|
|||
|
||||
std::unordered_set<lpvar> collect_vars(const lemma& l) const;
|
||||
|
||||
bool rm_check(const smon&) const;
|
||||
bool rm_check(const monomial&) const;
|
||||
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
||||
|
||||
void add_abs_bound(lpvar v, llc cmp);
|
||||
void add_abs_bound(lpvar v, llc cmp, rational const& bound);
|
||||
|
||||
bool find_bfc_to_refine_on_rmonomial(const smon& rm, bfc & bf);
|
||||
bool find_bfc_to_refine_on_rmonomial(const monomial& rm, bfc & bf);
|
||||
|
||||
bool find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const smon*& rm_found);
|
||||
bool find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const monomial*& rm_found );
|
||||
void generate_simple_sign_lemma(const rational& sign, const monomial& m);
|
||||
|
||||
void negate_relation(unsigned j, const rational& a);
|
||||
|
|
|
@ -34,104 +34,6 @@ void monotone::monotonicity_lemma() {
|
|||
}
|
||||
}
|
||||
|
||||
void monotone::print_monotone_array(const monotone_array_t& lex_sorted,
|
||||
std::ostream& out) const {
|
||||
out << "Monotone array :\n";
|
||||
for (const auto & t : lex_sorted ){
|
||||
out << "(";
|
||||
print_vector(t.first, out);
|
||||
out << "), rm[" << t.second << "]" << std::endl;
|
||||
}
|
||||
out << "}";
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_upper(const monotone_array_t& lex_sorted, unsigned i, const smon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << ", i = " << i << std::endl;);
|
||||
for (unsigned k = i + 1; k < lex_sorted.size(); k++) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const smon& rmk = c().m_emons.canonical[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = " << rmk << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
if (vk > v) continue;
|
||||
unsigned strict;
|
||||
if (uniform_le(key, p.first, strict)) {
|
||||
if (static_cast<int>(strict) != -1 && !has_zero(key)) {
|
||||
generate_monl_strict(rm, rmk, strict);
|
||||
return true;
|
||||
}
|
||||
else if (vk < v) {
|
||||
generate_monl(rm, rmk);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_lower(const monotone_array_t& lex_sorted, unsigned i, const smon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << "i = " << i << std::endl;);
|
||||
|
||||
for (unsigned k = i; k-- > 0;) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const smon& rmk = c().m_emons.canonical[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = " << rmk << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
if (vk < v) continue;
|
||||
unsigned strict;
|
||||
if (uniform_le(p.first, key, strict)) {
|
||||
TRACE("nla_solver", tout << "strict = " << strict << std::endl;);
|
||||
if (static_cast<int>(strict) != -1) {
|
||||
generate_monl_strict(rmk, rm, strict);
|
||||
return true;
|
||||
} else {
|
||||
SASSERT(key == p.first);
|
||||
if (vk < v) {
|
||||
generate_monl(rmk, rm);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm(const monotone_array_t& lex_sorted, unsigned i, const smon& rm) {
|
||||
return monotonicity_lemma_on_lex_sorted_rm_upper(lex_sorted, i, rm)
|
||||
|| monotonicity_lemma_on_lex_sorted_rm_lower(lex_sorted, i, rm);
|
||||
}
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted(const monotone_array_t& lex_sorted) {
|
||||
for (unsigned i = 0; i < lex_sorted.size(); i++) {
|
||||
unsigned rmi = lex_sorted[i].second;
|
||||
const smon& rm = c().m_emons.canonical[rmi];
|
||||
TRACE("nla_solver", tout << rm << "\n, rm_check = " << c().rm_check(rm); tout << std::endl;);
|
||||
if ((!c().rm_check(rm)) && monotonicity_lemma_on_lex_sorted_rm(lex_sorted, i, rm))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
vector<std::pair<rational, lpvar>> monotone::get_sorted_key_with_vars(const smon& a) const {
|
||||
vector<std::pair<rational, lpvar>> r;
|
||||
for (lpvar j : a.rvars()) {
|
||||
r.push_back(std::make_pair(abs(vvr(j)), j));
|
||||
}
|
||||
std::sort(r.begin(), r.end(), [](const std::pair<rational, lpvar>& a,
|
||||
const std::pair<rational, lpvar>& b) {
|
||||
return
|
||||
a.first < b.first ||
|
||||
(a.first == b.first &&
|
||||
a.second < b.second);
|
||||
});
|
||||
return r;
|
||||
}
|
||||
|
||||
void monotone::negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict) {
|
||||
rational av = vvr(a);
|
||||
|
@ -148,31 +50,9 @@ void monotone::negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict) {
|
|||
}
|
||||
}
|
||||
|
||||
// strict version
|
||||
void monotone::generate_monl_strict(const smon& a,
|
||||
const smon& b,
|
||||
unsigned strict) {
|
||||
add_empty_lemma();
|
||||
auto akey = get_sorted_key_with_vars(a);
|
||||
auto bkey = get_sorted_key_with_vars(b);
|
||||
SASSERT(akey.size() == bkey.size());
|
||||
for (unsigned i = 0; i < akey.size(); i++) {
|
||||
if (i != strict) {
|
||||
negate_abs_a_le_abs_b(akey[i].second, bkey[i].second, true);
|
||||
} else {
|
||||
mk_ineq(b[i], llc::EQ);
|
||||
negate_abs_a_lt_abs_b(akey[i].second, bkey[i].second);
|
||||
}
|
||||
}
|
||||
assert_abs_val_a_le_abs_var_b(a, b, true);
|
||||
explain(a);
|
||||
explain(b);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void monotone::assert_abs_val_a_le_abs_var_b(
|
||||
const smon& a,
|
||||
const smon& b,
|
||||
const monomial& a,
|
||||
const monomial& b,
|
||||
bool strict) {
|
||||
lpvar aj = var(a);
|
||||
lpvar bj = var(b);
|
||||
|
@ -197,55 +77,12 @@ void monotone::negate_abs_a_lt_abs_b(lpvar a, lpvar b) {
|
|||
mk_ineq(bs, b, llc::LT); // |bj| < 0
|
||||
mk_ineq(as, a, -bs, b, llc::GE); // negate |aj| < |bj|
|
||||
}
|
||||
|
||||
|
||||
// not a strict version
|
||||
void monotone::generate_monl(const smon& a,
|
||||
const smon& b) {
|
||||
TRACE("nla_solver",
|
||||
tout << "a = " << a << "\n:";
|
||||
tout << "b = " << b << "\n:";);
|
||||
add_empty_lemma();
|
||||
auto akey = get_sorted_key_with_vars(a);
|
||||
auto bkey = get_sorted_key_with_vars(b);
|
||||
SASSERT(akey.size() == bkey.size());
|
||||
for (unsigned i = 0; i < akey.size(); i++) {
|
||||
negate_abs_a_le_abs_b(akey[i].second, bkey[i].second, false);
|
||||
}
|
||||
assert_abs_val_a_le_abs_var_b(a, b, false);
|
||||
explain(a);
|
||||
explain(b);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
std::vector<rational> monotone::get_sorted_key(const smon& rm) const {
|
||||
std::vector<rational> r;
|
||||
for (unsigned j : rm.rvars()) {
|
||||
r.push_back(abs(vvr(j)));
|
||||
}
|
||||
std::sort(r.begin(), r.end());
|
||||
return r;
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_rms_of_same_arity(const unsigned_vector& rms) {
|
||||
monotone_array_t lex_sorted;
|
||||
for (unsigned i : rms) {
|
||||
lex_sorted.push_back(std::make_pair(get_sorted_key(c().m_emons.canonical[i]), i));
|
||||
}
|
||||
std::sort(lex_sorted.begin(), lex_sorted.end(),
|
||||
[](const std::pair<std::vector<rational>, unsigned> &a,
|
||||
const std::pair<std::vector<rational>, unsigned> &b) {
|
||||
return a.first < b.first;
|
||||
});
|
||||
TRACE("nla_solver", print_monotone_array(lex_sorted, tout););
|
||||
return monotonicity_lemma_on_lex_sorted(lex_sorted);
|
||||
}
|
||||
|
||||
|
||||
void monotone::monotonicity_lemma(monomial const& m) {
|
||||
SASSERT(!check_monomial(m));
|
||||
if (c().mon_has_zero(m))
|
||||
if (c().mon_has_zero(m.vars()))
|
||||
return;
|
||||
const rational prod_val = abs(c().product_value(m));
|
||||
const rational prod_val = abs(c().product_value(m.vars()));
|
||||
const rational m_val = abs(vvr(m));
|
||||
if (m_val < prod_val)
|
||||
monotonicity_lemma_lt(m, prod_val);
|
||||
|
@ -255,7 +92,7 @@ void monotone::monotonicity_lemma(monomial const& m) {
|
|||
|
||||
void monotone::monotonicity_lemma_gt(const monomial& m, const rational& prod_val) {
|
||||
add_empty_lemma();
|
||||
for (lpvar j : m) {
|
||||
for (lpvar j : m.vars()) {
|
||||
c().add_abs_bound(j, llc::GT);
|
||||
}
|
||||
lpvar m_j = m.var();
|
||||
|
@ -271,7 +108,7 @@ void monotone::monotonicity_lemma_gt(const monomial& m, const rational& prod_val
|
|||
*/
|
||||
void monotone::monotonicity_lemma_lt(const monomial& m, const rational& prod_val) {
|
||||
add_empty_lemma();
|
||||
for (lpvar j : m) {
|
||||
for (lpvar j : m.vars()) {
|
||||
c().add_abs_bound(j, llc::LT);
|
||||
}
|
||||
lpvar m_j = m.var();
|
||||
|
|
|
@ -25,22 +25,13 @@ public:
|
|||
monotone(core *core);
|
||||
void monotonicity_lemma();
|
||||
private:
|
||||
typedef vector<std::pair<std::vector<rational>, unsigned>> monotone_array_t;
|
||||
void print_monotone_array(const monotone_array_t& lex_sorted, std::ostream& out) const;
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_upper(const monotone_array_t& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_lower(const monotone_array_t& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm(const monotone_array_t& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted(const monotone_array_t& lex_sorted);
|
||||
bool monotonicity_lemma_on_rms_of_same_arity(const unsigned_vector& rms);
|
||||
void monotonicity_lemma(monomial const& m);
|
||||
void monotonicity_lemma_gt(const monomial& m, const rational& prod_val);
|
||||
void monotonicity_lemma_lt(const monomial& m, const rational& prod_val);
|
||||
void generate_monl_strict(const smon& a, const smon& b, unsigned strict);
|
||||
void generate_monl(const smon& a, const smon& b);
|
||||
std::vector<rational> get_sorted_key(const smon& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_vars(const smon& a) const;
|
||||
std::vector<rational> get_sorted_key(const monomial& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_rvars(const monomial& a) const;
|
||||
void negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict);
|
||||
void negate_abs_a_lt_abs_b(lpvar a, lpvar b);
|
||||
void assert_abs_val_a_le_abs_var_b(const smon& a, const smon& b, bool strict);
|
||||
void assert_abs_val_a_le_abs_var_b(const monomial& a, const monomial& b, bool strict);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -30,22 +30,22 @@ void order::order_lemma() {
|
|||
unsigned start = random();
|
||||
unsigned sz = rm_ref.size();
|
||||
for (unsigned i = 0; i < sz && !done(); ++i) {
|
||||
const smon& rm = c().m_emons.canonical[rm_ref[(i + start) % sz]];
|
||||
const monomial& rm = c().m_emons[rm_ref[(i + start) % sz]];
|
||||
order_lemma_on_rmonomial(rm);
|
||||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_rmonomial(const smon& rm) {
|
||||
void order::order_lemma_on_rmonomial(const monomial& m) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "rm = " << rm << ", orig = " << pp_mon(c(), c().m_emons[rm]););
|
||||
tout << "m = " << pp_mon(c(), m););
|
||||
|
||||
for (auto ac : factorization_factory_imp(rm, c())) {
|
||||
for (auto ac : factorization_factory_imp(m, c())) {
|
||||
if (ac.size() != 2)
|
||||
continue;
|
||||
if (ac.is_mon())
|
||||
order_lemma_on_binomial(*ac.mon());
|
||||
else
|
||||
order_lemma_on_factorization(rm, ac);
|
||||
order_lemma_on_factorization(m, ac);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
|
@ -54,7 +54,7 @@ void order::order_lemma_on_rmonomial(const smon& rm) {
|
|||
void order::order_lemma_on_binomial(const monomial& ac) {
|
||||
TRACE("nla_solver", tout << pp_mon(c(), ac););
|
||||
SASSERT(!check_monomial(ac) && ac.size() == 2);
|
||||
const rational mult_val = vvr(ac[0]) * vvr(ac[1]);
|
||||
const rational mult_val = vvr(ac.vars()[0]) * vvr(ac.vars()[1]);
|
||||
const rational acv = vvr(ac);
|
||||
bool gt = acv > mult_val;
|
||||
for (unsigned k = 0; k < 2; k++) {
|
||||
|
@ -64,8 +64,8 @@ void order::order_lemma_on_binomial(const monomial& ac) {
|
|||
}
|
||||
|
||||
void order::order_lemma_on_binomial_k(const monomial& m, bool k, bool gt) {
|
||||
SASSERT(gt == (vvr(m) > vvr(m[0]) * vvr(m[1])));
|
||||
order_lemma_on_binomial_sign(m, m[k], m[!k], gt ? 1: -1);
|
||||
SASSERT(gt == (vvr(m) > vvr(m.vars()[0]) * vvr(m.vars()[1])));
|
||||
order_lemma_on_binomial_sign(m, m.vars()[k], m.vars()[!k], gt ? 1: -1);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -78,7 +78,7 @@ void order::order_lemma_on_binomial_k(const monomial& m, bool k, bool gt) {
|
|||
|
||||
*/
|
||||
void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, int sign) {
|
||||
SASSERT(!_().mon_has_zero(xy));
|
||||
SASSERT(!_().mon_has_zero(xy.vars()));
|
||||
int sy = rat_sign(vvr(y));
|
||||
add_empty_lemma();
|
||||
mk_ineq(y, sy == 1 ? llc::LE : llc::GE); // negate sy
|
||||
|
@ -89,7 +89,7 @@ void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, i
|
|||
|
||||
void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
|
||||
SASSERT(m1.size() == 2);
|
||||
lpvar c = m1[k];
|
||||
lpvar c = m1.vars()[k];
|
||||
for (monomial const& m2 : _().m_emons.get_factors_of(c)) {
|
||||
order_lemma_on_factor_binomial_rm(m1, k, m2);
|
||||
if (done()) {
|
||||
|
@ -99,20 +99,19 @@ void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
|
|||
}
|
||||
|
||||
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd) {
|
||||
smon const& rm_bd = _().m_emons.canonical[bd];
|
||||
factor d(_().m_evars.find(ac[k]).var(), factor_type::VAR);
|
||||
factor d(_().m_evars.find(ac.vars()[k]).var(), factor_type::VAR);
|
||||
factor b;
|
||||
if (c().divide(rm_bd, d, b)) {
|
||||
order_lemma_on_binomial_ac_bd(ac, k, rm_bd, b, d.var());
|
||||
if (c().divide(bd, d, b)) {
|
||||
order_lemma_on_binomial_ac_bd(ac, k, bd, b, d.var());
|
||||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const smon& bd, const factor& b, lpvar d) {
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d) {
|
||||
TRACE("nla_solver",
|
||||
tout << "ac=" << pp_mon(c(), ac) << "\nrm= " << bd << ", b= " << pp_fac(c(), b) << ", d= " << pp_var(c(), d) << "\n";);
|
||||
bool p = !k;
|
||||
lpvar a = ac[p];
|
||||
lpvar c = ac[k];
|
||||
lpvar a = ac.vars()[p];
|
||||
lpvar c = ac.vars()[k];
|
||||
SASSERT(_().m_evars.find(c).var() == d);
|
||||
rational acv = vvr(ac);
|
||||
rational av = vvr(a);
|
||||
|
@ -137,7 +136,7 @@ void order::generate_mon_ol(const monomial& ac,
|
|||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const smon& bd,
|
||||
const monomial& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
@ -159,10 +158,10 @@ void order::generate_mon_ol(const monomial& ac,
|
|||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc(const smon& rm_ac,
|
||||
bool order::order_lemma_on_ac_and_bc(const monomial& rm_ac,
|
||||
const factorization& ac_f,
|
||||
bool k,
|
||||
const smon& rm_bd) {
|
||||
const monomial& rm_bd) {
|
||||
TRACE("nla_solver",
|
||||
tout << "rm_ac = " << rm_ac << "\n";
|
||||
tout << "rm_bd = " << rm_bd << "\n";
|
||||
|
@ -176,10 +175,8 @@ bool order::order_lemma_on_ac_and_bc(const smon& rm_ac,
|
|||
|
||||
// TBD: document what lemma is created here.
|
||||
|
||||
void order::order_lemma_on_factorization(const smon& rm, const factorization& ab) {
|
||||
const monomial& m = _().m_emons[rm];
|
||||
TRACE("nla_solver", tout << "orig_sign = " << _().m_emons.orig_sign(rm) << "\n";);
|
||||
rational sign = _().m_emons.orig_sign(rm);
|
||||
void order::order_lemma_on_factorization(const monomial& m, const factorization& ab) {
|
||||
rational sign = m.rsign();
|
||||
for (factor f: ab)
|
||||
sign *= _().canonize_sign(f);
|
||||
const rational fv = vvr(ab[0]) * vvr(ab[1]);
|
||||
|
@ -194,26 +191,25 @@ void order::order_lemma_on_factorization(const smon& rm, const factorization& ab
|
|||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab); explain(m);
|
||||
explain(rm);
|
||||
TRACE("nla_solver", _().print_lemma(tout););
|
||||
order_lemma_on_ac_explore(rm, ab, j == 1);
|
||||
order_lemma_on_ac_explore(m, ab, j == 1);
|
||||
}
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_explore(const smon& rm, const factorization& ac, bool k) {
|
||||
bool order::order_lemma_on_ac_explore(const monomial& rm, const factorization& ac, bool k) {
|
||||
const factor c = ac[k];
|
||||
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
|
||||
if (c.is_var()) {
|
||||
TRACE("nla_solver", tout << "var(c) = " << var(c););
|
||||
for (monomial const& bc : _().m_emons.get_use_list(c.var())) {
|
||||
if (order_lemma_on_ac_and_bc(rm ,ac, k, _().m_emons.canonical[bc])) {
|
||||
if (order_lemma_on_ac_and_bc(rm ,ac, k, bc)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (monomial const& bc : _().m_emons.get_factors_of(c.var())) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, _().m_emons.canonical[bc])) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, bc)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -223,11 +219,11 @@ bool order::order_lemma_on_ac_explore(const smon& rm, const factorization& ac, b
|
|||
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void order::generate_ol(const smon& ac,
|
||||
void order::generate_ol(const monomial& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
|
@ -251,10 +247,10 @@ void order::negate_var_factor_relation(const rational& a_sign, lpvar a, const ra
|
|||
}
|
||||
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const smon& ac,
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b) {
|
||||
auto cv = vvr(c);
|
||||
int c_sign = nla::rat_sign(cv);
|
||||
|
|
|
@ -31,23 +31,23 @@ public:
|
|||
|
||||
private:
|
||||
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const smon& ac,
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b);
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_ac_and_bc(const smon& rm_ac,
|
||||
bool order_lemma_on_ac_and_bc(const monomial& rm_ac,
|
||||
const factorization& ac_f,
|
||||
bool k,
|
||||
const smon& rm_bd);
|
||||
const monomial& rm_bd);
|
||||
|
||||
bool order_lemma_on_ac_explore(const smon& rm, const factorization& ac, bool k);
|
||||
bool order_lemma_on_ac_explore(const monomial& rm, const factorization& ac, bool k);
|
||||
|
||||
void order_lemma_on_factorization(const smon& rm, const factorization& ab);
|
||||
void order_lemma_on_factorization(const monomial& rm, const factorization& ab);
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
|
@ -65,18 +65,18 @@ private:
|
|||
void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monomial& m, bool k);
|
||||
void order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const smon& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_k(const monomial& m, bool k, bool gt);
|
||||
void order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign);
|
||||
void order_lemma_on_binomial(const monomial& ac);
|
||||
void order_lemma_on_rmonomial(const smon& rm);
|
||||
void order_lemma_on_rmonomial(const monomial& rm);
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void generate_ol(const smon& ac,
|
||||
void generate_ol(const monomial& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const smon& bc,
|
||||
const monomial& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp);
|
||||
|
||||
|
@ -84,7 +84,7 @@ private:
|
|||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const smon& bd,
|
||||
const monomial& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
|
|
@ -30,13 +30,12 @@ std::ostream& tangents::print_tangent_domain(const point &a, const point &b, std
|
|||
return out << "(" << a << ", " << b << ")";
|
||||
}
|
||||
|
||||
void tangents::generate_simple_tangent_lemma(const smon* rm) {
|
||||
if (rm->size() != 2)
|
||||
void tangents::generate_simple_tangent_lemma(const monomial& m) {
|
||||
if (m.size() != 2)
|
||||
return;
|
||||
TRACE("nla_solver", tout << "rm:" << *rm << std::endl;);
|
||||
m_core->add_empty_lemma();
|
||||
const monomial & m = c().m_emons[rm->var()];
|
||||
const rational v = c().product_value(m);
|
||||
TRACE("nla_solver", tout << "m:" << pp_mon(c(), m) << std::endl;);
|
||||
c().add_empty_lemma();
|
||||
const rational v = c().product_value(m.vars());
|
||||
const rational mv = vvr(m);
|
||||
SASSERT(mv != v);
|
||||
SASSERT(!mv.is_zero() && !v.is_zero());
|
||||
|
@ -47,15 +46,15 @@ void tangents::generate_simple_tangent_lemma(const smon* rm) {
|
|||
}
|
||||
bool gt = abs(mv) > abs(v);
|
||||
if (gt) {
|
||||
for (lpvar j : m) {
|
||||
for (lpvar j : m.vars()) {
|
||||
const rational jv = vvr(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT);
|
||||
c().mk_ineq(js, j, llc::GT, jv);
|
||||
}
|
||||
c().mk_ineq(sign, rm->var(), llc::LE, std::max(v, rational(-1)));
|
||||
c().mk_ineq(sign, m.var(), llc::LE, std::max(v, rational(-1)));
|
||||
} else {
|
||||
for (lpvar j : m) {
|
||||
for (lpvar j : m.vars()) {
|
||||
const rational jv = vvr(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT, std::max(jv, rational(0)));
|
||||
|
@ -70,18 +69,18 @@ void tangents::tangent_lemma() {
|
|||
bfc bf;
|
||||
lpvar j;
|
||||
rational sign;
|
||||
const smon* rm = nullptr;
|
||||
const monomial* rm = nullptr;
|
||||
|
||||
if (c().find_bfc_to_refine(bf, j, sign, rm)) {
|
||||
tangent_lemma_bf(bf, j, sign, rm);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "cannot find a bfc to refine\n"; );
|
||||
if (rm != nullptr)
|
||||
generate_simple_tangent_lemma(rm);
|
||||
generate_simple_tangent_lemma(*rm);
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const smon& rm, const bfc& bf, lp::explanation& exp) {
|
||||
void tangents::generate_explanations_of_tang_lemma(const monomial& rm, const bfc& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf.m_x, exp);
|
||||
|
@ -109,7 +108,7 @@ void tangents::generate_tang_plane(const rational & a, const rational& b, const
|
|||
t.add_coeff_var( j_sign, j);
|
||||
c().mk_ineq(t, sbelow? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const smon* rm){
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const monomial* rm){
|
||||
point a, b;
|
||||
point xy (vvr(bf.m_x), vvr(bf.m_y));
|
||||
rational correct_mult_val = xy.x * xy.y;
|
||||
|
|
|
@ -54,11 +54,11 @@ public:
|
|||
void tangent_lemma();
|
||||
private:
|
||||
|
||||
void generate_simple_tangent_lemma(const smon* rm);
|
||||
void generate_simple_tangent_lemma(const monomial&);
|
||||
|
||||
void generate_explanations_of_tang_lemma(const smon& rm, const bfc& bf, lp::explanation& exp);
|
||||
void generate_explanations_of_tang_lemma(const monomial& rm, const bfc& bf, lp::explanation& exp);
|
||||
|
||||
void tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const smon* rm);
|
||||
void tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const monomial* rm);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j, const rational& j_sign);
|
||||
|
||||
void generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j);
|
||||
|
|
|
@ -13,7 +13,8 @@
|
|||
|
||||
namespace nra {
|
||||
|
||||
typedef nla::monomial mon_eq;
|
||||
typedef nla::mon_eq mon_eq;
|
||||
|
||||
typedef nla::variable_map_type variable_map_type;
|
||||
struct solver::imp {
|
||||
lp::lar_solver& s;
|
||||
|
@ -136,7 +137,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
void add_monomial_eq(mon_eq const& m) {
|
||||
polynomial::manager& pm = m_nlsat->pm();
|
||||
svector<polynomial::var> vars;
|
||||
for (auto v : m) {
|
||||
for (auto v : m.vars()) {
|
||||
vars.push_back(lp2nl(v));
|
||||
}
|
||||
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
|
||||
|
@ -227,7 +228,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
std::ostream& display(std::ostream& out) const {
|
||||
for (auto m : m_monomials) {
|
||||
out << "v" << m.var() << " = ";
|
||||
for (auto v : m) {
|
||||
for (auto v : m.vars()) {
|
||||
out << "v" << v << " ";
|
||||
}
|
||||
out << "\n";
|
||||
|
|
Loading…
Reference in a new issue