mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
add string accessors to managed APIs #1051
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
546d22e77a
commit
52e0f3b539
4 changed files with 50 additions and 36 deletions
|
@ -797,6 +797,22 @@ namespace Microsoft.Z3
|
|||
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
|
||||
#endregion
|
||||
|
||||
#region Sequences and Strings
|
||||
|
||||
/// <summary>
|
||||
/// Check whether expression is a string constant.
|
||||
/// </summary>
|
||||
/// <returns>a Boolean</returns>
|
||||
public bool IsString { get { return IsApp && 0 != Native.Z3_is_string(Context.nCtx, NativeObject); } }
|
||||
|
||||
/// <summary>
|
||||
/// Retrieve string corresponding to string constant.
|
||||
/// </summary>
|
||||
/// <remarks>the expression should be a string constant, (IsString should be true).</remarks>
|
||||
public string String { get { return Native.Z3_get_string(Context.nCtx, NativeObject); } }
|
||||
|
||||
#endregion
|
||||
|
||||
#region Proof Terms
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a binary equivalence modulo namings.
|
||||
|
|
|
@ -1277,6 +1277,26 @@ public class Expr extends AST
|
|||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_LABEL_LIT;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether expression is a string constant.
|
||||
* @return a boolean
|
||||
*/
|
||||
public boolean isString()
|
||||
{
|
||||
return isApp() && Native.isString(getContext().nCtx(), getNativeObject());
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieve string corresponding to string constant.
|
||||
* Remark: the expression should be a string constant, (isString() should return true).
|
||||
* @throws Z3Exception on error
|
||||
* @return a string
|
||||
*/
|
||||
public String getString()
|
||||
{
|
||||
return Native.getString(getContext().nCtx(), getNativeObject());
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a binary equivalence modulo namings.
|
||||
* Remarks: This binary predicate is used in proof terms. It captures
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue