3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Whitespace

This commit is contained in:
Christoph M. Wintersteiger 2015-12-02 14:40:47 +00:00
parent 216c1b2989
commit 52bbd67cd3
4 changed files with 170 additions and 170 deletions

View file

@ -14,7 +14,7 @@ Author:
Christoph Wintersteiger (cwinter) 2012-03-16
Notes:
--*/
using System;
@ -41,7 +41,7 @@ namespace test_mapi
/// forall (x_0, ..., x_n) finv(f(x_0, ..., x_i, ..., x_{n-1})) = x_i
/// </c>
/// Where, <code>finv</code>is a fresh function declaration.
/// </summary>
/// </summary>
public static BoolExpr InjAxiom(Context ctx, FuncDecl f, int i)
{
Sort[] domain = f.Domain;
@ -155,11 +155,11 @@ namespace test_mapi
}
/// <summary>
/// Assert the axiom: function f is commutative.
/// Assert the axiom: function f is commutative.
/// </summary>
/// <remarks>
/// This example uses the SMT-LIB parser to simplify the axiom construction.
/// </remarks>
/// </remarks>
private static BoolExpr CommAxiom(Context ctx, FuncDecl f)
{
Sort t = f.Range;
@ -453,7 +453,7 @@ namespace test_mapi
/// <summary>
/// Sudoku solving example.
/// </summary>
/// </summary>
static void SudokuExample(Context ctx)
{
Console.WriteLine("SudokuExample");
@ -649,7 +649,7 @@ namespace test_mapi
}
/// <summary>
/// Prove that <tt>f(x, y) = f(w, v) implies y = v</tt> when
/// Prove that <tt>f(x, y) = f(w, v) implies y = v</tt> when
/// <code>f</code> is injective in the second argument. <seealso cref="inj_axiom"/>
/// </summary>
public static void QuantifierExample3(Context ctx)
@ -687,7 +687,7 @@ namespace test_mapi
}
/// <summary>
/// Prove that <tt>f(x, y) = f(w, v) implies y = v</tt> when
/// Prove that <tt>f(x, y) = f(w, v) implies y = v</tt> when
/// <code>f</code> is injective in the second argument. <seealso cref="inj_axiom"/>
/// </summary>
public static void QuantifierExample4(Context ctx)
@ -726,7 +726,7 @@ namespace test_mapi
/// <summary>
/// Some basic tests.
/// </summary>
/// </summary>
static void BasicTests(Context ctx)
{
Console.WriteLine("BasicTests");
@ -759,7 +759,7 @@ namespace test_mapi
foreach (BoolExpr a in g.Formulas)
solver.Assert(a);
if (solver.Check() != Status.SATISFIABLE)
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
ApplyResult ar = ApplyTactic(ctx, ctx.MkTactic("simplify"), g);
@ -965,7 +965,7 @@ namespace test_mapi
/// <summary>
/// Shows how to read an SMT1 file.
/// </summary>
/// </summary>
static void SMT1FileTest(string filename)
{
Console.Write("SMT File test ");
@ -1020,7 +1020,7 @@ namespace test_mapi
// break;
// case Z3_ast_kind.Z3_QUANTIFIER_AST:
// q.Enqueue(((Quantifier)cur).Args[0]);
// break;
// break;
// case Z3_ast_kind.Z3_VAR_AST: break;
// case Z3_ast_kind.Z3_NUMERAL_AST: break;
// case Z3_ast_kind.Z3_FUNC_DECL_AST: break;
@ -1158,7 +1158,7 @@ namespace test_mapi
/// Prove <tt>x = y implies g(x) = g(y)</tt>, and
/// disprove <tt>x = y implies g(g(x)) = g(y)</tt>.
/// </summary>
/// <remarks>This function demonstrates how to create uninterpreted
/// <remarks>This function demonstrates how to create uninterpreted
/// types and functions.</remarks>
public static void ProveExample1(Context ctx)
{
@ -1203,8 +1203,8 @@ namespace test_mapi
/// Prove <tt>not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0 </tt>.
/// Then, show that <tt>z < -1</tt> is not implied.
/// </summary>
/// <remarks>This example demonstrates how to combine uninterpreted functions
/// and arithmetic.</remarks>
/// <remarks>This example demonstrates how to combine uninterpreted functions
/// and arithmetic.</remarks>
public static void ProveExample2(Context ctx)
{
Console.WriteLine("ProveExample2");
@ -1255,7 +1255,7 @@ namespace test_mapi
/// <summary>
/// Show how push & pop can be used to create "backtracking" points.
/// </summary>
/// <remarks>This example also demonstrates how big numbers can be
/// <remarks>This example also demonstrates how big numbers can be
/// created in ctx.</remarks>
public static void PushPopExample1(Context ctx)
{
@ -1318,7 +1318,7 @@ namespace test_mapi
/// <summary>
/// Tuples.
/// </summary>
/// <remarks>Check that the projection of a tuple
/// <remarks>Check that the projection of a tuple
/// returns the corresponding element.</remarks>
public static void TupleExample(Context ctx)
{
@ -1328,7 +1328,7 @@ namespace test_mapi
TupleSort tuple = ctx.MkTupleSort(
ctx.MkSymbol("mk_tuple"), // name of tuple constructor
new Symbol[] { ctx.MkSymbol("first"), ctx.MkSymbol("second") }, // names of projection operators
new Sort[] { int_type, int_type } // types of projection operators
new Sort[] { int_type, int_type } // types of projection operators
);
FuncDecl first = tuple.FieldDecls[0]; // declarations are for projections
FuncDecl second = tuple.FieldDecls[1];
@ -1342,7 +1342,7 @@ namespace test_mapi
}
/// <summary>
/// Simple bit-vector example.
/// Simple bit-vector example.
/// </summary>
/// <remarks>
/// This example disproves that x - 10 &lt;= 0 IFF x &lt;= 10 for (32-bit) machine integers
@ -1366,7 +1366,7 @@ namespace test_mapi
/// <summary>
/// Find x and y such that: x ^ y - 103 == x * y
/// </summary>
/// </summary>
public static void BitvectorExample2(Context ctx)
{
Console.WriteLine("BitvectorExample2");
@ -1446,7 +1446,7 @@ namespace test_mapi
/// <summary>
/// Display the declarations, assumptions and formulas in a SMT-LIB string.
/// </summary>
/// </summary>
public static void ParserExample4(Context ctx)
{
Console.WriteLine("ParserExample4");
@ -1504,7 +1504,7 @@ namespace test_mapi
/// <summary>
/// Create an enumeration data type.
/// </summary>
/// </summary>
public static void EnumExample(Context ctx)
{
Console.WriteLine("EnumExample");
@ -1603,7 +1603,7 @@ namespace test_mapi
/// <summary>
/// Create a binary tree datatype.
/// </summary>
/// </summary>
public static void TreeExample(Context ctx)
{
Console.WriteLine("TreeExample");
@ -1681,14 +1681,14 @@ namespace test_mapi
//
// Declare the names of the accessors for cons.
// Then declare the sorts of the accessors.
// Then declare the sorts of the accessors.
// For this example, all sorts refer to the new types 'forest' and 'tree'
// being declared, so we pass in null for both sorts1 and sorts2.
// On the other hand, the sort_refs arrays contain the indices of the
// two new sorts being declared. The first element in sort1_refs
// points to 'tree', which has index 1, the second element in sort1_refs array
// points to 'forest', which has index 0.
//
//
Symbol[] head_tail1 = new Symbol[] { ctx.MkSymbol("head"), ctx.MkSymbol("tail") };
Sort[] sorts1 = new Sort[] { null, null };
uint[] sort1_refs = new uint[] { 1, 0 }; // the first item points to a tree, the second to a forest
@ -1860,7 +1860,7 @@ namespace test_mapi
}
/// <summary>
/// Demonstrate how to use <code>Push</code>and <code>Pop</code>to
/// Demonstrate how to use <code>Push</code>and <code>Pop</code>to
/// control the size of models.
/// </summary>
/// <remarks>Note: this test is specialized to 32-bit bitvectors.</remarks>
@ -1954,7 +1954,7 @@ namespace test_mapi
/// <summary>
/// Simplifier example.
/// </summary>
/// </summary>
public static void SimplifierExample(Context ctx)
{
Console.WriteLine("SimplifierExample");
@ -1970,7 +1970,7 @@ namespace test_mapi
}
/// <summary>
/// Extract unsatisfiable core example
/// Extract unsatisfiable core example
/// </summary>
public static void UnsatCoreAndProofExample(Context ctx)
{
@ -2023,7 +2023,7 @@ namespace test_mapi
BoolExpr pb = ctx.MkBoolConst("PredB");
BoolExpr pc = ctx.MkBoolConst("PredC");
BoolExpr pd = ctx.MkBoolConst("PredD");
BoolExpr f1 = ctx.MkAnd(new BoolExpr[] { pa, pb, pc });
BoolExpr f2 = ctx.MkAnd(new BoolExpr[] { pa, ctx.MkNot(pb), pc });
BoolExpr f3 = ctx.MkOr(ctx.MkNot(pa), ctx.MkNot(pc));
@ -2042,7 +2042,7 @@ namespace test_mapi
if (result == Status.UNSATISFIABLE)
{
Console.WriteLine("unsat");
Console.WriteLine("unsat");
Console.WriteLine("core: ");
foreach (Expr c in solver.UnsatCore)
{
@ -2066,7 +2066,7 @@ namespace test_mapi
Console.WriteLine("{0}", t1);
// But you cannot mix numerals of different sorts
// even if the size of their domains are the same:
// Console.WriteLine("{0}", ctx.MkEq(s1, t1));
// Console.WriteLine("{0}", ctx.MkEq(s1, t1));
}
public static void FloatingPointExample1(Context ctx)
@ -2084,7 +2084,7 @@ namespace test_mapi
BoolExpr a = ctx.MkAnd(ctx.MkFPEq(x, y), ctx.MkFPEq(y, z));
Check(ctx, ctx.MkNot(a), Status.UNSATISFIABLE);
/* nothing is equal to NaN according to floating-point
/* nothing is equal to NaN according to floating-point
* equality, so NaN == k should be unsatisfiable. */
FPExpr k = (FPExpr)ctx.MkConst("x", s);
FPExpr nan = ctx.MkFPNaN(s);
@ -2125,7 +2125,7 @@ namespace test_mapi
FPRMExpr rm = (FPRMExpr)ctx.MkConst(ctx.MkSymbol("rm"), rm_sort);
BitVecExpr x = (BitVecExpr)ctx.MkConst(ctx.MkSymbol("x"), ctx.MkBitVecSort(64));
FPExpr y = (FPExpr)ctx.MkConst(ctx.MkSymbol("y"), double_sort);
FPExpr y = (FPExpr)ctx.MkConst(ctx.MkSymbol("y"), double_sort);
FPExpr fp_val = ctx.MkFP(42, double_sort);
BoolExpr c1 = ctx.MkEq(y, fp_val);
@ -2138,7 +2138,7 @@ namespace test_mapi
/* Generic solver */
Solver s = ctx.MkSolver();
s.Assert(c5);
Console.WriteLine(s);
if (s.Check() != Status.SATISFIABLE)
@ -2210,8 +2210,8 @@ namespace test_mapi
}
// These examples need proof generation turned on and auto-config set to false.
using (Context ctx = new Context(new Dictionary<string, string>()
{ {"proof", "true" },
using (Context ctx = new Context(new Dictionary<string, string>()
{ {"proof", "true" },
{"auto-config", "false" } }))
{
QuantifierExample3(ctx);

View file

@ -28,7 +28,7 @@ Revision History:
bool is_numeral_sort(Z3_context c, Z3_sort ty) {
sort * _ty = to_sort(ty);
family_id fid = _ty->get_family_id();
if (fid != mk_c(c)->get_arith_fid() &&
if (fid != mk_c(c)->get_arith_fid() &&
fid != mk_c(c)->get_bv_fid() &&
fid != mk_c(c)->get_datalog_fid() &&
fid != mk_c(c)->get_fpa_fid()) {
@ -160,7 +160,7 @@ extern "C" {
expr* e = to_expr(a);
if (!e) {
SET_ERROR_CODE(Z3_INVALID_ARG);
return Z3_FALSE;
return Z3_FALSE;
}
if (mk_c(c)->autil().is_numeral(e, r)) {
return Z3_TRUE;
@ -174,11 +174,11 @@ extern "C" {
r = rational(v, rational::ui64());
return Z3_TRUE;
}
return Z3_FALSE;
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a) {
Z3_TRY;
// This function invokes Z3_get_numeral_rational, but it is still ok to add LOG command here because it does not return a Z3 object.
@ -196,11 +196,11 @@ extern "C" {
mpf_rounding_mode rm;
if (mk_c(c)->fpautil().is_rm_numeral(to_expr(a), rm)) {
switch (rm) {
case OP_FPA_RM_NEAREST_TIES_TO_EVEN:
return mk_c(c)->mk_external_string("roundNearestTiesToEven");
case OP_FPA_RM_NEAREST_TIES_TO_EVEN:
return mk_c(c)->mk_external_string("roundNearestTiesToEven");
break;
case OP_FPA_RM_NEAREST_TIES_TO_AWAY:
return mk_c(c)->mk_external_string("roundNearestTiesToAway");
return mk_c(c)->mk_external_string("roundNearestTiesToAway");
break;
case OP_FPA_RM_TOWARD_POSITIVE:
return mk_c(c)->mk_external_string("roundTowardPositive");
@ -212,7 +212,7 @@ extern "C" {
default:
return mk_c(c)->mk_external_string("roundTowardZero");
break;
}
}
}
else if (mk_c(c)->fpautil().is_numeral(to_expr(a), tmp)) {
return mk_c(c)->mk_external_string(fu.fm().to_string(tmp));
@ -261,7 +261,7 @@ extern "C" {
Z3_bool Z3_API Z3_get_numeral_small(Z3_context c, Z3_ast a, long long* num, long long* den) {
Z3_TRY;
// This function invokes Z3_get_numeral_rational, but it is still ok to add LOG command here because it does not return a Z3 object.
// This function invokes Z3_get_numeral_rational, but it is still ok to add LOG command here because it does not return a Z3 object.
LOG_Z3_get_numeral_small(c, a, num, den);
RESET_ERROR_CODE();
rational r;
@ -289,8 +289,8 @@ extern "C" {
// This function invokes Z3_get_numeral_int64, but it is still ok to add LOG command here because it does not return a Z3 object.
LOG_Z3_get_numeral_int(c, v, i);
RESET_ERROR_CODE();
if (!i) {
SET_ERROR_CODE(Z3_INVALID_ARG);
if (!i) {
SET_ERROR_CODE(Z3_INVALID_ARG);
return Z3_FALSE;
}
long long l;
@ -301,17 +301,17 @@ extern "C" {
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned* u) {
Z3_TRY;
// This function invokes Z3_get_numeral_uint64, but it is still ok to add LOG command here because it does not return a Z3 object.
LOG_Z3_get_numeral_uint(c, v, u);
RESET_ERROR_CODE();
if (!u) {
SET_ERROR_CODE(Z3_INVALID_ARG);
if (!u) {
SET_ERROR_CODE(Z3_INVALID_ARG);
return Z3_FALSE;
}
unsigned long long l;
unsigned long long l;
if (Z3_get_numeral_uint64(c, v, &l) && (l <= 0xFFFFFFFF)) {
*u = static_cast<unsigned>(l);
return Z3_TRUE;
@ -319,7 +319,7 @@ extern "C" {
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, unsigned long long* u) {
Z3_TRY;
// This function invokes Z3_get_numeral_rational, but it is still ok to add LOG command here because it does not return a Z3 object.
@ -339,7 +339,7 @@ extern "C" {
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, long long* i) {
Z3_TRY;
// This function invokes Z3_get_numeral_rational, but it is still ok to add LOG command here because it does not return a Z3 object.

View file

@ -309,7 +309,7 @@ namespace Microsoft.Z3
/// <summary>
/// Create a new finite domain sort.
/// <returns>The result is a sort</returns>
/// <returns>The result is a sort</returns>
/// </summary>
/// <param name="name">The name used to identify the sort</param>
/// <param name="size">The size of the sort</param>
@ -324,9 +324,9 @@ namespace Microsoft.Z3
/// <summary>
/// Create a new finite domain sort.
/// <returns>The result is a sort</returns>
/// Elements of the sort are created using <seealso cref="MkNumeral(ulong, Sort)"/>,
/// and the elements range from 0 to <tt>size-1</tt>.
/// <returns>The result is a sort</returns>
/// Elements of the sort are created using <seealso cref="MkNumeral(ulong, Sort)"/>,
/// and the elements range from 0 to <tt>size-1</tt>.
/// </summary>
/// <param name="name">The name used to identify the sort</param>
/// <param name="size">The size of the sort</param>
@ -457,16 +457,16 @@ namespace Microsoft.Z3
/// <summary>
/// Update a datatype field at expression t with value v.
/// The function performs a record update at t. The field
/// that is passed in as argument is updated with value v,
/// the remainig fields of t are unchanged.
/// </summary>
public Expr MkUpdateField(FuncDecl field, Expr t, Expr v)
{
return Expr.Create(this, Native.Z3_datatype_update_field(
nCtx, field.NativeObject,
t.NativeObject, v.NativeObject));
}
/// The function performs a record update at t. The field
/// that is passed in as argument is updated with value v,
/// the remainig fields of t are unchanged.
/// </summary>
public Expr MkUpdateField(FuncDecl field, Expr t, Expr v)
{
return Expr.Create(this, Native.Z3_datatype_update_field(
nCtx, field.NativeObject,
t.NativeObject, v.NativeObject));
}
#endregion
#endregion
@ -2613,13 +2613,13 @@ namespace Microsoft.Z3
/// <paramref name="patterns"/> is an array of patterns, <paramref name="sorts"/> is an array
/// with the sorts of the bound variables, <paramref name="names"/> is an array with the
/// 'names' of the bound variables, and <paramref name="body"/> is the body of the
/// quantifier. Quantifiers are associated with weights indicating the importance of
/// quantifier. Quantifiers are associated with weights indicating the importance of
/// using the quantifier during instantiation.
/// Note that the bound variables are de-Bruijn indices created using <see cref="MkBound"/>.
/// Z3 applies the convention that the last element in <paramref name="names"/> and
/// <paramref name="sorts"/> refers to the variable with index 0, the second to last element
/// of <paramref name="names"/> and <paramref name="sorts"/> refers to the variable
/// with index 1, etc.
/// Note that the bound variables are de-Bruijn indices created using <see cref="MkBound"/>.
/// Z3 applies the convention that the last element in <paramref name="names"/> and
/// <paramref name="sorts"/> refers to the variable with index 0, the second to last element
/// of <paramref name="names"/> and <paramref name="sorts"/> refers to the variable
/// with index 1, etc.
/// </remarks>
/// <param name="sorts">the sorts of the bound variables.</param>
/// <param name="names">names of the bound variables</param>
@ -2650,8 +2650,8 @@ namespace Microsoft.Z3
/// Create a universal Quantifier.
/// </summary>
/// <remarks>
/// Creates a universal quantifier using a list of constants that will
/// form the set of bound variables.
/// Creates a universal quantifier using a list of constants that will
/// form the set of bound variables.
/// <seealso cref="MkForall(Sort[], Symbol[], Expr, uint, Pattern[], Expr[], Symbol, Symbol)"/>
/// </remarks>
public Quantifier MkForall(Expr[] boundConstants, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
@ -2670,7 +2670,7 @@ namespace Microsoft.Z3
/// Create an existential Quantifier.
/// </summary>
/// <remarks>
/// Creates an existential quantifier using de-Brujin indexed variables.
/// Creates an existential quantifier using de-Brujin indexed variables.
/// (<see cref="MkForall(Sort[], Symbol[], Expr, uint, Pattern[], Expr[], Symbol, Symbol)"/>).
/// </remarks>
public Quantifier MkExists(Sort[] sorts, Symbol[] names, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
@ -2692,8 +2692,8 @@ namespace Microsoft.Z3
/// Create an existential Quantifier.
/// </summary>
/// <remarks>
/// Creates an existential quantifier using a list of constants that will
/// form the set of bound variables.
/// Creates an existential quantifier using a list of constants that will
/// form the set of bound variables.
/// <seealso cref="MkForall(Sort[], Symbol[], Expr, uint, Pattern[], Expr[], Symbol, Symbol)"/>
/// </remarks>
public Quantifier MkExists(Expr[] boundConstants, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)
@ -4499,7 +4499,7 @@ namespace Microsoft.Z3
readonly private Statistics.DecRefQueue m_Statistics_DRQ = new Statistics.DecRefQueue(10);
readonly private Tactic.DecRefQueue m_Tactic_DRQ = new Tactic.DecRefQueue(10);
readonly private Fixedpoint.DecRefQueue m_Fixedpoint_DRQ = new Fixedpoint.DecRefQueue(10);
readonly private Optimize.DecRefQueue m_Optimize_DRQ = new Optimize.DecRefQueue(10);
readonly private Optimize.DecRefQueue m_Optimize_DRQ = new Optimize.DecRefQueue(10);
/// <summary>
/// AST DRQ

View file

@ -14,7 +14,7 @@ Author:
Christoph Wintersteiger (cwinter) 2012-03-20
Notes:
--*/
using System;
@ -23,7 +23,7 @@ using System.Diagnostics.Contracts;
namespace Microsoft.Z3
{
/// <summary>
/// Expressions are terms.
/// Expressions are terms.
/// </summary>
[ContractVerification(true)]
public class Expr : AST
@ -74,7 +74,7 @@ namespace Microsoft.Z3
/// <summary>
/// The arguments of the expression.
/// </summary>
/// </summary>
public Expr[] Args
{
get
@ -109,9 +109,9 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// The result is the new expression. The arrays <c>from</c> and <c>to</c> must have size <c>num_exprs</c>.
/// For every <c>i</c> smaller than <c>num_exprs</c>, we must have that
/// For every <c>i</c> smaller than <c>num_exprs</c>, we must have that
/// sort of <c>from[i]</c> must be equal to sort of <c>to[i]</c>.
/// </remarks>
/// </remarks>
public Expr Substitute(Expr[] from, Expr[] to)
{
Contract.Requires(from != null);
@ -174,7 +174,7 @@ namespace Microsoft.Z3
/// <summary>
/// Returns a string representation of the expression.
/// </summary>
/// </summary>
public override string ToString()
{
return base.ToString();
@ -442,15 +442,15 @@ namespace Microsoft.Z3
get
{
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
(Z3_sort_kind)Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
== Z3_sort_kind.Z3_ARRAY_SORT);
}
}
/// <summary>
/// Indicates whether the term is an array store.
/// Indicates whether the term is an array store.
/// </summary>
/// <remarks>It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
/// <remarks>It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
/// Array store takes at least 3 arguments. </remarks>
public bool IsStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }
@ -480,7 +480,7 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is an as-array term.
/// </summary>
/// <remarks>An as-array term is n array value that behaves as the function graph of the
/// <remarks>An as-array term is n array value that behaves as the function graph of the
/// function passed as parameter.</remarks>
public bool IsAsArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }
#endregion
@ -761,21 +761,21 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is a coercion from integer to bit-vector
/// </summary>
/// <remarks>This function is not supported by the decision procedures. Only the most
/// <remarks>This function is not supported by the decision procedures. Only the most
/// rudimentary simplification rules are applied to this function.</remarks>
public bool IsIntToBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }
/// <summary>
/// Indicates whether the term is a coercion from bit-vector to integer
/// </summary>
/// <remarks>This function is not supported by the decision procedures. Only the most
/// <remarks>This function is not supported by the decision procedures. Only the most
/// rudimentary simplification rules are applied to this function.</remarks>
public bool IsBVToInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }
/// <summary>
/// Indicates whether the term is a bit-vector carry
/// </summary>
/// <remarks>Compute the carry bit in a full-adder. The meaning is given by the
/// <remarks>Compute the carry bit in a full-adder. The meaning is given by the
/// equivalence (carry l1 l2 l3) &lt;=&gt; (or (and l1 l2) (and l1 l3) (and l2 l3)))</remarks>
public bool IsBVCarry { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }
@ -795,15 +795,15 @@ namespace Microsoft.Z3
public bool IsLabel { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }
/// <summary>
/// Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
/// Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
/// </summary>
/// <remarks>A label literal has a set of string parameters. It takes no arguments.</remarks>
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
#endregion
#endregion
#region Proof Terms
/// <summary>
/// Indicates whether the term is a binary equivalence modulo namings.
/// Indicates whether the term is a binary equivalence modulo namings.
/// </summary>
/// <remarks>This binary predicate is used in proof terms.
/// It captures equisatisfiability and equivalence modulo renamings.</remarks>
@ -838,8 +838,8 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
/// </summary>
/// <remarks>This proof object has no antecedents.
/// The only reflexive relations that are used are
/// <remarks>This proof object has no antecedents.
/// The only reflexive relations that are used are
/// equivalence modulo namings, equality and equivalence.
/// That is, R is either '~', '=' or 'iff'.</remarks>
public bool IsProofReflexivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }
@ -859,8 +859,8 @@ namespace Microsoft.Z3
/// Indicates whether the term is a proof by transitivity of a relation
/// </summary>
/// <remarks>
/// Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
/// for (R t u).
/// Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
/// for (R t u).
/// T1: (R t s)
/// T2: (R s u)
/// [trans T1 T2]: (R t u)
@ -872,17 +872,17 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
/// It combines several symmetry and transitivity proofs.
/// It combines several symmetry and transitivity proofs.
/// Example:
/// T1: (R a b)
/// T2: (R c b)
/// T3: (R c d)
/// [trans* T1 T2 T3]: (R a d)
/// [trans* T1 T2 T3]: (R a d)
/// R must be a symmetric and transitive relation.
///
///
/// Assuming that this proof object is a proof for (R s t), then
/// a proof checker must check if it is possible to prove (R s t)
/// using the antecedents, symmetry and transitivity. That is,
/// using the antecedents, symmetry and transitivity. That is,
/// if there is a path from s to t, if we view every
/// antecedent (R a b) as an edge between a and b.
/// </remarks>
@ -896,14 +896,14 @@ namespace Microsoft.Z3
/// T1: (R t_1 s_1)
/// ...
/// Tn: (R t_n s_n)
/// [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
/// [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
/// Remark: if t_i == s_i, then the antecedent Ti is suppressed.
/// That is, reflexivity proofs are supressed to save space.
/// </remarks>
public bool IsProofMonotonicity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
/// <summary>
/// Indicates whether the term is a quant-intro proof
/// Indicates whether the term is a quant-intro proof
/// </summary>
/// <remarks>
/// Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
@ -913,7 +913,7 @@ namespace Microsoft.Z3
public bool IsProofQuantIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }
/// <summary>
/// Indicates whether the term is a distributivity proof object.
/// Indicates whether the term is a distributivity proof object.
/// </summary>
/// <remarks>
/// Given that f (= or) distributes over g (= and), produces a proof for
@ -923,9 +923,9 @@ namespace Microsoft.Z3
/// (= (f (g a b) (g c d))
/// (g (f a c) (f a d) (f b c) (f b d)))
/// where each f and g can have arbitrary number of arguments.
///
///
/// This proof object has no antecedents.
/// Remark. This rule is used by the CNF conversion pass and
/// Remark. This rule is used by the CNF conversion pass and
/// instantiated by f = or, and g = and.
/// </remarks>
public bool IsProofDistributivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }
@ -946,7 +946,7 @@ namespace Microsoft.Z3
/// <remarks>
/// Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
/// T1: (not (or l_1 ... l_n))
/// [not-or-elim T1]: (not l_i)
/// [not-or-elim T1]: (not l_i)
/// </remarks>
public bool IsProofOrElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }
@ -956,16 +956,16 @@ namespace Microsoft.Z3
/// <remarks>
/// A proof for a local rewriting step (= t s).
/// The head function symbol of t is interpreted.
///
///
/// This proof object has no antecedents.
/// The conclusion of a rewrite rule is either an equality (= t s),
/// The conclusion of a rewrite rule is either an equality (= t s),
/// an equivalence (iff t s), or equi-satisfiability (~ t s).
/// Remark: if f is bool, then = is iff.
///
///
/// Examples:
/// (= (+ x 0) x)
/// (= (+ x 1 2) (+ 3 x))
/// (iff (or x false) x)
/// (iff (or x false) x)
/// </remarks>
public bool IsProofRewrite { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }
@ -997,8 +997,8 @@ namespace Microsoft.Z3
/// Indicates whether the term is a proof for pulling quantifiers out.
/// </summary>
/// <remarks>
/// A proof for (iff P Q) where Q is in prenex normal form.
/// This proof object is only used if the parameter PROOF_MODE is 1.
/// A proof for (iff P Q) where Q is in prenex normal form.
/// This proof object is only used if the parameter PROOF_MODE is 1.
/// This proof object has no antecedents
/// </remarks>
public bool IsProofPullQuantStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR; } }
@ -1010,8 +1010,8 @@ namespace Microsoft.Z3
/// A proof for:
/// (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
/// (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
/// ...
/// (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
/// ...
/// (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
/// This proof object has no antecedents
/// </remarks>
public bool IsProofPushQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }
@ -1021,8 +1021,8 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
/// (forall (x_1 ... x_n) p[x_1 ... x_n]))
///
/// (forall (x_1 ... x_n) p[x_1 ... x_n]))
///
/// It is used to justify the elimination of unused variables.
/// This proof object has no antecedents.
/// </remarks>
@ -1035,9 +1035,9 @@ namespace Microsoft.Z3
/// A proof for destructive equality resolution:
/// (iff (forall (x) (or (not (= x t)) P[x])) P[t])
/// if x does not occur in t.
///
///
/// This proof object has no antecedents.
///
///
/// Several variables can be eliminated simultaneously.
/// </remarks>
public bool IsProofDER { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }
@ -1062,7 +1062,7 @@ namespace Microsoft.Z3
/// <remarks>
/// T1: false
/// [lemma T1]: (or (not l_1) ... (not l_n))
///
///
/// This proof object has one antecedent: a hypothetical proof for false.
/// It converts the proof in a proof for (or (not l_1) ... (not l_n)),
/// when T1 contains the hypotheses: l_1, ..., l_n.
@ -1104,9 +1104,9 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// [comm]: (= (f a b) (f b a))
///
///
/// f is a commutative operator.
///
///
/// This proof object has no antecedents.
/// Remark: if f is bool, then = is iff.
/// </remarks>
@ -1117,7 +1117,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Proof object used to justify Tseitin's like axioms:
///
///
/// (or (not (and p q)) p)
/// (or (not (and p q)) q)
/// (or (not (and p q r)) p)
@ -1138,7 +1138,7 @@ namespace Microsoft.Z3
/// (or (ite a b c) a (not c))
/// (or (not (not a)) (not a))
/// (or (not a) a)
///
///
/// This proof object has no antecedents.
/// Note: all axioms are propositional tautologies.
/// Note also that 'and' and 'or' can take multiple arguments.
@ -1155,19 +1155,19 @@ namespace Microsoft.Z3
/// Introduces a name for a formula/term.
/// Suppose e is an expression with free variables x, and def-intro
/// introduces the name n(x). The possible cases are:
///
///
/// When e is of Boolean type:
/// [def-intro]: (and (or n (not e)) (or (not n) e))
///
///
/// or:
/// [def-intro]: (or (not n) e)
/// when e only occurs positively.
///
///
/// When e is of the form (ite cond th el):
/// [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
///
///
/// Otherwise:
/// [def-intro]: (= n e)
/// [def-intro]: (= n e)
/// </remarks>
public bool IsProofDefIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }
@ -1195,7 +1195,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Proof for a (positive) NNF step. Example:
///
///
/// T1: (not s_1) ~ r_1
/// T2: (not s_2) ~ r_2
/// T3: s_1 ~ r_1'
@ -1207,9 +1207,9 @@ namespace Microsoft.Z3
/// (a) When creating the NNF of a positive force quantifier.
/// The quantifier is retained (unless the bound variables are eliminated).
/// Example
/// T1: q ~ q_new
/// T1: q ~ q_new
/// [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
///
///
/// (b) When recursively creating NNF over Boolean formulas, where the top-level
/// connective is changed during NNF conversion. The relevant Boolean connectives
/// for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
@ -1223,7 +1223,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Proof for a (negative) NNF step. Examples:
///
///
/// T1: (not s_1) ~ r_1
/// ...
/// Tn: (not s_n) ~ r_n
@ -1248,9 +1248,9 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// A proof for (~ P Q) where Q is in negation normal form.
///
/// This proof object is only used if the parameter PROOF_MODE is 1.
///
///
/// This proof object is only used if the parameter PROOF_MODE is 1.
///
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
/// </remarks>
public bool IsProofNNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_STAR; } }
@ -1260,8 +1260,8 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// A proof for (~ P Q) where Q is in conjunctive normal form.
/// This proof object is only used if the parameter PROOF_MODE is 1.
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
/// This proof object is only used if the parameter PROOF_MODE is 1.
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
/// </remarks>
public bool IsProofCNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_CNF_STAR; } }
@ -1269,11 +1269,11 @@ namespace Microsoft.Z3
/// Indicates whether the term is a proof for a Skolemization step
/// </summary>
/// <remarks>
/// Proof for:
///
/// Proof for:
///
/// [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
/// [sk]: (~ (exists x (p x y)) (p (sk y) y))
///
///
/// This proof object has no antecedents.
/// </remarks>
public bool IsProofSkolemize { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }
@ -1285,7 +1285,7 @@ namespace Microsoft.Z3
/// Modus ponens style rule for equi-satisfiability.
/// T1: p
/// T2: (~ p q)
/// [mp~ T1 T2]: q
/// [mp~ T1 T2]: q
/// </remarks>
public bool IsProofModusPonensOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }
@ -1294,15 +1294,15 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Generic proof for theory lemmas.
///
///
/// The theory lemma function comes with one or more parameters.
/// The first parameter indicates the name of the theory.
/// For the theory of arithmetic, additional parameters provide hints for
/// checking the theory lemma.
/// checking the theory lemma.
/// The hints for arithmetic are:
/// - farkas - followed by rational coefficients. Multiply the coefficients to the
/// inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
/// - triangle-eq - Indicates a lemma related to the equivalence:
/// - triangle-eq - Indicates a lemma related to the equivalence:
/// (iff (= t1 t2) (and (&lt;= t1 t2) (&lt;= t2 t1)))
/// - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
/// </remarks>
@ -1318,7 +1318,7 @@ namespace Microsoft.Z3
get
{
return (Native.Z3_is_app(Context.nCtx, NativeObject) != 0 &&
Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
Native.Z3_get_sort_kind(Context.nCtx, Native.Z3_get_sort(Context.nCtx, NativeObject))
== (uint)Z3_sort_kind.Z3_RELATION_SORT);
}
}
@ -1328,7 +1328,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Insert a record into a relation.
/// The function takes <c>n+1</c> arguments, where the first argument is the relation and the remaining <c>n</c> elements
/// The function takes <c>n+1</c> arguments, where the first argument is the relation and the remaining <c>n</c> elements
/// correspond to the <c>n</c> columns of the relation.
/// </remarks>
public bool IsRelationStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }
@ -1349,7 +1349,7 @@ namespace Microsoft.Z3
public bool IsRelationalJoin { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }
/// <summary>
/// Indicates whether the term is the union or convex hull of two relations.
/// Indicates whether the term is the union or convex hull of two relations.
/// </summary>
/// <remarks>The function takes two arguments.</remarks>
public bool IsRelationUnion { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }
@ -1371,7 +1371,7 @@ namespace Microsoft.Z3
/// </summary>
/// <remarks>
/// Filter (restrict) a relation with respect to a predicate.
/// The first argument is a relation.
/// The first argument is a relation.
/// The second argument is a predicate with free de-Brujin indices
/// corresponding to the columns of the relation.
/// So the first column in the relation has index 0.
@ -1385,9 +1385,9 @@ namespace Microsoft.Z3
/// Intersect the first relation with respect to negation
/// of the second relation (the function takes two arguments).
/// Logically, the specification can be described by a function
///
///
/// target = filter_by_negation(pos, neg, columns)
///
///
/// where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
/// target are elements in x in pos, such that there is no y in neg that agrees with
/// x on the columns c1, d1, .., cN, dN.
@ -1397,7 +1397,7 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is the renaming of a column in a relation
/// </summary>
/// <remarks>
/// <remarks>
/// The function takes one argument.
/// The parameters contain the renaming as a cycle.
/// </remarks>
@ -1422,10 +1422,10 @@ namespace Microsoft.Z3
/// Indicates whether the term is a relational clone (copy)
/// </summary>
/// <remarks>
/// Create a fresh copy (clone) of a relation.
/// Create a fresh copy (clone) of a relation.
/// The function is logically the identity, but
/// in the context of a register machine allows
/// for terms of kind <seealso cref="IsRelationUnion"/>
/// in the context of a register machine allows
/// for terms of kind <seealso cref="IsRelationUnion"/>
/// to perform destructive updates to the first argument.
/// </remarks>
public bool IsRelationClone { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }
@ -1481,11 +1481,11 @@ namespace Microsoft.Z3
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
/// </summary>
public bool IsFPRMRoundNearestTiesToEven{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }
/// <summary>
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
/// </summary>
public bool IsFPRMRoundNearestTiesToAway{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
public bool IsFPRMRoundNearestTiesToAway{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
/// <summary>
/// Indicates whether the term is the floating-point rounding numeral roundTowardNegative
@ -1506,11 +1506,11 @@ namespace Microsoft.Z3
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToEven
/// </summary>
public bool IsFPRMExprRNE{ get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN; } }
/// <summary>
/// Indicates whether the term is the floating-point rounding numeral roundNearestTiesToAway
/// </summary>
public bool IsFPRMExprRNA { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
public bool IsFPRMExprRNA { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY; } }
/// <summary>
/// Indicates whether the term is the floating-point rounding numeral roundTowardNegative
@ -1530,9 +1530,9 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is a floating-point rounding mode numeral
/// </summary>
public bool IsFPRMExpr {
get {
return IsApp &&
public bool IsFPRMExpr {
get {
return IsApp &&
(FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN ||
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_POSITIVE ||
@ -1540,7 +1540,7 @@ namespace Microsoft.Z3
FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_RM_TOWARD_ZERO);
}
}
/// <summary>
/// Indicates whether the term is a floating-point +oo
/// </summary>
@ -1586,7 +1586,7 @@ namespace Microsoft.Z3
/// Indicates whether the term is a floating-point multiplication term
/// </summary>
public bool IsFPMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MUL; } }
/// <summary>
/// Indicates whether the term is a floating-point divison term
/// </summary>
@ -1680,12 +1680,12 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is a floating-point isNegative predicate term
/// </summary>
public bool IsFPisNegative { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NEGATIVE; } }
public bool IsFPisNegative { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_NEGATIVE; } }
/// <summary>
/// Indicates whether the term is a floating-point isPositive predicate term
/// </summary>
public bool IsFPisPositive { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_POSITIVE; } }
public bool IsFPisPositive { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_IS_POSITIVE; } }
/// <summary>
/// Indicates whether the term is a floating-point constructor term
@ -1715,7 +1715,7 @@ namespace Microsoft.Z3
/// <summary>
/// Indicates whether the term is a floating-point conversion to real term
/// </summary>
public bool IsFPToReal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_REAL; } }
public bool IsFPToReal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_TO_REAL; } }
/// <summary>
@ -1761,8 +1761,8 @@ namespace Microsoft.Z3
#endregion
#region Internal
/// <summary>
/// Constructor for Expr
/// <summary>
/// Constructor for Expr
/// </summary>
internal protected Expr(Context ctx, IntPtr obj) : base(ctx, obj) { Contract.Requires(ctx != null); }