3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

a version with less pointers: got a conflict

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2024-08-21 17:40:32 -10:00 committed by Lev Nachmanson
parent 5a36e02c58
commit 52653e6e43
7 changed files with 181 additions and 74 deletions

View file

@ -12,6 +12,14 @@ namespace lp {
class term_o:public lar_term { class term_o:public lar_term {
mpq m_c; mpq m_c;
public: public:
term_o clone() const {
term_o ret;
for (const auto & p: *this) {
ret.add_monomial(p.coeff(), p.j());
}
ret.c() = c();
return ret;
}
const mpq& c() const { return m_c; } const mpq& c() const { return m_c; }
mpq& c() { return m_c; } mpq& c() { return m_c; }
term_o():m_c(0) {} term_o():m_c(0) {}
@ -32,7 +40,11 @@ namespace lp {
} }
}; };
std::ostream& print_term(term_o const& term, std::ostream& out, const std::string & var_prefix) const { std::ostream& print_lar_term_L(lar_term & t, std::ostream & out) const {
return print_linear_combination_customized(t.coeffs_as_vector(), [](int j)->std::string {return "y"+std::to_string(j);}, out );
}
std::ostream& print_term_o(term_o const& term, std::ostream& out, const std::string & var_prefix) const {
if (term.size() == 0) { if (term.size() == 0) {
out << "0"; out << "0";
return out; return out;
@ -57,8 +69,13 @@ namespace lp {
out << var_prefix << p.j(); out << var_prefix << p.j();
} }
if (!term.c().is_zero()) if (!term.c().is_zero()) {
out << " + " << term.c(); if (term.c().is_pos())
out << " + " << term.c();
else
out << " - " << -term.c();
}
return out; return out;
} }
@ -67,19 +84,19 @@ namespace lp {
e is an equation and is a linear combination of variables from L e is an equation and is a linear combination of variables from L
*/ */
struct eprime_pair { struct eprime_pair {
term_o * m_e; term_o m_e;
lar_term * m_l; lar_term m_l;
}; };
vector<eprime_pair> m_eprime; vector<eprime_pair> m_eprime;
/* /*
Let L be a set of variables disjoint from X, and let λ be a mapping from variables in Let L be a set of variables disjoint from X, and let λ be a mapping from variables in
L to linear combinations of variables in X and of integer constants L to linear combinations of variables in X and of integer constants
*/ */
u_map<unsigned> m_lambda; // maps to the index of the term in m_eprime u_map<unsigned> m_lambda; // maps to the index of the eprime_pair in m_eprime
/* let σ be a partial mapping from variables in L united with X to linear combinations /* let σ be a partial mapping from variables in L united with X to linear combinations
of variables in X and of integer constants showing the substitutions of variables in X and of integer constants showing the substitutions
*/ */
u_map<lar_term*> m_sigma; u_map<term_o> m_sigma;
public: public:
int_solver& lia; int_solver& lia;
@ -90,20 +107,13 @@ namespace lp {
std::list<unsigned> m_f; // F = {λ(t):t in m_f} std::list<unsigned> m_f; // F = {λ(t):t in m_f}
// set S // set S
std::list<unsigned> m_s; // S = {λ(t): t in m_s} std::list<unsigned> m_s; // S = {λ(t): t in m_s}
unsigned m_conflict_index = -1; // m_eprime[m_conflict_index] gives the conflict
imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) { imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) {
m_last_fresh_x_var = -1; m_last_fresh_x_var = -1;
} }
bool belongs_to_list(term_o* t, std::list<term_o*> l) {
for (auto& item : l) {
if (item == t) {
return true;
}
}
return false;
}
void init() { void init() {
unsigned n_of_rows = static_cast<unsigned>(lra.r_basis().size()); unsigned n_of_rows = static_cast<unsigned>(lra.r_basis().size());
unsigned skipped = 0; unsigned skipped = 0;
@ -122,31 +132,32 @@ namespace lp {
} }
if (all_vars_are_int) { if (all_vars_are_int) {
term_o* t = new term_o(); term_o t;
const auto lcm = get_denominators_lcm(row); const auto lcm = get_denominators_lcm(row);
for (const auto & p: row) { for (const auto & p: row) {
t->add_monomial(lcm * p.coeff(), p.var()); t.add_monomial(lcm * p.coeff(), p.var());
if(lia.is_fixed(p.var())) { if(lia.is_fixed(p.var())) {
t->c() += lia.lower_bound(p.var()).x; t.c() += lia.lower_bound(p.var()).x;
} }
} }
unsigned lvar = static_cast<unsigned>(m_f.size()); unsigned lvar = static_cast<unsigned>(m_f.size());
lar_term* lt = new lar_term(); lar_term lt = lar_term(lvar);
lt->add_var(lvar);
eprime_pair pair = {t, lt}; eprime_pair pair = {t, lt};
m_eprime.push_back(pair); m_eprime.push_back(pair);
m_lambda.insert(lvar, lvar); m_lambda.insert(lvar, lvar);
m_f.push_back(lvar); m_f.push_back(lvar);
} }
} }
} }
// returns true if no conflict is found and false otherwise // returns true if no conflict is found and false otherwise
bool normalize_e_by_gcd(term_o& e) { bool normalize_e_by_gcd(eprime_pair& ep) {
mpq g(0); mpq g(0);
for (auto & p : e) { TRACE("dioph_eq", print_term_o(ep.m_e, tout << "m_e:", "x") << std::endl;
print_lar_term_L(ep.m_l, tout << "m_l:") << std::endl;
);
for (auto & p : ep.m_e) {
if (g.is_zero()) { if (g.is_zero()) {
g = abs(p.coeff()); g = abs(p.coeff());
} else { } else {
@ -158,20 +169,38 @@ namespace lp {
} }
if (g.is_one()) if (g.is_one())
return true; return true;
std::cout << "reached\n"; mpq new_c = ep.m_e.c() / g;
e.c() *= (1/g); if (new_c.is_int() == false) {
if (!e.c().is_int()) {
// conlict: todo - collect the conflict // conlict: todo - collect the conflict
NOT_IMPLEMENTED_YET(); TRACE("dioph_eq",
print_term_o(ep.m_e, tout << "conflict m_e:", "x") << std::endl;
tout << "g:" << g << std::endl;
print_lar_term_L(ep.m_l, tout << "m_l:") << std::endl;
for (const auto & p: ep.m_l) {
tout << p.coeff() << "("; print_term_o(m_eprime[p.j()].m_e, tout, "x") << ")"<< std::endl;
}
tout << "S:\n";
for (const auto& t : m_sigma) {
tout << "x" << t.m_key << " -> ";
print_term_o(t.m_value, tout, "x") << std::endl;
}
);
return false; return false;
} else {
for (auto& p: ep.m_e.coeffs()) {
p.m_value /= g;
}
ep.m_e.c() = new_c;
ep.m_l *= (1/g);
} }
return true; return true;
} }
// returns true if no conflict is found and false otherwise // returns true if no conflict is found and false otherwise
bool normalize_by_gcd() { bool normalize_by_gcd() {
for (unsigned l: m_f) { for (unsigned l: m_f) {
term_o* e = m_eprime[l].m_e; if (!normalize_e_by_gcd(m_eprime[l])) {
if (!normalize_e_by_gcd(*e)) { m_conflict_index = l;
return false; return false;
} }
} }
@ -191,50 +220,69 @@ namespace lp {
return m_f.begin(); // TODO: make a smarter joice return m_f.begin(); // TODO: make a smarter joice
} }
void substitute(unsigned k, term_o* s) { void substitute_var_on_f(unsigned k, int k_sign, const term_o& k_subst, const lar_term& l_term) {
print_term(*s, std::cout<< k<< "->", "x") << std::endl; TRACE("dioph_eq", print_term_o(k_subst, tout<< k<< "->", "x") << std::endl;);
for (unsigned e_index: m_f) { for (unsigned e_index: m_f) {
term_o* e = m_eprime[e_index].m_e; term_o& e = m_eprime[e_index].m_e;
if (!e->contains(k)) continue; if (!e.contains(k)) continue;
print_term(*e, std::cout << "before:", "x") << std::endl; const mpq& k_coeff = e.get_coeff(k);
e->substitute(*s, k); TRACE("dioph_eq", print_term_o(e, tout << "before:", "x") << std::endl;
print_term(*e, std::cout << "after :", "x") << std::endl; tout << "k_coeff:" << k_coeff << std::endl;);
m_eprime[e_index].m_l = k_sign*k_coeff*l_term + lar_term(e_index); // m_l is set to k_sign*e + e_sub
e.substitute(k_subst, k);
TRACE("dioph_eq", print_term_o(e, tout << "after :", "x") << std::endl;
print_lar_term_L(m_eprime[e_index].m_l, tout) << std::endl;);
} }
} }
std::tuple<mpq, unsigned, int> find_minimal_abs_coeff(const term_o& eh) const {
bool first = true;
mpq ahk;
unsigned k;
int k_sign;
mpq t;
for (auto& p : eh) {
t = abs(p.coeff());
if (first || t < ahk) {
ahk = t;
k_sign = p.coeff().is_pos() ? 1 : -1;
k = p.j();
if (ahk.is_one())
break;
first = false;
}
}
return std::make_tuple(ahk, k, k_sign);
}
term_o get_term_to_subst(const term_o& eh, unsigned k, int k_sign) {
term_o t;
for (const auto & p: eh) {
if (p.j() == k) continue;
t.add_monomial(-k_sign*p.coeff(), p.j());
}
t.c() = eh.c();
TRACE("dioph_eq", tout << "subst_term:"; print_term_o(t, tout, "x") << std::endl;);
return t;
}
// this is the step 6 or 7 of the algorithm // this is the step 6 or 7 of the algorithm
void rewrite_eqs() { void rewrite_eqs() {
auto eh_it = pick_eh(); auto eh_it = pick_eh();
auto eprime_entry = m_eprime[*eh_it]; auto eprime_entry = m_eprime[*eh_it];
std TRACE("dioph_eq", tout << "eprime_entry[" << *eh_it << "]{\n";
term_o* eh = m_eprime[*eh_it].m_e; print_term_o(m_eprime[*eh_it].m_e, tout << "\tm_e:", "x") << "," << std::endl;
print_lar_term_L(m_eprime[*eh_it].m_l, tout<< "\tm_l:") << "\n}"<< std::endl;);
// looking for minimal in absolute value coefficient
bool first = true; term_o& eh = m_eprime[*eh_it].m_e;
mpq ahk; auto [ahk, k, k_sign] = find_minimal_abs_coeff(eh);
unsigned k;
int k_sign;
for (auto& p: *eh) {
if (first || abs(p.coeff()) < ahk) {
ahk = abs(p.coeff());
k_sign = p.coeff().is_pos()? 1:-1;
k = p.j();
if (ahk.is_one())
break;
first = false;
}
}
if (ahk.is_one()) { if (ahk.is_one()) {
// step 6 // step 6
term_o *s_term = new term_o();
s_term->j() = k; // keep the assigned variable in m_j of the term
for (auto& p:*eh) {
if (p.j() == k) continue;
s_term->add_monomial(-k_sign*p.coeff(), p.j());
}
m_s.push_back(*eh_it); m_s.push_back(*eh_it);
m_f.erase(eh_it); m_f.erase(eh_it);
m_sigma.insert(k, s_term); term_o t = get_term_to_subst(eh, k, k_sign);
substitute(k, s_term); m_sigma.insert(k, t);
substitute_var_on_f(k, k_sign, t, eprime_entry.m_l) ;
} else { } else {
// step 7 // step 7
// the fresh variable // the fresh variable
@ -244,7 +292,21 @@ namespace lp {
} }
} }
void explain(lp::explanation& ex) {
auto & ep = m_eprime[m_conflict_index];
for (const auto & p : ep.m_l) {
remove_fresh_variables(m_eprime[p.j()].m_e);
}
u_dependency* dep = nullptr;
for (const auto & p : ep.m_l) {
if (lra.column_is_fixed(p.j())) {
lra.explain_fixed_column(p.j(), ex);
}
}
}
void remove_fresh_variables(term_o& t) {
// TODO implement
}
}; };
// Constructor definition // Constructor definition
dioph_eq::dioph_eq(int_solver& lia): lia(lia) { dioph_eq::dioph_eq(int_solver& lia): lia(lia) {
@ -255,8 +317,10 @@ namespace lp {
} }
lia_move dioph_eq::check() { lia_move dioph_eq::check() {
return m_imp->check(); return m_imp->check();
}
void dioph_eq::explain(lp::explanation& ex) {
m_imp->explain(ex);
} }
} }

View file

@ -29,5 +29,6 @@ namespace lp {
dioph_eq(int_solver& lia); dioph_eq(int_solver& lia);
~dioph_eq(); ~dioph_eq();
lia_move check(); lia_move check();
void explain(lp::explanation&);
}; };
} }

View file

@ -166,7 +166,14 @@ namespace lp {
lia_move solve_dioph_eq() { lia_move solve_dioph_eq() {
dioph_eq de(lia); dioph_eq de(lia);
de.check(); lia_move r = de.check();
if (r == lia_move::unsat) {
de.explain(*this->m_ex);
} else if (r == lia_move::sat) {
NOT_IMPLEMENTED_YET();
}
return lia_move::undef; return lia_move::undef;
} }

View file

@ -760,6 +760,13 @@ namespace lp {
} }
void lar_solver::explain_fixed_column(unsigned j, explanation& ex) {
SASSERT(column_is_fixed(j));
auto* deps = get_bound_constraint_witnesses_for_column(j);
for (auto ci : flatten(deps))
ex.push_back(ci);
}
void lar_solver::remove_fixed_vars_from_base() { void lar_solver::remove_fixed_vars_from_base() {
// this will allow to disable and restore the tracking of the touched rows // this will allow to disable and restore the tracking of the touched rows
flet<indexed_uint_set*> f(m_mpq_lar_core_solver.m_r_solver.m_touched_rows, nullptr); flet<indexed_uint_set*> f(m_mpq_lar_core_solver.m_r_solver.m_touched_rows, nullptr);

View file

@ -591,6 +591,7 @@ public:
} }
return dep; return dep;
} }
void explain_fixed_column(unsigned j, explanation& ex);
u_dependency* join_deps(u_dependency* a, u_dependency *b) { return m_dependencies.mk_join(a, b); } u_dependency* join_deps(u_dependency* a, u_dependency *b) { return m_dependencies.mk_join(a, b); }
inline constraint_set const& constraints() const { return m_constraints; } inline constraint_set const& constraints() const { return m_constraints; }
void push(); void push();

View file

@ -118,6 +118,12 @@ public:
m_coeffs.erase(j); m_coeffs.erase(j);
} }
const mpq & get_coeff(unsigned j) const {
auto* it = m_coeffs.find_core(j);
SASSERT(it != nullptr);
return it->get_data().m_value;
}
// the monomial ax[j] is substituted by ax[k] // the monomial ax[j] is substituted by ax[k]
void subst_index(unsigned j, unsigned k) { void subst_index(unsigned j, unsigned k) {
auto* it = m_coeffs.find_core(j); auto* it = m_coeffs.find_core(j);
@ -145,6 +151,33 @@ public:
return ret; return ret;
} }
lar_term clone() const {
lar_term ret;
for (const auto& p : *this) {
ret.add_monomial(p.coeff(), p.j());
}
return ret;
}
lar_term operator+(const lar_term& other) const {
lar_term ret = other.clone();
for (const auto& p : *this) {
ret.add_monomial(p.coeff(), p.j());
}
return ret;
}
friend lar_term operator*(const mpq& k, const lar_term& term) {
lar_term result;
for (const auto& p : term) {
result.add_monomial(p.coeff()*k, p.j());
}
return result;
}
lar_term& operator*=(mpq const& k) { lar_term& operator*=(mpq const& k) {
for (auto & t : m_coeffs) for (auto & t : m_coeffs)
t.m_value *= k; t.m_value *= k;

View file

@ -273,13 +273,7 @@ public:
} }
return base; return base;
} }
void explain_fixed_column(unsigned j, explanation& ex) {
SASSERT(column_is_fixed(j));
auto* deps = lp().get_bound_constraint_witnesses_for_column(j);
for (auto ci : lp().flatten(deps))
ex.push_back(ci);
}
#ifdef Z3DEBUG #ifdef Z3DEBUG
bool all_fixed_in_row(unsigned row) const { bool all_fixed_in_row(unsigned row) const {
for (const auto& c : lp().get_row(row)) for (const auto& c : lp().get_row(row))