3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-25 20:46:01 +00:00

pull unstable

Signed-off-by: Nikolaj Bjorner <nbjorner@hotmail.com>
This commit is contained in:
Nikolaj Bjorner 2015-04-01 14:57:11 -07:00
commit 52619b9dbb
337 changed files with 24943 additions and 30606 deletions

View file

@ -24,31 +24,31 @@ Revision History:
ast_manager& m = result.get_manager();
uint64 v1, v2;
switch(f->get_decl_kind()) {
case datalog::OP_DL_LT:
if (m_util.is_numeral_ext(args[0], v1) &&
m_util.is_numeral_ext(args[1], v2)) {
result = (v1 < v2)?m.mk_true():m.mk_false();
return BR_DONE;
}
// x < x <=> false
if (args[0] == args[1]) {
result = m.mk_false();
return BR_DONE;
}
// x < 0 <=> false
if (m_util.is_numeral_ext(args[1], v2) && v2 == 0) {
result = m.mk_false();
return BR_DONE;
}
// 0 < x <=> 0 != x
if (m_util.is_numeral_ext(args[1], v1) && v1 == 0) {
result = m.mk_not(m.mk_eq(args[0], args[1]));
return BR_DONE;
}
break;
case datalog::OP_DL_LT:
if (m_util.is_numeral_ext(args[0], v1) &&
m_util.is_numeral_ext(args[1], v2)) {
result = (v1 < v2)?m.mk_true():m.mk_false();
return BR_DONE;
}
// x < x <=> false
if (args[0] == args[1]) {
result = m.mk_false();
return BR_DONE;
}
// x < 0 <=> false
if (m_util.is_numeral_ext(args[1], v2) && v2 == 0) {
result = m.mk_false();
return BR_DONE;
}
// 0 < x <=> 0 != x
if (m_util.is_numeral_ext(args[1], v1) && v1 == 0) {
result = m.mk_not(m.mk_eq(args[0], args[1]));
return BR_DONE;
}
break;
default:
break;
default:
break;
}
return BR_FAILED;
}

View file

@ -1,556 +0,0 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
float_rewriter.cpp
Abstract:
Basic rewriting rules for floating point numbers.
Author:
Leonardo (leonardo) 2012-02-02
Notes:
--*/
#include"float_rewriter.h"
float_rewriter::float_rewriter(ast_manager & m, params_ref const & p):
m_util(m) {
updt_params(p);
}
float_rewriter::~float_rewriter() {
}
void float_rewriter::updt_params(params_ref const & p) {
}
void float_rewriter::get_param_descrs(param_descrs & r) {
}
br_status float_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = BR_FAILED;
SASSERT(f->get_family_id() == get_fid());
switch (f->get_decl_kind()) {
case OP_TO_FLOAT: st = mk_to_fp(f, num_args, args, result); break;
case OP_FLOAT_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break;
case OP_FLOAT_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break;
case OP_FLOAT_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break;
case OP_FLOAT_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break;
case OP_FLOAT_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break;
case OP_FLOAT_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break;
case OP_FLOAT_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break;
case OP_FLOAT_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break;
case OP_FLOAT_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break;
case OP_FLOAT_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break;
case OP_FLOAT_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break;
case OP_FLOAT_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round(args[0], args[1], result); break;
case OP_FLOAT_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break;
case OP_FLOAT_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break;
case OP_FLOAT_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break;
case OP_FLOAT_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break;
case OP_FLOAT_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break;
case OP_FLOAT_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break;
case OP_FLOAT_IS_NZERO: SASSERT(num_args == 1); st = mk_is_nzero(args[0], result); break;
case OP_FLOAT_IS_PZERO: SASSERT(num_args == 1); st = mk_is_pzero(args[0], result); break;
case OP_FLOAT_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break;
case OP_FLOAT_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break;
case OP_FLOAT_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break;
case OP_FLOAT_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break;
case OP_FLOAT_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break;
case OP_FLOAT_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break;
case OP_FLOAT_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(args[0], result); break;
case OP_FLOAT_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break;
case OP_FLOAT_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(args[0], args[1], result); break;
case OP_FLOAT_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(args[0], args[1], result); break;
case OP_FLOAT_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break;
}
return st;
}
br_status float_rewriter::mk_to_fp(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_num_parameters() == 2);
SASSERT(f->get_parameter(0).is_int());
SASSERT(f->get_parameter(1).is_int());
unsigned ebits = f->get_parameter(0).get_int();
unsigned sbits = f->get_parameter(1).get_int();
if (num_args == 2) {
mpf_rounding_mode rm;
if (!m_util.is_rm_value(args[0], rm))
return BR_FAILED;
rational q;
mpf q_mpf;
if (m_util.au().is_numeral(args[1], q)) {
TRACE("fp_rewriter", tout << "q: " << q << std::endl; );
mpf v;
m_util.fm().set(v, ebits, sbits, rm, q.to_mpq());
result = m_util.mk_value(v);
m_util.fm().del(v);
// TRACE("fp_rewriter", tout << "result: " << result << std::endl; );
return BR_DONE;
}
else if (m_util.is_value(args[1], q_mpf)) {
TRACE("fp_rewriter", tout << "q: " << m_util.fm().to_string(q_mpf) << std::endl; );
mpf v;
m_util.fm().set(v, ebits, sbits, rm, q_mpf);
result = m_util.mk_value(v);
m_util.fm().del(v);
// TRACE("fp_rewriter", tout << "result: " << result << std::endl; );
return BR_DONE;
}
else
return BR_FAILED;
}
else if (num_args == 3 &&
m_util.is_rm(args[0]) &&
m_util.au().is_real(args[1]) &&
m_util.au().is_int(args[2])) {
mpf_rounding_mode rm;
if (!m_util.is_rm_value(args[0], rm))
return BR_FAILED;
rational q;
if (!m_util.au().is_numeral(args[1], q))
return BR_FAILED;
rational e;
if (!m_util.au().is_numeral(args[2], e))
return BR_FAILED;
TRACE("fp_rewriter", tout << "q: " << q << ", e: " << e << "\n";);
mpf v;
m_util.fm().set(v, ebits, sbits, rm, q.to_mpq(), e.to_mpq().numerator());
result = m_util.mk_value(v);
m_util.fm().del(v);
return BR_DONE;
}
else {
return BR_FAILED;
}
}
br_status float_rewriter::mk_add(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm()), v3(m_util.fm());
if (m_util.is_value(arg2, v2) && m_util.is_value(arg3, v3)) {
scoped_mpf t(m_util.fm());
m_util.fm().add(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status float_rewriter::mk_sub(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
// a - b = a + (-b)
result = m_util.mk_add(arg1, arg2, m_util.mk_neg(arg3));
return BR_REWRITE2;
}
br_status float_rewriter::mk_mul(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm()), v3(m_util.fm());
if (m_util.is_value(arg2, v2) && m_util.is_value(arg3, v3)) {
scoped_mpf t(m_util.fm());
m_util.fm().mul(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status float_rewriter::mk_div(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm()), v3(m_util.fm());
if (m_util.is_value(arg2, v2) && m_util.is_value(arg3, v3)) {
scoped_mpf t(m_util.fm());
m_util.fm().div(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status float_rewriter::mk_neg(expr * arg1, expr_ref & result) {
if (m_util.is_nan(arg1)) {
// -nan --> nan
result = arg1;
return BR_DONE;
}
if (m_util.is_plus_inf(arg1)) {
// - +oo --> -oo
result = m_util.mk_minus_inf(m().get_sort(arg1));
return BR_DONE;
}
if (m_util.is_minus_inf(arg1)) {
// - -oo -> +oo
result = m_util.mk_plus_inf(m().get_sort(arg1));
return BR_DONE;
}
if (m_util.is_neg(arg1)) {
// - - a --> a
result = to_app(arg1)->get_arg(0);
return BR_DONE;
}
scoped_mpf v1(m_util.fm());
if (m_util.is_value(arg1, v1)) {
m_util.fm().neg(v1);
result = m_util.mk_value(v1);
return BR_DONE;
}
// TODO: more simplifications
return BR_FAILED;
}
br_status float_rewriter::mk_rem(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_util.fm()), v2(m_util.fm());
if (m_util.is_value(arg1, v1) && m_util.is_value(arg2, v2)) {
scoped_mpf t(m_util.fm());
m_util.fm().rem(v1, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_abs(expr * arg1, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg1;
return BR_DONE;
}
result = m().mk_ite(m_util.mk_is_sign_minus(arg1),
m_util.mk_neg(arg1),
arg1);
return BR_REWRITE2;
}
br_status float_rewriter::mk_min(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg2;
return BR_DONE;
}
if (m_util.is_nan(arg2)) {
result = arg1;
return BR_DONE;
}
// expand as using ite's
result = m().mk_ite(m().mk_or(mk_eq_nan(arg1), m().mk_and(m_util.mk_is_zero(arg1), m_util.mk_is_zero(arg2))),
arg2,
m().mk_ite(mk_eq_nan(arg2),
arg1,
m().mk_ite(m_util.mk_lt(arg1, arg2),
arg1,
arg2)));
return BR_REWRITE_FULL;
}
br_status float_rewriter::mk_max(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg2;
return BR_DONE;
}
if (m_util.is_nan(arg2)) {
result = arg1;
return BR_DONE;
}
// expand as using ite's
result = m().mk_ite(m().mk_or(mk_eq_nan(arg1), m().mk_and(m_util.mk_is_zero(arg1), m_util.mk_is_zero(arg2))),
arg2,
m().mk_ite(mk_eq_nan(arg2),
arg1,
m().mk_ite(m_util.mk_gt(arg1, arg2),
arg1,
arg2)));
return BR_REWRITE_FULL;
}
br_status float_rewriter::mk_fma(expr * arg1, expr * arg2, expr * arg3, expr * arg4, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm()), v3(m_util.fm()), v4(m_util.fm());
if (m_util.is_value(arg2, v2) && m_util.is_value(arg3, v3) && m_util.is_value(arg4, v4)) {
scoped_mpf t(m_util.fm());
m_util.fm().fused_mul_add(rm, v2, v3, v4, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status float_rewriter::mk_sqrt(expr * arg1, expr * arg2, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm());
if (m_util.is_value(arg2, v2)) {
scoped_mpf t(m_util.fm());
m_util.fm().sqrt(rm, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status float_rewriter::mk_round(expr * arg1, expr * arg2, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_value(arg1, rm)) {
scoped_mpf v2(m_util.fm());
if (m_util.is_value(arg2, v2)) {
scoped_mpf t(m_util.fm());
m_util.fm().round_to_integral(rm, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
// This the floating point theory ==
br_status float_rewriter::mk_float_eq(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_util.fm()), v2(m_util.fm());
if (m_util.is_value(arg1, v1) && m_util.is_value(arg2, v2)) {
result = (m_util.fm().eq(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
// Return (= arg NaN)
app * float_rewriter::mk_eq_nan(expr * arg) {
return m().mk_eq(arg, m_util.mk_nan(m().get_sort(arg)));
}
// Return (not (= arg NaN))
app * float_rewriter::mk_neq_nan(expr * arg) {
return m().mk_not(mk_eq_nan(arg));
}
br_status float_rewriter::mk_lt(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1) || m_util.is_nan(arg2)) {
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_minus_inf(arg1)) {
// -oo < arg2 --> not(arg2 = -oo) and not(arg2 = NaN)
result = m().mk_and(m().mk_not(m().mk_eq(arg2, arg1)), mk_neq_nan(arg2));
return BR_REWRITE3;
}
if (m_util.is_minus_inf(arg2)) {
// arg1 < -oo --> false
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_plus_inf(arg1)) {
// +oo < arg2 --> false
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_plus_inf(arg2)) {
// arg1 < +oo --> not(arg1 = +oo) and not(arg1 = NaN)
result = m().mk_and(m().mk_not(m().mk_eq(arg1, arg2)), mk_neq_nan(arg1));
return BR_REWRITE3;
}
scoped_mpf v1(m_util.fm()), v2(m_util.fm());
if (m_util.is_value(arg1, v1) && m_util.is_value(arg2, v2)) {
result = (m_util.fm().lt(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
// TODO: more simplifications
return BR_FAILED;
}
br_status float_rewriter::mk_gt(expr * arg1, expr * arg2, expr_ref & result) {
result = m_util.mk_lt(arg2, arg1);
return BR_REWRITE1;
}
br_status float_rewriter::mk_le(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1) || m_util.is_nan(arg2)) {
result = m().mk_false();
return BR_DONE;
}
scoped_mpf v1(m_util.fm()), v2(m_util.fm());
if (m_util.is_value(arg1, v1) && m_util.is_value(arg2, v2)) {
result = (m_util.fm().le(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_ge(expr * arg1, expr * arg2, expr_ref & result) {
result = m_util.mk_le(arg2, arg1);
return BR_REWRITE1;
}
br_status float_rewriter::mk_is_zero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_zero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_nzero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_nzero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_pzero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_pzero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_nan(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_nan(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_inf(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_inf(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_normal(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_normal(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_subnormal(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_denormal(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_negative(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_neg(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_is_positive(expr * arg1, expr_ref & result) {
scoped_mpf v(m_util.fm());
if (m_util.is_value(arg1, v)) {
result = (m_util.fm().is_neg(v) || m_util.fm().is_nan(v)) ? m().mk_false() : m().mk_true();
return BR_DONE;
}
return BR_FAILED;
}
// This the SMT =
br_status float_rewriter::mk_eq_core(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_util.fm()), v2(m_util.fm());
if (m_util.is_value(arg1, v1) && m_util.is_value(arg2, v2)) {
// Note: == is the floats-equality, here we need normal equality.
result = (m_fm.is_nan(v1) && m_fm.is_nan(v2)) ? m().mk_true() :
(m_fm.is_zero(v1) && m_fm.is_zero(v2) && m_fm.sgn(v1)!=m_fm.sgn(v2)) ? m().mk_false() :
(v1 == v2) ? m().mk_true() :
m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_to_ieee_bv(expr * arg1, expr_ref & result) {
return BR_FAILED;
}
br_status float_rewriter::mk_fp(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
bv_util bu(m());
rational r1, r2, r3;
unsigned bvs1, bvs2, bvs3;
if (bu.is_numeral(arg1, r1, bvs1) && bu.is_numeral(arg2, r2, bvs2) && bu.is_numeral(arg3, r3, bvs3)) {
SASSERT(m_util.fm().mpz_manager().is_one(r2.to_mpq().denominator()));
SASSERT(m_util.fm().mpz_manager().is_one(r3.to_mpq().denominator()));
SASSERT(m_util.fm().mpz_manager().is_int64(r3.to_mpq().numerator()));
scoped_mpf v(m_util.fm());
mpf_exp_t biased_exp = m_util.fm().mpz_manager().get_int64(r2.to_mpq().numerator());
m_util.fm().set(v, bvs2, bvs3 + 1,
r1.is_one(),
r3.to_mpq().numerator(),
m_util.fm().unbias_exp(bvs2, biased_exp));
TRACE("fp_rewriter", tout << "v = " << m_util.fm().to_string(v) << std::endl;);
result = m_util.mk_value(v);
return BR_DONE;
}
return BR_FAILED;
}
br_status float_rewriter::mk_to_ubv(expr * arg1, expr * arg2, expr_ref & result) {
return BR_FAILED;
}
br_status float_rewriter::mk_to_sbv(expr * arg1, expr * arg2, expr_ref & result) {
return BR_FAILED;
}
br_status float_rewriter::mk_to_real(expr * arg1, expr_ref & result) {
return BR_FAILED;
}

View file

@ -0,0 +1,790 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa_rewriter.cpp
Abstract:
Basic rewriting rules for floating point numbers.
Author:
Leonardo (leonardo) 2012-02-02
Notes:
--*/
#include"fpa_rewriter.h"
#include"fpa_rewriter_params.hpp"
fpa_rewriter::fpa_rewriter(ast_manager & m, params_ref const & p) :
m_util(m),
m_fm(m_util.fm()),
m_hi_fp_unspecified(true) {
updt_params(p);
}
fpa_rewriter::~fpa_rewriter() {
}
void fpa_rewriter::updt_params(params_ref const & _p) {
fpa_rewriter_params p(_p);
m_hi_fp_unspecified = p.hi_fp_unspecified();
}
void fpa_rewriter::get_param_descrs(param_descrs & r) {
}
br_status fpa_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
br_status st = BR_FAILED;
SASSERT(f->get_family_id() == get_fid());
fpa_op_kind k = (fpa_op_kind)f->get_decl_kind();
switch (k) {
case OP_FPA_RM_NEAREST_TIES_TO_EVEN:
case OP_FPA_RM_NEAREST_TIES_TO_AWAY:
case OP_FPA_RM_TOWARD_POSITIVE:
case OP_FPA_RM_TOWARD_NEGATIVE:
case OP_FPA_RM_TOWARD_ZERO:
SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;
case OP_FPA_PLUS_INF:
case OP_FPA_MINUS_INF:
case OP_FPA_NAN:
case OP_FPA_PLUS_ZERO:
case OP_FPA_MINUS_ZERO:
SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;
case OP_FPA_NUM:
SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break;
case OP_FPA_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break;
case OP_FPA_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break;
case OP_FPA_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break;
case OP_FPA_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break;
case OP_FPA_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break;
case OP_FPA_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break;
case OP_FPA_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break;
case OP_FPA_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break;
case OP_FPA_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break;
case OP_FPA_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break;
case OP_FPA_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break;
case OP_FPA_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round(args[0], args[1], result); break;
case OP_FPA_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break;
case OP_FPA_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break;
case OP_FPA_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break;
case OP_FPA_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break;
case OP_FPA_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break;
case OP_FPA_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break;
case OP_FPA_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break;
case OP_FPA_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break;
case OP_FPA_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break;
case OP_FPA_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break;
case OP_FPA_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break;
case OP_FPA_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break;
case OP_FPA_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break;
case OP_FPA_TO_FP: st = mk_to_fp(f, num_args, args, result); break;
case OP_FPA_TO_FP_UNSIGNED: SASSERT(num_args == 2); st = mk_to_fp_unsigned(f, args[0], args[1], result); break;
case OP_FPA_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(f, args[0], args[1], result); break;
case OP_FPA_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(f, args[0], args[1], result); break;
case OP_FPA_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break;
case OP_FPA_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(args[0], result); break;
case OP_FPA_INTERNAL_TO_UBV_UNSPECIFIED:
SASSERT(num_args == 0); st = mk_to_ubv_unspecified(f, result); break;
case OP_FPA_INTERNAL_TO_SBV_UNSPECIFIED:
SASSERT(num_args == 0); st = mk_to_sbv_unspecified(f, result); break;
case OP_FPA_INTERNAL_TO_REAL_UNSPECIFIED:
SASSERT(num_args == 0); st = mk_to_real_unspecified(result); break;
case OP_FPA_INTERNAL_BVWRAP:
case OP_FPA_INTERNAL_BVUNWRAP:
st = BR_FAILED;
break;
default:
NOT_IMPLEMENTED_YET();
}
return st;
}
br_status fpa_rewriter::mk_to_ubv_unspecified(func_decl * f, expr_ref & result) {
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_int());
unsigned bv_sz = f->get_parameter(0).get_int();
bv_util bu(m());
if (m_hi_fp_unspecified)
// The "hardware interpretation" is 0.
result = bu.mk_numeral(0, bv_sz);
else
result = m_util.mk_internal_to_real_unspecified();
return BR_DONE;
}
br_status fpa_rewriter::mk_to_sbv_unspecified(func_decl * f, expr_ref & result) {
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_int());
unsigned bv_sz = f->get_parameter(0).get_int();
bv_util bu(m());
if (m_hi_fp_unspecified)
// The "hardware interpretation" is 0.
result = bu.mk_numeral(0, bv_sz);
else
result = m_util.mk_internal_to_real_unspecified();
return BR_DONE;
}
br_status fpa_rewriter::mk_to_real_unspecified(expr_ref & result) {
if (m_hi_fp_unspecified)
result = m_util.au().mk_numeral(0, false);
else
// The "hardware interpretation" is 0.
result = m_util.mk_internal_to_real_unspecified();
return BR_DONE;
}
br_status fpa_rewriter::mk_to_fp(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_num_parameters() == 2);
SASSERT(f->get_parameter(0).is_int());
SASSERT(f->get_parameter(1).is_int());
bv_util bu(m());
scoped_mpf v(m_fm);
mpf_rounding_mode rmv;
rational r1, r2, r3;
unsigned bvs1, bvs2, bvs3;
unsigned ebits = f->get_parameter(0).get_int();
unsigned sbits = f->get_parameter(1).get_int();
if (num_args == 1) {
if (bu.is_numeral(args[0], r1, bvs1)) {
// BV -> float
SASSERT(bvs1 == sbits + ebits);
unsynch_mpz_manager & mpzm = m_fm.mpz_manager();
unsynch_mpq_manager & mpqm = m_fm.mpq_manager();
scoped_mpz sig(mpzm), exp(mpzm);
const mpz & sm1 = m_fm.m_powers2(sbits - 1);
const mpz & em1 = m_fm.m_powers2(ebits);
scoped_mpq q(mpqm);
mpqm.set(q, r1.to_mpq());
SASSERT(mpzm.is_one(q.get().denominator()));
scoped_mpz z(mpzm);
z = q.get().numerator();
mpzm.rem(z, sm1, sig);
mpzm.div(z, sm1, z);
mpzm.rem(z, em1, exp);
mpzm.div(z, em1, z);
SASSERT(mpzm.is_int64(exp));
mpf_exp_t mpf_exp = mpzm.get_int64(exp);
mpf_exp = m_fm.unbias_exp(ebits, mpf_exp);
m_fm.set(v, ebits, sbits, !mpzm.is_zero(z), sig, mpf_exp);
TRACE("fp_rewriter",
tout << "sgn: " << !mpzm.is_zero(z) << std::endl;
tout << "sig: " << mpzm.to_string(sig) << std::endl;
tout << "exp: " << mpf_exp << std::endl;
tout << "v: " << m_fm.to_string(v) << std::endl;);
result = m_util.mk_value(v);
return BR_DONE;
}
}
else if (num_args == 2) {
if (!m_util.is_rm_numeral(args[0], rmv))
return BR_FAILED;
if (m_util.au().is_numeral(args[1], r1)) {
// rm + real -> float
TRACE("fp_rewriter", tout << "r: " << r1 << std::endl;);
scoped_mpf v(m_fm);
m_fm.set(v, ebits, sbits, rmv, r1.to_mpq());
result = m_util.mk_value(v);
// TRACE("fp_rewriter", tout << "result: " << result << std::endl; );
return BR_DONE;
}
else if (m_util.is_numeral(args[1], v)) {
// rm + float -> float
TRACE("fp_rewriter", tout << "v: " << m_fm.to_string(v) << std::endl; );
scoped_mpf vf(m_fm);
m_fm.set(vf, ebits, sbits, rmv, v);
result = m_util.mk_value(vf);
// TRACE("fp_rewriter", tout << "result: " << result << std::endl; );
return BR_DONE;
}
else if (bu.is_numeral(args[1], r1, bvs1)) {
// rm + signed bv -> float
TRACE("fp_rewriter", tout << "r1: " << r1 << std::endl;);
r1 = bu.norm(r1, bvs1, true);
TRACE("fp_rewriter", tout << "r1 norm: " << r1 << std::endl;);
m_fm.set(v, ebits, sbits, rmv, r1.to_mpq());
result = m_util.mk_value(v);
return BR_DONE;
}
}
else if (num_args == 3) {
if (m_util.is_rm_numeral(args[0], rmv) &&
m_util.au().is_real(args[1]) &&
m_util.au().is_int(args[2])) {
// rm + real + int -> float
if (!m_util.is_rm_numeral(args[0], rmv) ||
!m_util.au().is_numeral(args[1], r1) ||
!m_util.au().is_numeral(args[2], r2))
return BR_FAILED;
TRACE("fp_rewriter", tout << "r1: " << r1 << ", r2: " << r2 << "\n";);
m_fm.set(v, ebits, sbits, rmv, r1.to_mpq(), r2.to_mpq().numerator());
result = m_util.mk_value(v);
return BR_DONE;
}
else if (bu.is_numeral(args[0], r1, bvs1) &&
bu.is_numeral(args[1], r2, bvs2) &&
bu.is_numeral(args[2], r3, bvs3)) {
// 3 BV -> float
SASSERT(m_fm.mpz_manager().is_one(r2.to_mpq().denominator()));
SASSERT(m_fm.mpz_manager().is_one(r3.to_mpq().denominator()));
SASSERT(m_fm.mpz_manager().is_int64(r3.to_mpq().numerator()));
mpf_exp_t biased_exp = m_fm.mpz_manager().get_int64(r2.to_mpq().numerator());
m_fm.set(v, bvs2, bvs3 + 1,
r1.is_one(),
r3.to_mpq().numerator(),
m_fm.unbias_exp(bvs2, biased_exp));
TRACE("fp_rewriter", tout << "v = " << m_fm.to_string(v) << std::endl;);
result = m_util.mk_value(v);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_to_fp_unsigned(func_decl * f, expr * arg1, expr * arg2, expr_ref & result) {
SASSERT(f->get_num_parameters() == 2);
SASSERT(f->get_parameter(0).is_int());
SASSERT(f->get_parameter(1).is_int());
bv_util bu(m());
unsigned ebits = f->get_parameter(0).get_int();
unsigned sbits = f->get_parameter(1).get_int();
mpf_rounding_mode rmv;
rational r;
unsigned bvs;
if (m_util.is_rm_numeral(arg1, rmv) &&
bu.is_numeral(arg2, r, bvs)) {
scoped_mpf v(m_fm);
m_fm.set(v, ebits, sbits, rmv, r.to_mpq());
result = m_util.mk_value(v);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_add(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm), v3(m_fm);
if (m_util.is_numeral(arg2, v2) && m_util.is_numeral(arg3, v3)) {
scoped_mpf t(m_fm);
m_fm.add(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_sub(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
// a - b = a + (-b)
result = m_util.mk_add(arg1, arg2, m_util.mk_neg(arg3));
return BR_REWRITE2;
}
br_status fpa_rewriter::mk_mul(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm), v3(m_fm);
if (m_util.is_numeral(arg2, v2) && m_util.is_numeral(arg3, v3)) {
scoped_mpf t(m_fm);
m_fm.mul(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_div(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm), v3(m_fm);
if (m_util.is_numeral(arg2, v2) && m_util.is_numeral(arg3, v3)) {
scoped_mpf t(m_fm);
m_fm.div(rm, v2, v3, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_neg(expr * arg1, expr_ref & result) {
if (m_util.is_nan(arg1)) {
// -nan --> nan
result = arg1;
return BR_DONE;
}
if (m_util.is_pinf(arg1)) {
// - +oo --> -oo
result = m_util.mk_ninf(m().get_sort(arg1));
return BR_DONE;
}
if (m_util.is_ninf(arg1)) {
// - -oo -> +oo
result = m_util.mk_pinf(m().get_sort(arg1));
return BR_DONE;
}
if (m_util.is_neg(arg1)) {
// - - a --> a
result = to_app(arg1)->get_arg(0);
return BR_DONE;
}
scoped_mpf v1(m_fm);
if (m_util.is_numeral(arg1, v1)) {
m_fm.neg(v1);
result = m_util.mk_value(v1);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_rem(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_fm), v2(m_fm);
if (m_util.is_numeral(arg1, v1) && m_util.is_numeral(arg2, v2)) {
scoped_mpf t(m_fm);
m_fm.rem(v1, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_abs(expr * arg1, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg1;
return BR_DONE;
}
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
if (m_fm.is_neg(v)) m_fm.neg(v);
result = m_util.mk_value(v);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_min(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg2;
return BR_DONE;
}
if (m_util.is_nan(arg2)) {
result = arg1;
return BR_DONE;
}
// expand as using ite's
result = m().mk_ite(m().mk_or(mk_eq_nan(arg1), m().mk_and(m_util.mk_is_zero(arg1), m_util.mk_is_zero(arg2))),
arg2,
m().mk_ite(mk_eq_nan(arg2),
arg1,
m().mk_ite(m_util.mk_lt(arg1, arg2),
arg1,
arg2)));
return BR_REWRITE_FULL;
}
br_status fpa_rewriter::mk_max(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1)) {
result = arg2;
return BR_DONE;
}
if (m_util.is_nan(arg2)) {
result = arg1;
return BR_DONE;
}
// expand as using ite's
result = m().mk_ite(m().mk_or(mk_eq_nan(arg1), m().mk_and(m_util.mk_is_zero(arg1), m_util.mk_is_zero(arg2))),
arg2,
m().mk_ite(mk_eq_nan(arg2),
arg1,
m().mk_ite(m_util.mk_gt(arg1, arg2),
arg1,
arg2)));
return BR_REWRITE_FULL;
}
br_status fpa_rewriter::mk_fma(expr * arg1, expr * arg2, expr * arg3, expr * arg4, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm), v3(m_fm), v4(m_fm);
if (m_util.is_numeral(arg2, v2) && m_util.is_numeral(arg3, v3) && m_util.is_numeral(arg4, v4)) {
scoped_mpf t(m_fm);
m_fm.fused_mul_add(rm, v2, v3, v4, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_sqrt(expr * arg1, expr * arg2, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm);
if (m_util.is_numeral(arg2, v2)) {
scoped_mpf t(m_fm);
m_fm.sqrt(rm, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_round(expr * arg1, expr * arg2, expr_ref & result) {
mpf_rounding_mode rm;
if (m_util.is_rm_numeral(arg1, rm)) {
scoped_mpf v2(m_fm);
if (m_util.is_numeral(arg2, v2)) {
scoped_mpf t(m_fm);
m_fm.round_to_integral(rm, v2, t);
result = m_util.mk_value(t);
return BR_DONE;
}
}
return BR_FAILED;
}
// This the floating point theory ==
br_status fpa_rewriter::mk_float_eq(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_fm), v2(m_fm);
if (m_util.is_numeral(arg1, v1) && m_util.is_numeral(arg2, v2)) {
result = (m_fm.eq(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
// Return (= arg NaN)
app * fpa_rewriter::mk_eq_nan(expr * arg) {
return m().mk_eq(arg, m_util.mk_nan(m().get_sort(arg)));
}
// Return (not (= arg NaN))
app * fpa_rewriter::mk_neq_nan(expr * arg) {
return m().mk_not(mk_eq_nan(arg));
}
br_status fpa_rewriter::mk_lt(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1) || m_util.is_nan(arg2)) {
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_ninf(arg1)) {
// -oo < arg2 --> not(arg2 = -oo) and not(arg2 = NaN)
result = m().mk_and(m().mk_not(m().mk_eq(arg2, arg1)), mk_neq_nan(arg2));
return BR_REWRITE3;
}
if (m_util.is_ninf(arg2)) {
// arg1 < -oo --> false
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_pinf(arg1)) {
// +oo < arg2 --> false
result = m().mk_false();
return BR_DONE;
}
if (m_util.is_pinf(arg2)) {
// arg1 < +oo --> not(arg1 = +oo) and not(arg1 = NaN)
result = m().mk_and(m().mk_not(m().mk_eq(arg1, arg2)), mk_neq_nan(arg1));
return BR_REWRITE3;
}
scoped_mpf v1(m_fm), v2(m_fm);
if (m_util.is_numeral(arg1, v1) && m_util.is_numeral(arg2, v2)) {
result = (m_fm.lt(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
// TODO: more simplifications
return BR_FAILED;
}
br_status fpa_rewriter::mk_gt(expr * arg1, expr * arg2, expr_ref & result) {
result = m_util.mk_lt(arg2, arg1);
return BR_REWRITE1;
}
br_status fpa_rewriter::mk_le(expr * arg1, expr * arg2, expr_ref & result) {
if (m_util.is_nan(arg1) || m_util.is_nan(arg2)) {
result = m().mk_false();
return BR_DONE;
}
scoped_mpf v1(m_fm), v2(m_fm);
if (m_util.is_numeral(arg1, v1) && m_util.is_numeral(arg2, v2)) {
result = (m_fm.le(v1, v2)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_ge(expr * arg1, expr * arg2, expr_ref & result) {
result = m_util.mk_le(arg2, arg1);
return BR_REWRITE1;
}
br_status fpa_rewriter::mk_is_zero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_zero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_nzero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_nzero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_pzero(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_pzero(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_nan(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_nan(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_inf(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_inf(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_normal(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_normal(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_subnormal(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_denormal(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_negative(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_neg(v)) ? m().mk_true() : m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_is_positive(expr * arg1, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg1, v)) {
result = (m_fm.is_neg(v) || m_fm.is_nan(v)) ? m().mk_false() : m().mk_true();
return BR_DONE;
}
return BR_FAILED;
}
// This the SMT =
br_status fpa_rewriter::mk_eq_core(expr * arg1, expr * arg2, expr_ref & result) {
scoped_mpf v1(m_fm), v2(m_fm);
if (m_util.is_numeral(arg1, v1) && m_util.is_numeral(arg2, v2)) {
// Note: == is the floats-equality, here we need normal equality.
result = (m_fm.is_nan(v1) && m_fm.is_nan(v2)) ? m().mk_true() :
(m_fm.is_zero(v1) && m_fm.is_zero(v2) && m_fm.sgn(v1)!=m_fm.sgn(v2)) ? m().mk_false() :
(v1 == v2) ? m().mk_true() :
m().mk_false();
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_to_ieee_bv(expr * arg1, expr_ref & result) {
return BR_FAILED;
}
br_status fpa_rewriter::mk_fp(expr * arg1, expr * arg2, expr * arg3, expr_ref & result) {
unsynch_mpz_manager & mpzm = m_fm.mpz_manager();
bv_util bu(m());
rational r1, r2, r3;
unsigned bvs1, bvs2, bvs3;
if (bu.is_numeral(arg1, r1, bvs1) &&
bu.is_numeral(arg2, r2, bvs2) &&
bu.is_numeral(arg3, r3, bvs3)) {
SASSERT(mpzm.is_one(r2.to_mpq().denominator()));
SASSERT(mpzm.is_one(r3.to_mpq().denominator()));
SASSERT(mpzm.is_int64(r3.to_mpq().numerator()));
scoped_mpf v(m_fm);
mpf_exp_t biased_exp = mpzm.get_int64(r2.to_mpq().numerator());
m_fm.set(v, bvs2, bvs3 + 1,
r1.is_one(),
r3.to_mpq().numerator(),
m_fm.unbias_exp(bvs2, biased_exp));
TRACE("fp_rewriter", tout << "simplified (fp ...) to " << m_fm.to_string(v) << std::endl;);
result = m_util.mk_value(v);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_to_ubv(func_decl * f, expr * arg1, expr * arg2, expr_ref & result) {
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_int());
int bv_sz = f->get_parameter(0).get_int();
mpf_rounding_mode rmv;
scoped_mpf v(m_fm);
if (m_util.is_rm_numeral(arg1, rmv) &&
m_util.is_numeral(arg2, v)) {
if (m_fm.is_nan(v) || m_fm.is_inf(v) || m_fm.is_neg(v)) {
result = m_util.mk_internal_to_ubv_unspecified(bv_sz);
return BR_REWRITE_FULL;
}
bv_util bu(m());
scoped_mpq q(m_fm.mpq_manager());
m_fm.to_sbv_mpq(rmv, v, q);
rational r(q);
rational ul, ll;
ul = m_fm.m_powers2.m1(bv_sz);
ll = rational(0);
if (r >= ll && r <= ul)
result = bu.mk_numeral(r, bv_sz);
else
result = m_util.mk_internal_to_ubv_unspecified(bv_sz);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_to_sbv(func_decl * f, expr * arg1, expr * arg2, expr_ref & result) {
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_int());
int bv_sz = f->get_parameter(0).get_int();
mpf_rounding_mode rmv;
scoped_mpf v(m_fm);
if (m_util.is_rm_numeral(arg1, rmv) &&
m_util.is_numeral(arg2, v)) {
if (m_fm.is_nan(v) || m_fm.is_inf(v)) {
result = m_util.mk_internal_to_sbv_unspecified(bv_sz);
return BR_REWRITE_FULL;
}
bv_util bu(m());
scoped_mpq q(m_fm.mpq_manager());
m_fm.to_sbv_mpq(rmv, v, q);
rational r(q);
rational ul, ll;
ul = m_fm.m_powers2.m1(bv_sz - 1);
ll = - m_fm.m_powers2(bv_sz - 1);
if (r >= ll && r <= ul)
result = bu.mk_numeral(r, bv_sz);
else
result = m_util.mk_internal_to_sbv_unspecified(bv_sz);
return BR_DONE;
}
return BR_FAILED;
}
br_status fpa_rewriter::mk_to_real(expr * arg, expr_ref & result) {
scoped_mpf v(m_fm);
if (m_util.is_numeral(arg, v)) {
if (m_fm.is_nan(v) || m_fm.is_inf(v)) {
result = m_util.mk_internal_to_real_unspecified();
}
else {
scoped_mpq r(m_fm.mpq_manager());
m_fm.to_rational(v, r);
result = m_util.au().mk_numeral(r.get(), false);
}
return BR_DONE;
}
return BR_FAILED;
}

View file

@ -22,19 +22,20 @@ Notes:
#include"ast.h"
#include"rewriter.h"
#include"params.h"
#include"float_decl_plugin.h"
#include"fpa_decl_plugin.h"
#include"mpf.h"
class float_rewriter {
float_util m_util;
mpf_manager m_fm;
class fpa_rewriter {
fpa_util m_util;
mpf_manager & m_fm;
bool m_hi_fp_unspecified;
app * mk_eq_nan(expr * arg);
app * mk_neq_nan(expr * arg);
public:
float_rewriter(ast_manager & m, params_ref const & p = params_ref());
~float_rewriter();
fpa_rewriter(ast_manager & m, params_ref const & p = params_ref());
~fpa_rewriter();
ast_manager & m() const { return m_util.m(); }
family_id get_fid() const { return m_util.get_fid(); }
@ -44,7 +45,7 @@ public:
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_eq_core(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_add(expr * arg1, expr * arg2, expr * arg3, expr_ref & result);
br_status mk_sub(expr * arg1, expr * arg2, expr * arg3, expr_ref & result);
br_status mk_mul(expr * arg1, expr * arg2, expr * arg3, expr_ref & result);
@ -75,11 +76,16 @@ public:
br_status mk_to_ieee_bv(expr * arg1, expr_ref & result);
br_status mk_to_fp(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_to_fp_unsigned(func_decl * f, expr * arg1, expr * arg2, expr_ref & result);
br_status mk_fp(expr * arg1, expr * arg2, expr * arg3, expr_ref & result);
br_status mk_to_fp_unsigned(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_to_ubv(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_to_sbv(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_to_real(expr * arg1, expr_ref & result);
br_status mk_to_ubv(func_decl * f, expr * arg1, expr * arg2, expr_ref & result);
br_status mk_to_sbv(func_decl * f, expr * arg1, expr * arg2, expr_ref & result);
br_status mk_to_real(expr * arg, expr_ref & result);
br_status mk_to_ubv_unspecified(func_decl * f, expr_ref & result);
br_status mk_to_sbv_unspecified(func_decl * f, expr_ref & result);
br_status mk_to_real_unspecified(expr_ref & result);
};
#endif

View file

@ -0,0 +1,5 @@
def_module_params(module_name='rewriter',
class_name='fpa_rewriter_params',
export=True,
params=(("hi_fp_unspecified", BOOL, True, "use the 'hardware interpretation' for unspecified values in fp.to_ubv, fp.to_sbv, and fp.to_real"),
))

View file

@ -22,7 +22,7 @@ Notes:
#include"bv_rewriter.h"
#include"datatype_rewriter.h"
#include"array_rewriter.h"
#include"float_rewriter.h"
#include"fpa_rewriter.h"
struct mk_simplified_app::imp {
ast_manager & m;
@ -31,7 +31,7 @@ struct mk_simplified_app::imp {
bv_rewriter m_bv_rw;
array_rewriter m_ar_rw;
datatype_rewriter m_dt_rw;
float_rewriter m_f_rw;
fpa_rewriter m_f_rw;
imp(ast_manager & _m, params_ref const & p):
m(_m),

View file

@ -26,8 +26,6 @@ Notes:
template<typename Config>
class poly_rewriter : public Config {
public:
static char const * g_ste_blowup_msg;
protected:
typedef typename Config::numeral numeral;
sort * m_curr_sort;

View file

@ -22,9 +22,6 @@ Notes:
#include"ast_ll_pp.h"
#include"ast_smt2_pp.h"
template<typename Config>
char const * poly_rewriter<Config>::g_ste_blowup_msg = "sum of monomials blowup";
template<typename Config>
void poly_rewriter<Config>::updt_params(params_ref const & _p) {
@ -358,7 +355,7 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
TRACE("som", for (unsigned i = 0; i < it.size(); i++) tout << it[i] << " ";
tout << "\n";);
if (sum.size() > m_som_blowup)
throw rewriter_exception(g_ste_blowup_msg);
throw rewriter_exception("sum of monomials blowup");
m_args.reset();
for (unsigned i = 0; i < num_args; i++) {
expr * const * v = sums[i];

View file

@ -6,8 +6,9 @@ The following classes implement theory specific rewriting rules:
- bv_rewriter
- array_rewriter
- datatype_rewriter
- fpa_rewriter
Each of the provide the method
Each of them provide the method
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result)
where
- f is expected to be a func_decl of the given theory

View file

@ -23,7 +23,7 @@ Notes:
#include"bv_rewriter.h"
#include"datatype_rewriter.h"
#include"array_rewriter.h"
#include"float_rewriter.h"
#include"fpa_rewriter.h"
#include"dl_rewriter.h"
#include"pb_rewriter.h"
#include"rewriter_def.h"
@ -40,7 +40,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
bv_rewriter m_bv_rw;
array_rewriter m_ar_rw;
datatype_rewriter m_dt_rw;
float_rewriter m_f_rw;
fpa_rewriter m_f_rw;
dl_rewriter m_dl_rw;
pb_rewriter m_pb_rw;
arith_util m_a_util;