3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

add incremental

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-08-09 16:05:54 -07:00
parent 97c8b9068f
commit 52182098d0
2 changed files with 154 additions and 103 deletions

View file

@ -20,20 +20,164 @@ Author:
namespace synth {
solver::solver(euf::solver& ctx):
th_euf_solver(ctx, symbol("synth"), ctx.get_manager().mk_family_id("synth")) {}
th_euf_solver(ctx, symbol("synth"), ctx.get_manager().mk_family_id("synth")) {
std::function<void(euf::enode*, euf::enode*)> _on_merge =
[&](euf::enode* root, euf::enode* other) {
on_merge_eh(root, other);
};
ctx.get_egraph().set_on_merge(_on_merge);
}
solver::~solver() {}
bool solver::contains_uncomputable(expr* e) {
return any_of(subterms::all(expr_ref(e, m)), [&](expr* a) { return is_app(a) && m_uncomputable.contains(to_app(a)->get_decl()); });
auto is_output = [&](expr* e) {
return any_of(m_synth, [&](app* a) { return a->get_arg(0) == e; });
};
return any_of(subterms::all(expr_ref(e, m)), [&](expr* a) { return (is_app(a) && m_uncomputable.contains(to_app(a)->get_decl())) || is_output(a); });
}
sat::literal solver::synthesize(app* e) {
if (e->get_num_args() == 0)
return sat::null_literal;
expr_ref sol = compute_solution(e);
if (!sol)
return sat::null_literal;
IF_VERBOSE(0, verbose_stream() << sol << "\n");
return eq_internalize(e->get_arg(0), sol);
}
// block current model using realizer by E-graph (and arithmetic)
//
sat::check_result solver::check() {
sat::literal_vector clause;
for (app* e : m_synth) {
auto lit = synthesize(e);
if (lit == sat::null_literal)
return sat::check_result::CR_GIVEUP;
clause.push_back(~lit);
}
if (clause.empty())
return sat::check_result::CR_DONE;
add_clause(clause);
return sat::check_result::CR_CONTINUE;
}
void solver::add_uncomputable(app* e) {
for (expr* arg : *e) {
if (is_app(arg)) {
func_decl* f = to_app(arg)->get_decl();
m_uncomputable.insert(f);
ctx.push(insert_obj_trail(m_uncomputable, f));
}
}
}
void solver::add_synth_objective(app* e) {
ctx.push_vec(m_synth, e);
for (unsigned i = 1; i < e->get_num_args(); ++i) {
m_is_computable.reserve(e->get_arg(i)->get_id() + 1);
ctx.push(set_bitvector_trail(m_is_computable, e->get_arg(i)->get_id())); // TODO use enode roots instead and test if they are already set.
}
}
// recognize synthesis objectives here.
sat::literal solver::internalize(expr* e, bool sign, bool root) {
internalize(e);
sat::literal lit = ctx.expr2literal(e);
if (sign)
lit.neg();
return lit;
}
// recognize synthesis objectives here and above
void solver::internalize(expr* e) {
SASSERT(is_app(e));
sat::bool_var bv = ctx.get_si().add_bool_var(e);
sat::literal lit(bv, false);
ctx.attach_lit(lit, e);
synth::util util(m);
if (util.is_synthesiz3(e))
add_synth_objective(to_app(e));
if (util.is_grammar(e))
add_uncomputable(to_app(e));
}
// display current state (eg. current set of realizers)
std::ostream& solver::display(std::ostream& out) const {
for (auto * e : m_synth)
out << "synth objective " << mk_pp(e, m) << "\n";
return out;
}
// create a clone of the solver.
euf::th_solver* solver::clone(euf::solver& ctx) {
return alloc(solver, ctx);
}
void solver::on_merge_eh(euf::enode* root, euf::enode* other) {
auto is_computable = [&](euf::enode* n) { return !contains_uncomputable(n->get_expr()) || m_is_computable.get(n->get_root_id(), false); };
auto is_uncomputable = [&](func_decl* f) { return m_uncomputable.contains(f); };
IF_VERBOSE(2, verbose_stream() << "merge " << ctx.bpp(root) << " " << is_computable(root) << " == " << ctx.bpp(other) << " " << is_computable(other) << "\n");
m_is_computable.reserve(root->get_id() + 1);
auto * n = expr2enode(e->get_arg(0));
// if neither contains uncomputable, then we want to make sure that m_is_computable gets set.
if (!m_is_computable.get(root->get_root_id(), false) && !contains_uncomputable(root->get_expr()))
ctx.push(set_bitvector_trail(m_is_computable, root->get_id()));
else if (!m_is_computable.get(root->get_root_id(), false) && !contains_uncomputable(other->get_expr()))
ctx.push(set_bitvector_trail(m_is_computable, root->get_id()));
else if (is_computable(root) == is_computable(other))
return;
if (!is_computable(root))
ctx.push(set_bitvector_trail(m_is_computable, root->get_id()));
euf::enode_vector todo;
todo.push_back(root);
for (unsigned i = 0; i < todo.size(); ++i) {
auto * n = todo[i];
for (auto* p : euf::enode_parents(n)) {
if (is_uncomputable(p->get_decl()))
continue;
if (is_computable(p))
continue;
if (!all_of(euf::enode_args(p), [&](auto * ch) { return is_computable(ch); }))
continue;
m_is_computable.reserve(p->get_root_id() + 1);
ctx.push(set_bitvector_trail(m_is_computable, p->get_root_id()));
todo.push_back(p);
}
}
for (app* e : m_synth) {
euf::enode* n = expr2enode(e->get_arg(0));
if (is_computable(n)) {
expr_ref sol = compute_solution(e);
verbose_stream() << "solution " << sol << "\n";
ctx.push_vec(m_blockers, ~eq_internalize(sol, n->get_expr()));
}
}
}
bool solver::unit_propagate() {
if (m_blockers_qhead >= m_blockers.size())
return false;
IF_VERBOSE(2, verbose_stream() << "propagate " << m_blockers_qhead << " " << m_blockers << "\n");
ctx.push(value_trail(m_blockers_qhead));
while (m_blockers_qhead++ < m_blockers.size())
add_unit(m_blockers[m_blockers_qhead-1]);
return true;
}
expr_ref solver::compute_solution(app* e) {
auto * n = expr2enode(e->get_arg(0));
expr_ref_vector repr(m);
auto get_rep = [&](euf::enode* n) { return repr.get(n->get_root_id(), nullptr); };
auto has_rep = [&](euf::enode* n) { return !!get_rep(n); };
@ -65,105 +209,7 @@ namespace synth {
todo.push_back(p);
}
}
expr * sol = get_rep(n);
if (!sol)
return sat::null_literal;
IF_VERBOSE(0, verbose_stream() << mk_pp(sol, m) << "\n");
return eq_internalize(n->get_expr(), sol);
}
// block current model using realizer by E-graph (and arithmetic)
//
sat::check_result solver::check() {
sat::literal_vector clause;
for (app* e : m_synth) {
auto lit = synthesize(e);
if (lit == sat::null_literal)
return sat::check_result::CR_GIVEUP;
clause.push_back(~lit);
}
if (clause.empty())
return sat::check_result::CR_DONE;
add_clause(clause);
return sat::check_result::CR_CONTINUE;
}
void solver::add_uncomputable(app* e) {
for (expr* arg : *e) {
if (is_app(arg)) {
func_decl* f = to_app(arg)->get_decl();
m_uncomputable.insert(f);
ctx.push(insert_obj_trail(m_uncomputable, f));
}
}
}
// recognize synthesis objectives here.
sat::literal solver::internalize(expr* e, bool sign, bool root) {
internalize(e);
sat::literal lit = ctx.expr2literal(e);
if (sign)
lit.neg();
return lit;
}
// recognize synthesis objectives here and above
void solver::internalize(expr* e) {
SASSERT(is_app(e));
sat::bool_var bv = ctx.get_si().add_bool_var(e);
sat::literal lit(bv, false);
ctx.attach_lit(lit, e);
synth::util util(m);
if (util.is_synthesiz3(e))
ctx.push_vec(m_synth, to_app(e));
if (util.is_grammar(e))
add_uncomputable(to_app(e));
}
// display current state (eg. current set of realizers)
std::ostream& solver::display(std::ostream& out) const {
for (auto * e : m_synth)
out << "synth objective " << mk_pp(e, m) << "\n";
return out;
}
// create a clone of the solver.
euf::th_solver* solver::clone(euf::solver& ctx) {
return alloc(solver, ctx);
}
void solver::on_merge_eh(euf::enode* root, euf::enode* other) {
auto is_computable = [&](euf::enode* n) { return m_is_computable.get(n->get_id(), false); };
auto is_uncomputable = [&](func_decl* f) { return m_uncomputable.contains(f); };
if (is_computable(root) == is_computable(other))
return;
euf::enode_vector todo;
todo.push_back(root);
for (unsigned i = 0; i < todo.size(); ++i) {
auto * n = todo[i];
for (auto* p : euf::enode_parents(n)) {
if (is_uncomputable(p->get_decl()))
continue;
if (is_computable(p))
continue;
if (!all_of(euf::enode_args(p), [&](auto * ch) { return is_computable(ch); }))
continue;
ctx.push(set_bitvector_trail(m_is_computable, p->get_root_id()));
todo.push_back(p);
}
}
for (app* e : m_synth) {
euf::enode* n = expr2enode(e->get_arg(0));
if (is_computable(n)) {
// TODO
}
}
return expr_ref(get_rep(n), m);
}
}

View file

@ -29,7 +29,7 @@ namespace synth {
sat::check_result check() override;
void push_core() override {}
void pop_core(unsigned n) override {}
bool unit_propagate() override { return false; }
bool unit_propagate() override;
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector & r, bool probing) override {}
void collect_statistics(statistics& st) const override {}
sat::literal internalize(expr* e, bool sign, bool root) override;
@ -42,10 +42,15 @@ namespace synth {
private:
sat::literal synthesize(app* e);
void add_uncomputable(app* e);
void add_synth_objective(app* e);
bool contains_uncomputable(expr* e);
void on_merge_eh(euf::enode* root, euf::enode* other);
expr_ref compute_solution(app* synth_objective);
bool_vector m_is_computable;
unsigned m_blockers_qhead = 0;
sat::literal_vector m_blockers;
ptr_vector<app> m_synth;
spacer::func_decl_set m_uncomputable;