mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
fix spelling
This commit is contained in:
parent
b69ad786f2
commit
51fa40ece5
|
@ -552,9 +552,9 @@ br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * con
|
|||
st = mk_re_concat(args[0], args[1], result);
|
||||
}
|
||||
break;
|
||||
case _OP_RE_ANTIMOROV_UNION:
|
||||
case _OP_RE_ANTIMIROV_UNION:
|
||||
SASSERT(num_args == 2);
|
||||
// Rewrite Antimorov union to real union
|
||||
// Rewrite antimirov union to real union
|
||||
result = re().mk_union(args[0], args[1]);
|
||||
st = BR_REWRITE1;
|
||||
break;
|
||||
|
@ -2723,7 +2723,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
re().is_intersection(r, r1, r2)) {
|
||||
m_br.mk_and(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_union(r, r1, r2) || re().is_antimorov_union(r, r1, r2)) {
|
||||
else if (re().is_union(r, r1, r2) || re().is_antimirov_union(r, r1, r2)) {
|
||||
m_br.mk_or(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_diff(r, r1, r2)) {
|
||||
|
@ -2908,7 +2908,7 @@ br_status seq_rewriter::mk_re_reverse(expr* r, expr_ref& result) {
|
|||
Once the derivative is built, we return BR_REWRITE_FULL so that
|
||||
any remaining possible simplification is performed from the bottom up.
|
||||
|
||||
Rewriting also replaces _OP_RE_ANTIMOROV_UNION, which is produced
|
||||
Rewriting also replaces _OP_RE_antimirov_UNION, which is produced
|
||||
by is_derivative, with real union.
|
||||
*/
|
||||
br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
||||
|
@ -2924,16 +2924,16 @@ br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
|||
When computing derivatives recursively, we preserve the following
|
||||
BDD normal form:
|
||||
|
||||
- At the top level, the derivative is a union of Antimorov derivatives
|
||||
- At the top level, the derivative is a union of antimirov derivatives
|
||||
(Conceptually each element of the union is a different derivative).
|
||||
We currently express this derivative using an internal op code:
|
||||
_OP_RE_ANTIMOROV_UNION
|
||||
- An Antimorov derivative is a nested if-then-else term.
|
||||
_OP_RE_antimirov_UNION
|
||||
- An antimirov derivative is a nested if-then-else term.
|
||||
if-then-elses are pushed outwards and sorted by condition ID
|
||||
(cond->get_id()), from largest on the outside to smallest on the
|
||||
inside. Duplicate nested conditions are eliminated.
|
||||
- The leaves of the if-then-else BDD can have unions themselves,
|
||||
but these are interpreted as Regex union, not as separate Antimorov
|
||||
but these are interpreted as Regex union, not as separate antimirov
|
||||
derivatives.
|
||||
|
||||
To debug the normal form, call Z3 with -dbg:seq_regex:
|
||||
|
@ -2962,7 +2962,7 @@ bool seq_rewriter::check_deriv_normal_form(expr* r, int level) {
|
|||
unsigned lo = 0, hi = 0;
|
||||
STRACE("seq_verbose", tout << " (level " << level << ")";);
|
||||
int new_level = 0;
|
||||
if (re().is_antimorov_union(r)) {
|
||||
if (re().is_antimirov_union(r)) {
|
||||
SASSERT(level >= 2);
|
||||
new_level = 2;
|
||||
}
|
||||
|
@ -2975,7 +2975,7 @@ bool seq_rewriter::check_deriv_normal_form(expr* r, int level) {
|
|||
SASSERT(!re().is_opt(r));
|
||||
SASSERT(!re().is_plus(r));
|
||||
|
||||
if (re().is_antimorov_union(r, r1, r2) ||
|
||||
if (re().is_antimirov_union(r, r1, r2) ||
|
||||
re().is_concat(r, r1, r2) ||
|
||||
re().is_union(r, r1, r2) ||
|
||||
re().is_intersection(r, r1, r2) ||
|
||||
|
@ -3410,8 +3410,8 @@ expr_ref seq_rewriter::simplify_path(expr* path) {
|
|||
}
|
||||
|
||||
|
||||
expr_ref seq_rewriter::mk_der_antimorov_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(_OP_RE_ANTIMOROV_UNION, r1, r2);
|
||||
expr_ref seq_rewriter::mk_der_antimirov_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(_OP_RE_ANTIMIROV_UNION, r1, r2);
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_der_union(expr* r1, expr* r2) {
|
||||
|
@ -3512,7 +3512,7 @@ bool seq_rewriter::ite_bdds_compatabile(expr* a, expr* b) {
|
|||
OP_RE_INTERSECT
|
||||
OP_RE_UNION
|
||||
OP_RE_CONCAT
|
||||
_OP_RE_ANTIMOROV_UNION
|
||||
_OP_RE_antimirov_UNION
|
||||
- a and b are in normal form (check_deriv_normal_form)
|
||||
|
||||
Postcondition:
|
||||
|
@ -3542,44 +3542,44 @@ expr_ref seq_rewriter::mk_der_op_rec(decl_kind k, expr* a, expr* b) {
|
|||
};
|
||||
|
||||
// Choose when to lift a union to the top level, by converting
|
||||
// it to an Antimorov union
|
||||
// This implements a restricted form of Antimorov derivatives
|
||||
// it to an antimirov union
|
||||
// This implements a restricted form of antimirov derivatives
|
||||
if (k == OP_RE_UNION) {
|
||||
if (re().is_antimorov_union(a) || re().is_antimorov_union(b)) {
|
||||
k = _OP_RE_ANTIMOROV_UNION;
|
||||
if (re().is_antimirov_union(a) || re().is_antimirov_union(b)) {
|
||||
k = _OP_RE_ANTIMIROV_UNION;
|
||||
}
|
||||
#if 0
|
||||
// Disabled: eager Antimorov lifting unless BDDs are compatible
|
||||
// Disabled: eager antimirov lifting unless BDDs are compatible
|
||||
// Note: the check for BDD compatibility could be made more
|
||||
// sophisticated: in an Antimorov union of n terms, we really
|
||||
// sophisticated: in an antimirov union of n terms, we really
|
||||
// want to check if any pair of them is compatible.
|
||||
else if (m().is_ite(a) && m().is_ite(b) &&
|
||||
!ite_bdds_compatabile(a, b)) {
|
||||
k = _OP_RE_ANTIMOROV_UNION;
|
||||
k = _OP_RE_ANTIMIROV_UNION;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if (k == _OP_RE_ANTIMOROV_UNION) {
|
||||
result = re().mk_antimorov_union(a, b);
|
||||
if (k == _OP_RE_ANTIMIROV_UNION) {
|
||||
result = re().mk_antimirov_union(a, b);
|
||||
return result;
|
||||
}
|
||||
if (re().is_antimorov_union(a, a1, a2)) {
|
||||
if (re().is_antimirov_union(a, a1, a2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
r1 = mk_der_op(k, a1, b);
|
||||
r2 = mk_der_op(k, a2, b);
|
||||
result = re().mk_antimorov_union(r1, r2);
|
||||
result = re().mk_antimirov_union(r1, r2);
|
||||
return result;
|
||||
}
|
||||
if (re().is_antimorov_union(b, b1, b2)) {
|
||||
if (re().is_antimirov_union(b, b1, b2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
r1 = mk_der_op(k, a, b1);
|
||||
r2 = mk_der_op(k, a, b2);
|
||||
result = re().mk_antimorov_union(r1, r2);
|
||||
result = re().mk_antimirov_union(r1, r2);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Remaining non-union case: combine two if-then-else BDDs
|
||||
// (underneath top-level Antimorov unions)
|
||||
// (underneath top-level antimirov unions)
|
||||
if (m().is_ite(a, ca, a1, a2)) {
|
||||
expr_ref r1(m()), r2(m());
|
||||
expr_ref notca(m().mk_not(ca), m());
|
||||
|
@ -3688,9 +3688,9 @@ expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
|||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr, nullptr), m());
|
||||
if (!result) {
|
||||
expr* c = nullptr, * r1 = nullptr, * r2 = nullptr;
|
||||
if (re().is_antimorov_union(r, r1, r2)) {
|
||||
if (re().is_antimirov_union(r, r1, r2)) {
|
||||
// Convert union to intersection
|
||||
// Result: Antimorov union at top level is lost, pushed inside ITEs
|
||||
// Result: antimirov union at top level is lost, pushed inside ITEs
|
||||
expr_ref res1(m()), res2(m());
|
||||
res1 = mk_der_compl(r1);
|
||||
res2 = mk_der_compl(r2);
|
||||
|
@ -3796,11 +3796,11 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
return result;
|
||||
}
|
||||
else {
|
||||
// Instead of mk_der_union here, we use mk_der_antimorov_union to
|
||||
// Instead of mk_der_union here, we use mk_der_antimirov_union to
|
||||
// force the two cases to be considered separately and lifted to
|
||||
// the top level. This avoids blowup in cases where determinization
|
||||
// is expensive.
|
||||
return mk_der_antimorov_union(result, mk_der_concat(is_n, dr2));
|
||||
return mk_der_antimirov_union(result, mk_der_concat(is_n, dr2));
|
||||
}
|
||||
}
|
||||
else if (re().is_star(r, r1)) {
|
||||
|
|
|
@ -200,7 +200,7 @@ class seq_rewriter {
|
|||
expr_ref mk_der_inter(expr* a, expr* b);
|
||||
expr_ref mk_der_compl(expr* a);
|
||||
expr_ref mk_der_cond(expr* cond, expr* ele, sort* seq_sort);
|
||||
expr_ref mk_der_antimorov_union(expr* r1, expr* r2);
|
||||
expr_ref mk_der_antimirov_union(expr* r1, expr* r2);
|
||||
bool ite_bdds_compatabile(expr* a, expr* b);
|
||||
/* if r has the form deriv(en..deriv(e1,to_re(s))..) returns 's = [e1..en]' else returns '() in r'*/
|
||||
expr_ref is_nullable_symbolic_regex(expr* r, sort* seq_sort);
|
||||
|
|
|
@ -243,7 +243,7 @@ void seq_decl_plugin::init() {
|
|||
m_sigs[OP_RE_OF_PRED] = alloc(psig, m, "re.of.pred", 1, 1, &predA, reA);
|
||||
m_sigs[OP_RE_REVERSE] = alloc(psig, m, "re.reverse", 1, 1, &reA, reA);
|
||||
m_sigs[OP_RE_DERIVATIVE] = alloc(psig, m, "re.derivative", 1, 2, AreA, reA);
|
||||
m_sigs[_OP_RE_ANTIMOROV_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
|
||||
m_sigs[_OP_RE_ANTIMIROV_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
|
||||
m_sigs[OP_SEQ_TO_RE] = alloc(psig, m, "seq.to.re", 1, 1, &seqA, reA);
|
||||
m_sigs[OP_SEQ_IN_RE] = alloc(psig, m, "seq.in.re", 1, 2, seqAreA, boolT);
|
||||
m_sigs[OP_SEQ_REPLACE_RE_ALL] = alloc(psig, m, "str.replace_re_all", 1, 3, seqAreAseqA, seqA);
|
||||
|
@ -414,7 +414,7 @@ func_decl* seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, p
|
|||
case OP_RE_COMPLEMENT:
|
||||
case OP_RE_REVERSE:
|
||||
case OP_RE_DERIVATIVE:
|
||||
case _OP_RE_ANTIMOROV_UNION:
|
||||
case _OP_RE_ANTIMIROV_UNION:
|
||||
m_has_re = true;
|
||||
// fall-through
|
||||
case OP_SEQ_UNIT:
|
||||
|
@ -1283,7 +1283,7 @@ std::ostream& seq_util::rex::pp::print(std::ostream& out, expr* e) const {
|
|||
print(out, r1);
|
||||
print(out, r2);
|
||||
}
|
||||
else if (re.is_antimorov_union(e, r1, r2) || re.is_union(e, r1, r2)) {
|
||||
else if (re.is_antimirov_union(e, r1, r2) || re.is_union(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << (html_encode ? "⋃" : "|");
|
||||
|
|
|
@ -103,7 +103,7 @@ enum seq_op_kind {
|
|||
_OP_REGEXP_EMPTY,
|
||||
_OP_REGEXP_FULL_CHAR,
|
||||
_OP_RE_IS_NULLABLE,
|
||||
_OP_RE_ANTIMOROV_UNION, // Lifted union for antimorov-style derivatives
|
||||
_OP_RE_ANTIMIROV_UNION, // Lifted union for antimirov-style derivatives
|
||||
_OP_SEQ_SKOLEM,
|
||||
LAST_SEQ_OP
|
||||
};
|
||||
|
@ -525,7 +525,7 @@ public:
|
|||
app* mk_of_pred(expr* p);
|
||||
app* mk_reverse(expr* r) { return m.mk_app(m_fid, OP_RE_REVERSE, r); }
|
||||
app* mk_derivative(expr* ele, expr* r) { return m.mk_app(m_fid, OP_RE_DERIVATIVE, ele, r); }
|
||||
app* mk_antimorov_union(expr* r1, expr* r2) { return m.mk_app(m_fid, _OP_RE_ANTIMOROV_UNION, r1, r2); }
|
||||
app* mk_antimirov_union(expr* r1, expr* r2) { return m.mk_app(m_fid, _OP_RE_ANTIMIROV_UNION, r1, r2); }
|
||||
|
||||
bool is_to_re(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_TO_RE); }
|
||||
bool is_concat(expr const* n) const { return is_app_of(n, m_fid, OP_RE_CONCAT); }
|
||||
|
@ -557,7 +557,7 @@ public:
|
|||
bool is_of_pred(expr const* n) const { return is_app_of(n, m_fid, OP_RE_OF_PRED); }
|
||||
bool is_reverse(expr const* n) const { return is_app_of(n, m_fid, OP_RE_REVERSE); }
|
||||
bool is_derivative(expr const* n) const { return is_app_of(n, m_fid, OP_RE_DERIVATIVE); }
|
||||
bool is_antimorov_union(expr const* n) const { return is_app_of(n, m_fid, _OP_RE_ANTIMOROV_UNION); }
|
||||
bool is_antimirov_union(expr const* n) const { return is_app_of(n, m_fid, _OP_RE_ANTIMIROV_UNION); }
|
||||
MATCH_UNARY(is_to_re);
|
||||
MATCH_BINARY(is_concat);
|
||||
MATCH_BINARY(is_union);
|
||||
|
@ -571,7 +571,7 @@ public:
|
|||
MATCH_UNARY(is_of_pred);
|
||||
MATCH_UNARY(is_reverse);
|
||||
MATCH_BINARY(is_derivative);
|
||||
MATCH_BINARY(is_antimorov_union);
|
||||
MATCH_BINARY(is_antimirov_union);
|
||||
bool is_loop(expr const* n, expr*& body, unsigned& lo, unsigned& hi) const;
|
||||
bool is_loop(expr const* n, expr*& body, unsigned& lo) const;
|
||||
bool is_loop(expr const* n, expr*& body, expr*& lo, expr*& hi) const;
|
||||
|
|
Loading…
Reference in a new issue