diff --git a/src/math/polysat/saturation.cpp b/src/math/polysat/saturation.cpp index d1d21f0b9..16f514c05 100644 --- a/src/math/polysat/saturation.cpp +++ b/src/math/polysat/saturation.cpp @@ -1546,36 +1546,36 @@ namespace polysat { * * If y == null_var, chooses some variable y != x from p (if one exists). */ - bool saturation::extract_bilinear_form(pvar x, pdd const& p, pvar& y, rational& a, rational& b, rational& c, rational& d) { + bool saturation::extract_bilinear_form(pvar x, pdd const& p, pvar& y, bilinear& b) { auto& m = s.var2pdd(x); rational const& M = m.two_to_N(); switch (p.degree(x)) { case 0: - if (!s.try_eval(p, d)) + if (!s.try_eval(p, b.d)) return false; - a = b = c = 0; + b.a = b.b = b.c = 0; return true; case 1: { pdd q = p, r = p, u = p, v = p; p.factor(x, 1, q, r); - if (!extract_linear_form(q, y, a, b)) + if (!extract_linear_form(q, y, b.a, b.b)) return false; - if (a == 0) { - c = 0; - return eval_round(M, r, d); + if (b.a == 0) { + b.c = 0; + return eval_round(M, r, b.d); } SASSERT(y != null_var); switch (r.degree(y)) { case 0: - if (!eval_round(M, r, d)) + if (!eval_round(M, r, b.d)) return false; - c = 0; + b.c = 0; return true; case 1: r.factor(y, 1, u, v); - if (!eval_round(M, u, c)) + if (!eval_round(M, u, b.c)) return false; - if (!eval_round(M, v, d)) + if (!eval_round(M, v, b.d)) return false; return true; default: @@ -1592,10 +1592,11 @@ namespace polysat { * Update d such that -M < a*x*y0 + b*x + c*y0 + d < M for every value x_min <= x <= x_max, return x_split such that [x_min,x_split[ and [x_split,x_max] can fit into [0,M[ * return false if there is no such d. */ - bool saturation::adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M, rational const& a, rational const& b, rational const& c, rational& d, rational* x_split) { + bool saturation::adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M, + bilinear& b, rational* x_split) { SASSERT(x_min <= x_max); - rational A = a*y0 + b; - rational B = c*y0 + d; + rational A = b.a*y0 + b.b; + rational B = b.c*y0 + b.d; rational max = A >= 0 ? x_max * A + B : x_min * A + B; rational min = A >= 0 ? x_min * A + B : x_max * A + B; VERIFY(min <= max); @@ -1610,7 +1611,7 @@ namespace polysat { rational offset = rational::zero(); if (max < 0 || max >= M) offset = -M * floor(max / M); - d += offset; + b.d += offset; // If min + offset < 0, then [min,max] contains a multiple of M. if (min + offset < 0) { @@ -1622,25 +1623,25 @@ namespace polysat { rational x = ceil((-offset-B) / A); // [x_min; x_split-1] maps to interval < 0 // [x_split; x_max] maps to interval >= 0 - VERIFY(a*x*y0 + b*x + c*y0 + d >= 0); - VERIFY(a*(x-1)*y0 + b*(x-1) + c*y0 + d < 0); + VERIFY(b.eval(x, y0) >= 0); + VERIFY(b.eval(x-1, y0) < 0); VERIFY(x_min <= x && x <= x_max); *x_split = x; } else { rational x = floor((-offset-B) / A) + 1; // [x_min; x_split-1] maps to interval >= 0 // [x_split; x_max] maps to interval < 0 - VERIFY(a*x*y0 + b*x + c*y0 + d < 0); - VERIFY(a*(x-1)*y0 + b*(x-1) + c*y0 + d >= 0); + VERIFY(b.eval(x, y0) < 0); + VERIFY(b.eval(x-1, y0) >= 0); VERIFY(x_min <= x && x <= x_max); *x_split = x; } } - VERIFY(-M < a*x_min*y0 + b*x_min + c*y0 + d); - VERIFY(a*x_min*y0 + b*x_min + c*y0 + d < M); - VERIFY(-M < a*x_max*y0 + b*x_max + c*y0 + d); - VERIFY(a*x_max*y0 + b*x_max + c*y0 + d < M); + VERIFY(-M < b.eval(x_min, y0)); + VERIFY(b.eval(x_min, y0) < M); + VERIFY(-M < b.eval(x_max, y0)); + VERIFY(b.eval(x_max, y0) < M); return true; } @@ -1648,14 +1649,15 @@ namespace polysat { * Based on a*x*y + b*x + c*y + d >= 0 * update lower bound for y */ - bool saturation::update_min(rational& y_min, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d) { - if (a == 0 && c == 0) + bool saturation::update_min(rational& y_min, rational const& x_min, rational const& x_max, + bilinear const& b) { + if (b.a == 0 && b.c == 0) return true; rational x_bound; - if (a >= 0 && b >= 0) + if (b.a >= 0 && b.b >= 0) x_bound = x_min; - else if (a <= 0 && b <= 0) + else if (b.a <= 0 && b.b <= 0) x_bound = x_max; else return false; @@ -1663,23 +1665,24 @@ namespace polysat { // a*x_bound*y + b*x_bound + c*y + d >= 0 // (a*x_bound + c)*y >= -d - b*x_bound // if a*x_bound + c > 0 - rational A = a*x_bound + c; + rational A = b.a*x_bound + b.c; if (A <= 0) return true; - rational y1 = ceil((- d - b*x_bound)/A); + rational y1 = ceil((- b.d - b.b*x_bound)/A); if (y1 > y_min) y_min = y1; return true; } - bool saturation::update_max(rational& y_max, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d) { - if (a == 0 && c == 0) + bool saturation::update_max(rational& y_max, rational const& x_min, rational const& x_max, + bilinear const& b) { + if (b.a == 0 && b.c == 0) return true; rational x_bound; - if (a >= 0 && b >= 0) + if (b.a >= 0 && b.b >= 0) x_bound = x_min; - else if (a <= 0 && b <= 0) + else if (b.a <= 0 && b.b <= 0) x_bound = x_max; else return false; @@ -1687,10 +1690,10 @@ namespace polysat { // a*x_bound*y + b*x_bound + c*y + d >= 0 // (a*x_bound + c)*y >= -d - b*x_bound // if a*x_bound + c < 0 - rational A = a*x_bound + c; + rational A = b.a*x_bound + b.c; if (A >= 0) return true; - rational y1 = floor((- d - b*x_bound)/A); + rational y1 = floor((- b.d - b.b*x_bound)/A); if (y1 < y_max) y_max = y1; return true; @@ -1721,57 +1724,57 @@ namespace polysat { } } - bool saturation::update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max, rational const& y0, rational const& a1, rational const& b1, rational const& c1, rational const& dd1, rational const& a2, rational const& b2, rational const& c2, rational const& dd2, rational const& M, inequality const& a_l_b) { + bool saturation::update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max, rational const& y0, bilinear const& b1, bilinear const& b2, rational const& M, inequality const& a_l_b) { VERIFY(x_min <= x_max); - rational d1 = dd1; - if (a1*x_min*y0 + b1*x_min + c1*y0 + d1 < 0) + rational d1 = b1.d; + if (b1.eval(x_min, y0) < 0) d1 += M; - rational d2 = dd2; - if (a2*x_min*y0 + b2*x_min + c2*y0 + d2 < 0) + rational d2 = b2.d; + if (b2.eval(x_min, y0) < 0) d2 += M; IF_VERBOSE(2, verbose_stream() << "Adjusted for x in [" << x_min << "; " << x_max << "]\n"; - verbose_stream() << "p ... " << a1 << " " << b1 << " " << c1 << " " << d1 << "\n"; - verbose_stream() << "q ... " << a2 << " " << b2 << " " << c2 << " " << d2 << "\n"; + verbose_stream() << "p ... " << b1 << "\n"; + verbose_stream() << "q ... " << b2 << "\n"; ); // Precondition: forall x . x_min <= x <= x_max ==> p(x,y0) > q(x,y0) // check the endpoints - VERIFY(a1*x_min*y0 + b1*x_min + c1*y0 + d1 >= a2*x_min*y0 + b2*x_min + c2*y0 + d2 + (a_l_b.is_strict() ? 0 : 1)); - VERIFY(a1*x_max*y0 + b1*x_max + c1*y0 + d1 >= a2*x_max*y0 + b2*x_max + c2*y0 + d2 + (a_l_b.is_strict() ? 0 : 1)); + VERIFY(b1.eval(x_min, y0) >= b2.eval(x_min, y0) + (a_l_b.is_strict() ? 0 : 1)); + VERIFY(b1.eval(x_max, y0) >= b2.eval(x_max, y0) + (a_l_b.is_strict() ? 0 : 1)); - if (!update_min(y_min, x_min, x_max, a1, b1, c1, d1)) + if (!update_min(y_min, x_min, x_max, b1)) return false; - if (!update_min(y_min, x_min, x_max, a2, b2, c2, d2)) + if (!update_min(y_min, x_min, x_max, b2)) return false; //verbose_stream() << "min-max: x := v" << x << " [" << x_min << "," << x_max << "] y := v" << y << " [" << y_min << ", " << y_max << "] y0 " << y0 << "\n"; VERIFY(y_min <= y0 && y0 <= y_max); - if (!update_max(y_max, x_min, x_max, a1, b1, c1, d1)) + if (!update_max(y_max, x_min, x_max, b1)) return false; - if (!update_max(y_max, x_min, x_max, a2, b2, c2, d2)) + if (!update_max(y_max, x_min, x_max, b2)) return false; //verbose_stream() << "min-max: x := v" << x << " [" << x_min << "," << x_max << "] y := v" << y << " [" << y_min << ", " << y_max << "] y0 " << y0 << "\n"; VERIFY(y_min <= y0 && y0 <= y_max); // p < M iff -p > -M iff -p + M - 1 >= 0 - if (!update_min(y_min, x_min, x_max, -a1, -b1, -c1, -d1 + M - 1)) + if (!update_min(y_min, x_min, x_max, -b1 + (M - 1))) return false; - if (!update_min(y_min, x_min, x_max, -a2, -b2, -c2, -d2 + M - 1)) + if (!update_min(y_min, x_min, x_max, -b2 + (M - 1))) return false; - if (!update_max(y_max, x_min, x_max, -a1, -b1, -c1, -d1 + M - 1)) + if (!update_max(y_max, x_min, x_max, -b1 + (M - 1))) return false; - if (!update_max(y_max, x_min, x_max, -a2, -b2, -c2, -d2 + M - 1)) + if (!update_max(y_max, x_min, x_max, -b2 + (M - 1))) return false; VERIFY(y_min <= y0 && y0 <= y_max); // p <= q or p < q is false // so p > q or p >= q // p - q - 1 >= 0 or p - q >= 0 // min-max for p - q - 1 or p - q are non-negative - if (!update_min(y_min, x_min, x_max, a1 - a2, b1 - b2, c1 - c2, d1 - d2 - (a_l_b.is_strict() ? 0 : 1))) + if (!update_min(y_min, x_min, x_max, b1 - b2 - (a_l_b.is_strict() ? 0 : 1))) return false; - if (!update_max(y_max, x_min, x_max, a1 - a2, b1 - b2, c1 - c2, d1 - d2 - (a_l_b.is_strict() ? 0 : 1))) + if (!update_max(y_max, x_min, x_max, b1 - b2 - (a_l_b.is_strict() ? 0 : 1))) return false; return true; } @@ -1791,10 +1794,10 @@ namespace polysat { return false; pvar y = null_var; - rational a1, a2, b1, b2, c1, c2, d1, d2; - if (!extract_bilinear_form(x, p, y, a1, b1, c1, d1)) + bilinear b1, b2; + if (!extract_bilinear_form(x, p, y, b1)) return false; - if (!extract_bilinear_form(x, q, y, a2, b2, c2, d2)) + if (!extract_bilinear_form(x, q, y, b2)) return false; if (y == null_var) return false; @@ -1835,15 +1838,15 @@ namespace polysat { verbose_stream() << "\n"; verbose_stream() << "x_min " << x_min << " x_max " << x_max << "\n"; verbose_stream() << "v" << y << " " << y0 << "\n"; - verbose_stream() << p << " ... " << a1 << " " << b1 << " " << c1 << " " << d1 << "\n"; - verbose_stream() << q << " ... " << a2 << " " << b2 << " " << c2 << " " << d2 << "\n"); + verbose_stream() << p << " ... " << b1 << "\n"; + verbose_stream() << q << " ... " << b2 << "\n"); rational x_sp1 = x_min; rational x_sp2 = x_min; - if (!adjust_bound(x_min, x_max, y0, M, a1, b1, c1, d1, &x_sp1)) + if (!adjust_bound(x_min, x_max, y0, M, b1, &x_sp1)) return false; - if (!adjust_bound(x_min, x_max, y0, M, a2, b2, c2, d2, &x_sp2)) + if (!adjust_bound(x_min, x_max, y0, M, b2, &x_sp2)) return false; if (x_sp1 > x_sp2) @@ -1852,8 +1855,8 @@ namespace polysat { IF_VERBOSE(2, verbose_stream() << "Adjusted\n"; - verbose_stream() << p << " ... " << a1 << " " << b1 << " " << c1 << " " << d1 << "\n"; - verbose_stream() << q << " ... " << a2 << " " << b2 << " " << c2 << " " << d2 << "\n"; + verbose_stream() << p << " ... " << b1 << "\n"; + verbose_stream() << q << " ... " << b2 << "\n"; // verbose_stream() << "p(x_min,y0) = " << (a1*x_min*y0 + b1*x_min + c1*y0 + d1) << "\n"; // verbose_stream() << "q(x_min,y0) = " << (a2*x_min*y0 + b2*x_min + c2*y0 + d2) << "\n"; // verbose_stream() << "p(x_max,y0) = " << (a1*x_max*y0 + b1*x_max + c1*y0 + d1) << "\n"; @@ -1861,13 +1864,13 @@ namespace polysat { ); rational y_min(0), y_max(M-1); - if (x_min != x_sp1 && !update_bounds_for_xs(x_min, x_sp1-1, y_min, y_max, y0, a1, b1, c1, d1, a2, b2, c2, d2, M, a_l_b)) + if (x_min != x_sp1 && !update_bounds_for_xs(x_min, x_sp1-1, y_min, y_max, y0, b1, b2, M, a_l_b)) return false; // IF_VERBOSE(0, verbose_stream() << "min-max: x := v" << x << " [" << x_min << "," << x_max << "] y := v" << y << " [" << y_min << ", " << y_max << "] y0 " << y0 << "\n"); - if (x_sp1 != x_sp2 && !update_bounds_for_xs(x_sp1, x_sp2-1, y_min, y_max, y0, a1, b1, c1, d1, a2, b2, c2, d2, M, a_l_b)) + if (x_sp1 != x_sp2 && !update_bounds_for_xs(x_sp1, x_sp2-1, y_min, y_max, y0, b1, b2, M, a_l_b)) return false; // IF_VERBOSE(0, verbose_stream() << "min-max: x := v" << x << " [" << x_min << "," << x_max << "] y := v" << y << " [" << y_min << ", " << y_max << "] y0 " << y0 << "\n"); - if (!update_bounds_for_xs(x_sp2, x_max, y_min, y_max, y0, a1, b1, c1, d1, a2, b2, c2, d2, M, a_l_b)) + if (!update_bounds_for_xs(x_sp2, x_max, y_min, y_max, y0, b1, b2, M, a_l_b)) return false; IF_VERBOSE(1, verbose_stream() << "min-max: x := v" << x << " [" << x_min << "," << x_max << "] y := v" << y << " [" << y_min << ", " << y_max << "] y0 " << y0 << "\n"); diff --git a/src/math/polysat/saturation.h b/src/math/polysat/saturation.h index f90a64c61..eb815986a 100644 --- a/src/math/polysat/saturation.h +++ b/src/math/polysat/saturation.h @@ -18,6 +18,55 @@ Author: namespace polysat { + struct bilinear { + rational a, b, c, d; + + + rational eval(rational const& x, rational const& y) const { + return a*x*y + b*x + c*y + d; + } + + bilinear operator-() const { + bilinear r(*this); + r.a = -r.a; + r.b = -r.b; + r.c = -r.c; + r.d = -r.d; + return r; + } + + bilinear operator-(bilinear const& other) const { + bilinear r(*this); + r.a -= other.a; + r.b -= other.b; + r.c -= other.c; + r.d -= other.d; + return r; + } + + bilinear operator+(rational const& d) const { + bilinear r(*this); + r.d += d; + return r; + } + + bilinear operator-(rational const& d) const { + bilinear r(*this); + r.d -= d; + return r; + } + + bilinear operator-(int d) const { + bilinear r(*this); + r.d -= d; + return r; + } +}; + + inline std::ostream& operator<<(std::ostream& out, bilinear const& b) { + return out << b.a << "*x*y + " << b.b << "*x + " << b.c << "*y + " << b.d; + } + /** * Introduce lemmas that derive new (simpler) constraints from the current conflict and partial model. */ @@ -75,11 +124,16 @@ namespace polysat { rational round(rational const& M, rational const& x); bool eval_round(rational const& M, pdd const& p, rational& r); bool extract_linear_form(pdd const& q, pvar& y, rational& a, rational& b); - bool extract_bilinear_form(pvar x, pdd const& p, pvar& y, rational& a, rational& b, rational& c, rational& d); - bool adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M, rational const& a, rational const& b, rational const& c, rational& d, rational* x_split); - bool update_min(rational& y_min, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d); - bool update_max(rational& y_max, rational const& x_min, rational const& x_max, rational const& a, rational const& b, rational const& c, rational const& d); - bool update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max, rational const& y0, rational const& a1, rational const& b1, rational const& c1, rational const& d1, rational const& a2, rational const& b2, rational const& c2, rational const& d2, rational const& M, inequality const& a_l_b); + bool extract_bilinear_form(pvar x, pdd const& p, pvar& y, bilinear& b); + bool adjust_bound(rational const& x_min, rational const& x_max, rational const& y0, rational const& M, + bilinear& b, rational* x_split); + bool update_min(rational& y_min, rational const& x_min, rational const& x_max, + bilinear const& b); + bool update_max(rational& y_max, rational const& x_min, rational const& x_max, + bilinear const& b); + bool update_bounds_for_xs(rational const& x_min, rational const& x_max, rational& y_min, rational& y_max, + rational const& y0, bilinear const& b1, bilinear const& b2, + rational const& M, inequality const& a_l_b); void fix_values(pvar x, pvar y, pdd const& p); void fix_values(pvar y, pdd const& p);