3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-11-26 21:12:47 -08:00
parent e026f96ed4
commit 503bedbc7a
3 changed files with 99 additions and 84 deletions

View file

@ -109,15 +109,14 @@ namespace smt {
\brief Ensures that all relevant proof steps to explain why the enode is equal to the root of its
equivalence class are in the log and up-to-date.
*/
void log_justification_to_root(std::ostream & log, enode *en, obj_hashtable<enode> &already_visited) {
void log_justification_to_root(std::ostream & out, enode *en, obj_hashtable<enode> &visited) {
enode* root = en->get_root();
for (enode *it = en; it != root; it = it->get_trans_justification().m_target) {
if (already_visited.contains(it))
break;
already_visited.insert(it);
for (enode *it = en; it != root && !visited.contains(it); it = it->get_trans_justification().m_target) {
visited.insert(it);
if (!it->m_proof_is_logged) {
log_single_justification(log, it, already_visited);
log_single_justification(out, it, visited);
it->m_proof_is_logged = true;
}
else if (it->get_trans_justification().m_justification.get_kind() == smt::eq_justification::kind::CONGRUENCE) {
@ -128,14 +127,14 @@ namespace smt {
enode *target = it->get_trans_justification().m_target;
for (unsigned i = 0; i < num_args; ++i) {
log_justification_to_root(log, it->get_arg(i), already_visited);
log_justification_to_root(log, target->get_arg(i), already_visited);
log_justification_to_root(out, it->get_arg(i), visited);
log_justification_to_root(out, target->get_arg(i), visited);
}
SASSERT(it->m_proof_is_logged);
}
}
if (!root->m_proof_is_logged) {
log << "[eq-expl] #" << root->get_owner_id() << " root\n";
out << "[eq-expl] #" << root->get_owner_id() << " root\n";
root->m_proof_is_logged = true;
}
}
@ -144,7 +143,7 @@ namespace smt {
\brief Logs a single equality explanation step and, if necessary, recursively calls log_justification_to_root to log
equalities needed by the step (e.g. argument equalities for congruence steps).
*/
void log_single_justification(std::ostream & out, enode *en, obj_hashtable<enode> &already_visited) {
void log_single_justification(std::ostream & out, enode *en, obj_hashtable<enode> &visited) {
smt::literal lit;
unsigned num_args;
enode *target = en->get_trans_justification().m_target;
@ -163,8 +162,8 @@ namespace smt {
num_args = en->get_num_args();
for (unsigned i = 0; i < num_args; ++i) {
log_justification_to_root(out, en->get_arg(i), already_visited);
log_justification_to_root(out, target->get_arg(i), already_visited);
log_justification_to_root(out, en->get_arg(i), visited);
log_justification_to_root(out, target->get_arg(i), visited);
}
out << "[eq-expl] #" << en->get_owner_id() << " cg";
@ -193,6 +192,53 @@ namespace smt {
}
}
void log_add_instance(
fingerprint* f,
quantifier * q, app * pat,
unsigned num_bindings,
enode * const * bindings,
vector<std::tuple<enode *, enode *>> & used_enodes) {
std::ostream & out = trace_stream();
obj_hashtable<enode> visited;
// In the term produced by the quantifier instantiation the root of
// the equivalence class of the terms bound to the quantified variables
// is used. We need to make sure that all of these equalities appear in the log.
for (unsigned i = 0; i < num_bindings; ++i) {
log_justification_to_root(out, bindings[i], visited);
}
for (auto n : used_enodes) {
enode *orig = std::get<0>(n);
enode *substituted = std::get<1>(n);
if (orig != nullptr) {
log_justification_to_root(out, orig, visited);
log_justification_to_root(out, substituted, visited);
}
}
// At this point all relevant equalities for the match are logged.
out << "[new-match] " << static_cast<void*>(f) << " #" << q->get_id() << " #" << pat->get_id();
for (unsigned i = 0; i < num_bindings; i++) {
// I don't want to use mk_pp because it creates expressions for pretty printing.
// This nasty side-effect may change the behavior of Z3.
out << " #" << bindings[i]->get_owner_id();
}
out << " ;";
for (auto n : used_enodes) {
enode *orig = std::get<0>(n);
enode *substituted = std::get<1>(n);
if (orig == nullptr)
out << " #" << substituted->get_owner_id();
else {
out << " (#" << orig->get_owner_id() << " #" << substituted->get_owner_id() << ")";
}
}
out << "\n";
}
bool add_instance(quantifier * q, app * pat,
unsigned num_bindings,
enode * const * bindings,
@ -209,43 +255,7 @@ namespace smt {
fingerprint * f = m_context.add_fingerprint(q, q->get_id(), num_bindings, bindings, def);
if (f) {
if (has_trace_stream()) {
std::ostream & out = trace_stream();
obj_hashtable<enode> already_visited;
// In the term produced by the quantifier instantiation the root of the equivalence class of the terms bound to the quantified variables
// is used. We need to make sure that all of these equalities appear in the log.
for (unsigned i = 0; i < num_bindings; ++i) {
log_justification_to_root(out, bindings[i], already_visited);
}
for (auto n : used_enodes) {
enode *orig = std::get<0>(n);
enode *substituted = std::get<1>(n);
if (orig != nullptr) {
log_justification_to_root(out, orig, already_visited);
log_justification_to_root(out, substituted, already_visited);
}
}
// At this point all relevant equalities for the match are logged.
out << "[new-match] " << static_cast<void*>(f) << " #" << q->get_id() << " #" << pat->get_id();
for (unsigned i = 0; i < num_bindings; i++) {
// I don't want to use mk_pp because it creates expressions for pretty printing.
// This nasty side-effect may change the behavior of Z3.
out << " #" << bindings[i]->get_owner_id();
}
out << " ;";
for (auto n : used_enodes) {
enode *orig = std::get<0>(n);
enode *substituted = std::get<1>(n);
if (orig == nullptr)
out << " #" << substituted->get_owner_id();
else {
out << " (#" << orig->get_owner_id() << " #" << substituted->get_owner_id() << ")";
}
}
out << "\n";
log_add_instance(f, q, pat, num_bindings, bindings, used_enodes);
}
m_qi_queue.insert(f, pat, max_generation, min_top_generation, max_top_generation); // TODO
m_num_instances++;
@ -256,7 +266,7 @@ namespace smt {
tout << mk_pp(bindings[i]->get_owner(), m()) << " ";
}
tout << "\n";
tout << "inserted: " << (f != 0) << "\n";
tout << "inserted: " << (f != nullptr) << "\n";
);
return f != nullptr;

View file

@ -1487,8 +1487,7 @@ bool theory_seq::enforce_length(expr_ref_vector const& es, vector<rational> & le
bool all_have_length = true;
rational val;
zstring s;
for (unsigned i = 0; i < es.size(); ++i) {
expr* e = es[i];
for (expr* e : es) {
if (m_util.str.is_unit(e)) {
len.push_back(rational(1));
}
@ -3397,6 +3396,7 @@ bool theory_seq::check_int_string() {
bool theory_seq::check_int_string(expr* e) {
return
get_context().inconsistent() ||
(m_util.str.is_itos(e) && add_itos_val_axiom(e)) ||
(m_util.str.is_stoi(e) && add_stoi_val_axiom(e));
}
@ -3410,9 +3410,33 @@ void theory_seq::add_stoi_axiom(expr* e) {
// stoi(s) >= -1
literal l = mk_simplified_literal(m_autil.mk_ge(e, m_autil.mk_int(-1)));
add_axiom(l);
// stoi("") = -1
add_axiom(mk_eq(m_util.str.mk_stoi(m_util.str.mk_empty(m.get_sort(s))), m_autil.mk_int(-1), false));
}
void theory_seq::add_itos_axiom(expr* e) {
rational val;
expr* n = nullptr;
TRACE("seq", tout << mk_pp(e, m) << "\n";);
VERIFY(m_util.str.is_itos(e, n));
// itos(n) = "" <=> n < 0
expr_ref zero(m_autil.mk_int(0), m);
literal eq1 = mk_literal(m_util.str.mk_is_empty(e));
literal ge0 = mk_literal(m_autil.mk_ge(n, zero));
// n >= 0 => itos(n) != ""
// itos(n) = "" or n >= 0
add_axiom(~eq1, ~ge0);
add_axiom(eq1, ge0);
// n >= 0 => stoi(itos(n)) = n
app_ref stoi(m_util.str.mk_stoi(e), m);
add_axiom(~ge0, mk_preferred_eq(stoi, n));
}
void theory_seq::ensure_digit_axiom() {
if (m_si_axioms.empty()) {
@ -3425,7 +3449,7 @@ void theory_seq::ensure_digit_axiom() {
}
bool theory_seq::add_itos_val_axiom(expr* e) {
rational val;
rational val, val2;
expr* n = nullptr;
TRACE("seq", tout << mk_pp(e, m) << "\n";);
VERIFY(m_util.str.is_itos(e, n));
@ -3435,11 +3459,11 @@ bool theory_seq::add_itos_val_axiom(expr* e) {
}
enforce_length(e);
if (get_length(e, val) && val.is_pos() && val.is_unsigned() && !m_si_axioms.contains(e)) {
if (get_length(e, val) && val.is_pos() && val.is_unsigned() && (!m_si_axioms.find(e, val2) || val != val2)) {
add_si_axiom(e, n, val.get_unsigned());
m_si_axioms.insert(e);
m_si_axioms.insert(e, val);
m_trail_stack.push(push_replay(alloc(replay_is_axiom, m, e)));
m_trail_stack.push(insert_map<theory_seq, obj_hashtable<expr>, expr*>(m_si_axioms, e));
m_trail_stack.push(insert_map<theory_seq, obj_map<expr, rational>, expr*>(m_si_axioms, e));
return true;
}
@ -3449,20 +3473,21 @@ bool theory_seq::add_itos_val_axiom(expr* e) {
bool theory_seq::add_stoi_val_axiom(expr* e) {
context& ctx = get_context();
expr* n = nullptr;
rational val;
TRACE("seq", tout << mk_pp(e, m) << " " << ctx.get_scope_level () << "\n";);
rational val, val2;
VERIFY(m_util.str.is_stoi(e, n));
TRACE("seq", tout << mk_pp(e, m) << " " << ctx.get_scope_level () << " " << get_length(n, val) << " " << val << "\n";);
if (m_util.str.is_itos(n)) {
return false;
}
enforce_length(n);
if (get_length(n, val) && val.is_pos() && val.is_unsigned() && !m_si_axioms.contains(e)) {
if (get_length(n, val) && val.is_pos() && val.is_unsigned() && (!m_si_axioms.find(e, val2) || val2 != val)) {
add_si_axiom(n, e, val.get_unsigned());
m_si_axioms.insert(e);
m_si_axioms.insert(e, val);
m_trail_stack.push(push_replay(alloc(replay_is_axiom, m, e)));
m_trail_stack.push(insert_map<theory_seq, obj_hashtable<expr>, expr*>(m_si_axioms, e));
m_trail_stack.push(insert_map<theory_seq, obj_map<expr, rational>, expr*>(m_si_axioms, e));
return true;
}
@ -3487,26 +3512,6 @@ expr_ref theory_seq::digit2int(expr* ch) {
return expr_ref(mk_skolem(symbol("seq.digit2int"), ch, nullptr, nullptr, nullptr, m_autil.mk_int()), m);
}
void theory_seq::add_itos_axiom(expr* e) {
rational val;
expr* n = nullptr;
TRACE("seq", tout << mk_pp(e, m) << "\n";);
VERIFY(m_util.str.is_itos(e, n));
// itos(n) = "" <=> n < 0
expr_ref zero(arith_util(m).mk_int(0), m);
literal eq1 = mk_literal(m_util.str.mk_is_empty(e));
literal ge0 = mk_literal(m_autil.mk_ge(n, zero));
// n >= 0 => itos(n) != ""
// itos(n) = "" or n >= 0
add_axiom(~eq1, ~ge0);
add_axiom(eq1, ge0);
// n >= 0 => stoi(itos(n)) = n
app_ref stoi(m_util.str.mk_stoi(e), m);
add_axiom(~ge0, mk_preferred_eq(stoi, n));
}
// n >= 0 & len(e) = k => is_digit(e_i) for i = 0..k-1
@ -3550,7 +3555,7 @@ void theory_seq::add_si_axiom(expr* e, expr* n, unsigned k) {
SASSERT(k > 0);
rational lb = power(rational(10), k - 1);
rational ub = power(rational(10), k) - 1;
arith_util a (m);
arith_util& a = m_autil;
literal lbl = mk_literal(a.mk_ge(n, a.mk_int(lb)));
literal ubl = mk_literal(a.mk_le(n, a.mk_int(ub)));
literal ge_k = mk_literal(a.mk_ge(len, a.mk_int(k)));

View file

@ -343,7 +343,7 @@ namespace smt {
unsigned m_axioms_head; // index of first axiom to add.
bool m_incomplete; // is the solver (clearly) incomplete for the fragment.
expr_ref_vector m_int_string;
obj_hashtable<expr> m_si_axioms;
obj_map<expr, rational> m_si_axioms;
obj_hashtable<expr> m_length; // is length applied
scoped_ptr_vector<apply> m_replay; // set of actions to replay
model_generator* m_mg;