3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00

add option to validate result of PDR. Add PDR tactic. Add fixedpoint parsing

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2012-11-17 20:47:49 +01:00
parent 68ae5d434c
commit 50385e7e29
32 changed files with 836 additions and 393 deletions

View file

@ -317,8 +317,8 @@ class smt_printer {
}
void visit_sort(sort* s, bool bool2int = false) {
symbol sym;
if (bool2int && is_bool(s)) {
symbol sym;
if (bool2int && is_bool(s) && !m_is_smt2) {
sym = symbol("Int");
} else if (s->is_sort_of(m_bv_fid, BV_SORT)) {
sym = symbol("BitVec");

View file

@ -6,8 +6,9 @@
#include "arith_decl_plugin.h"
#include "front_end_params.h"
#include "th_rewriter.h"
#include "var_subst.h"
#define IS_EQUIV(_e_) (m_manager.is_eq(_e_) || m_manager.is_iff(_e_))
#define IS_EQUIV(_e_) (m.is_eq(_e_) || m.is_iff(_e_))
#define SAME_OP(_d1_, _d2_) ((_d1_ == _d2_) || (IS_EQUIV(_d1_) && IS_EQUIV(_d2_)))
@ -79,7 +80,7 @@ void proof_checker::hyp_decl_plugin::get_sort_names(svector<builtin_name> & sort
}
}
proof_checker::proof_checker(ast_manager& m) : m_manager(m), m_todo(m), m_marked(), m_pinned(m), m_nil(m),
proof_checker::proof_checker(ast_manager& m) : m(m), m_todo(m), m_marked(), m_pinned(m), m_nil(m),
m_dump_lemmas(false), m_logic("AUFLIA"), m_proof_lemma_id(0) {
symbol fam_name("proof_hypothesis");
if (!m.has_plugin(fam_name)) {
@ -87,11 +88,11 @@ proof_checker::proof_checker(ast_manager& m) : m_manager(m), m_todo(m), m_marked
}
m_hyp_fid = m.get_family_id(fam_name);
// m_spc_fid = m.get_family_id("spc");
m_nil = m_manager.mk_const(m_hyp_fid, OP_NIL);
m_nil = m.mk_const(m_hyp_fid, OP_NIL);
}
bool proof_checker::check(proof* p, expr_ref_vector& side_conditions) {
proof_ref curr(m_manager);
proof_ref curr(m);
m_todo.push_back(p);
bool result = true;
@ -100,7 +101,7 @@ bool proof_checker::check(proof* p, expr_ref_vector& side_conditions) {
m_todo.pop_back();
result = check1(curr.get(), side_conditions);
if (!result) {
IF_VERBOSE(0, ast_ll_pp(verbose_stream() << "Proof check failed\n", m_manager, curr.get()););
IF_VERBOSE(0, ast_ll_pp(verbose_stream() << "Proof check failed\n", m, curr.get()););
UNREACHABLE();
}
}
@ -114,7 +115,7 @@ bool proof_checker::check(proof* p, expr_ref_vector& side_conditions) {
}
bool proof_checker::check1(proof* p, expr_ref_vector& side_conditions) {
if (p->get_family_id() == m_manager.get_basic_family_id()) {
if (p->get_family_id() == m.get_basic_family_id()) {
return check1_basic(p, side_conditions);
}
#if 0
@ -129,11 +130,11 @@ bool proof_checker::check1_spc(proof* p, expr_ref_vector& side_conditions) {
#if 0
decl_kind k = p->get_decl_kind();
bool is_univ = false;
expr_ref fact(m_manager), fml(m_manager);
expr_ref body(m_manager), fml1(m_manager), fml2(m_manager);
sort_ref_vector sorts(m_manager);
proof_ref p1(m_manager), p2(m_manager);
proof_ref_vector proofs(m_manager);
expr_ref fact(m), fml(m);
expr_ref body(m), fml1(m), fml2(m);
sort_ref_vector sorts(m);
proof_ref p1(m), p2(m);
proof_ref_vector proofs(m);
if (match_proof(p, proofs)) {
for (unsigned i = 0; i < proofs.size(); ++i) {
@ -159,15 +160,15 @@ bool proof_checker::check1_spc(proof* p, expr_ref_vector& side_conditions) {
case PR_FACTORING:
case PR_SPC_DER: {
if (match_fact(p, fact)) {
expr_ref_vector rewrite_eq(m_manager);
expr_ref_vector rewrite_eq(m);
rewrite_eq.push_back(fact.get());
for (unsigned i = 0; i < proofs.size(); ++i) {
if (match_fact(proofs[i].get(), fml)) {
rewrite_eq.push_back(m_manager.mk_not(fml.get()));
rewrite_eq.push_back(m.mk_not(fml.get()));
}
}
expr_ref rewrite_cond(m_manager);
rewrite_cond = m_manager.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr());
expr_ref rewrite_cond(m);
rewrite_cond = m.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr());
side_conditions.push_back(rewrite_cond.get());
return true;
}
@ -184,18 +185,18 @@ bool proof_checker::check1_spc(proof* p, expr_ref_vector& side_conditions) {
bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
decl_kind k = p->get_decl_kind();
expr_ref fml0(m_manager), fml1(m_manager), fml2(m_manager), fml(m_manager);
expr_ref t1(m_manager), t2(m_manager);
expr_ref s1(m_manager), s2(m_manager);
expr_ref u1(m_manager), u2(m_manager);
expr_ref fact(m_manager), body1(m_manager), body2(m_manager);
expr_ref l1(m_manager), l2(m_manager), r1(m_manager), r2(m_manager);
func_decl_ref d1(m_manager), d2(m_manager), d3(m_manager);
proof_ref p0(m_manager), p1(m_manager), p2(m_manager);
proof_ref_vector proofs(m_manager);
func_decl_ref f1(m_manager), f2(m_manager);
expr_ref_vector terms1(m_manager), terms2(m_manager), terms(m_manager);
sort_ref_vector decls1(m_manager), decls2(m_manager);
expr_ref fml0(m), fml1(m), fml2(m), fml(m);
expr_ref t1(m), t2(m);
expr_ref s1(m), s2(m);
expr_ref u1(m), u2(m);
expr_ref fact(m), body1(m), body2(m);
expr_ref l1(m), l2(m), r1(m), r2(m);
func_decl_ref d1(m), d2(m), d3(m);
proof_ref p0(m), p1(m), p2(m);
proof_ref_vector proofs(m);
func_decl_ref f1(m), f2(m);
expr_ref_vector terms1(m), terms2(m), terms(m);
sort_ref_vector decls1(m), decls2(m);
if (match_proof(p, proofs)) {
for (unsigned i = 0; i < proofs.size(); ++i) {
@ -296,7 +297,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
return false;
}
case PR_MONOTONICITY: {
TRACE("proof_checker", tout << mk_bounded_pp(p, m_manager, 3) << "\n";);
TRACE("proof_checker", tout << mk_bounded_pp(p, m, 3) << "\n";);
if (match_fact(p, fact) &&
match_binary(fact.get(), d1, t1, t2) &&
match_app(t1.get(), f1, terms1) &&
@ -334,7 +335,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
match_fact(p1.get(), fml) &&
(match_iff(fact.get(), t1, t2) || match_oeq(fact.get(), t1, t2)) &&
(match_iff(fml.get(), s1, s2) || match_oeq(fml.get(), s1, s2)) &&
m_manager.is_oeq(fact.get()) == m_manager.is_oeq(fml.get()) &&
m.is_oeq(fact.get()) == m.is_oeq(fml.get()) &&
is_quantifier(t1.get()) &&
is_quantifier(t2.get()) &&
to_quantifier(t1.get())->get_expr() == s1.get() &&
@ -366,7 +367,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
return false;
}
case PR_AND_ELIM: {
expr_ref_vector terms(m_manager);
expr_ref_vector terms(m);
if (match_proof(p, p1) &&
match_fact(p, fact) &&
match_fact(p1.get(), fml) &&
@ -381,7 +382,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
return false;
}
case PR_NOT_OR_ELIM: {
expr_ref_vector terms(m_manager);
expr_ref_vector terms(m);
if (match_proof(p, p1) &&
match_fact(p, fact) &&
match_fact(p1.get(), fml) &&
@ -403,25 +404,25 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
side_conditions.push_back(fact.get());
return true;
}
IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m_manager););
IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m););
return false;
}
case PR_REWRITE_STAR: {
if (match_fact(p, fact) &&
match_equiv(fact.get(), t1, t2)) {
expr_ref_vector rewrite_eq(m_manager);
expr_ref_vector rewrite_eq(m);
rewrite_eq.push_back(fact.get());
for (unsigned i = 0; i < proofs.size(); ++i) {
if (match_fact(proofs[i].get(), fml)) {
rewrite_eq.push_back(m_manager.mk_not(fml.get()));
rewrite_eq.push_back(m.mk_not(fml.get()));
}
}
expr_ref rewrite_cond(m_manager);
rewrite_cond = m_manager.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr());
expr_ref rewrite_cond(m);
rewrite_cond = m.mk_or(rewrite_eq.size(), rewrite_eq.c_ptr());
side_conditions.push_back(rewrite_cond.get());
return true;
}
IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m_manager););
IF_VERBOSE(0, verbose_stream() << "Expected proof of equality:\n" << mk_bounded_pp(p, m););
return false;
}
case PR_PULL_QUANT: {
@ -432,7 +433,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
// TBD: check the enchilada.
return true;
}
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence with a quantifier:\n" << mk_bounded_pp(p, m_manager););
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence with a quantifier:\n" << mk_bounded_pp(p, m););
return false;
}
case PR_PULL_QUANT_STAR: {
@ -442,7 +443,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
// TBD: check the enchilada.
return true;
}
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence:\n" << mk_bounded_pp(p, m_manager););
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence:\n" << mk_bounded_pp(p, m););
return false;
}
case PR_PUSH_QUANT: {
@ -509,9 +510,9 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
if (match_proof(p, p1) &&
match_fact(p, fact) &&
match_fact(p1.get(), fml) &&
m_manager.is_false(fml.get())) {
expr_ref_vector hypotheses(m_manager);
expr_ref_vector ors(m_manager);
m.is_false(fml.get())) {
expr_ref_vector hypotheses(m);
expr_ref_vector ors(m);
get_hypotheses(p1.get(), hypotheses);
if (hypotheses.size() == 1 && match_negated(hypotheses.get(0), fact)) {
// Suppose fact is (or a b c) and hypothesis is (not (or a b c))
@ -531,18 +532,18 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
tout << "i: " << i << "\n";
tout << "ORs:\n";
for (unsigned i = 0; i < ors.size(); i++) {
tout << mk_pp(ors.get(i), m_manager) << "\n";
tout << mk_pp(ors.get(i), m) << "\n";
}
tout << "HYPOTHESIS:\n";
for (unsigned i = 0; i < hypotheses.size(); i++) {
tout << mk_pp(hypotheses.get(i), m_manager) << "\n";
tout << mk_pp(hypotheses.get(i), m) << "\n";
});
UNREACHABLE();
return false;
}
TRACE("proof_checker", tout << "Matched:\n";
ast_ll_pp(tout, m_manager, hypotheses[i].get());
ast_ll_pp(tout, m_manager, ors[j-1].get()););
ast_ll_pp(tout, m, hypotheses[i].get());
ast_ll_pp(tout, m, ors[j-1].get()););
}
return true;
}
@ -555,7 +556,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
match_fact(proofs[0].get(), fml1) &&
match_fact(proofs[1].get(), fml2) &&
match_negated(fml1.get(), fml2.get()) &&
m_manager.is_false(fact.get())) {
m.is_false(fact.get())) {
return true;
}
if (match_fact(p, fact) &&
@ -580,15 +581,15 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
TRACE("pr_unit_bug",
tout << "Parents:\n";
for (unsigned i = 0; i < proofs.size(); i++) {
expr_ref p(m_manager);
expr_ref p(m);
match_fact(proofs.get(i), p);
tout << mk_pp(p, m_manager) << "\n";
tout << mk_pp(p, m) << "\n";
}
tout << "Fact:\n";
tout << mk_pp(fact, m_manager) << "\n";
tout << mk_pp(fact, m) << "\n";
tout << "Clause:\n";
tout << mk_pp(fml, m_manager) << "\n";
tout << "Could not find premise " << mk_pp(fml2, m_manager) << "\n";
tout << mk_pp(fml, m) << "\n";
tout << "Could not find premise " << mk_pp(fml2, m) << "\n";
);
UNREACHABLE();
@ -597,7 +598,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
}
switch(terms1.size()) {
case 0:
return m_manager.is_false(fact.get());
return m.is_false(fact.get());
case 1:
return fact.get() == terms1[0].get();
default: {
@ -609,15 +610,15 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
found = term1 == terms2[j].get();
}
if (!found) {
IF_VERBOSE(0, verbose_stream() << "Premise not found:" << mk_pp(term1, m_manager) << "\n";);
IF_VERBOSE(0, verbose_stream() << "Premise not found:" << mk_pp(term1, m) << "\n";);
return false;
}
}
return true;
}
IF_VERBOSE(0, verbose_stream() << "Conclusion is not a disjunction:\n";
verbose_stream() << mk_pp(fml.get(), m_manager) << "\n";
verbose_stream() << mk_pp(fact.get(), m_manager) << "\n";);
verbose_stream() << mk_pp(fml.get(), m) << "\n";
verbose_stream() << mk_pp(fact.get(), m) << "\n";);
return false;
}
@ -634,7 +635,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
match_fact(p1.get(), fml1) &&
match_iff(fact.get(), l1, r1) &&
fml1.get() == l1.get() &&
r1.get() == m_manager.mk_true()) {
r1.get() == m.mk_true()) {
return true;
}
UNREACHABLE();
@ -648,7 +649,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
match_iff(fact.get(), l1, r1) &&
match_not(fml1.get(), t1) &&
t1.get() == l1.get() &&
r1.get() == m_manager.mk_false()) {
r1.get() == m.mk_false()) {
return true;
}
UNREACHABLE();
@ -674,7 +675,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
// axiom(?fml)
if (match_fact(p, fact) &&
match_proof(p) &&
m_manager.is_bool(fact.get())) {
m.is_bool(fact.get())) {
return true;
}
UNREACHABLE();
@ -689,7 +690,7 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
//
if (match_fact(p, fact) &&
match_proof(p) &&
m_manager.is_bool(fact.get())) {
m.is_bool(fact.get())) {
return true;
}
UNREACHABLE();
@ -790,16 +791,138 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
// TODO
return true;
}
case PR_HYPER_RESOLVE: {
proof_ref_vector premises(m);
expr_ref_vector fmls(m);
expr_ref conclusion(m), premise(m), premise0(m), premise1(m);
svector<std::pair<unsigned, unsigned> > positions;
vector<expr_ref_vector> substs;
VERIFY(m.is_hyper_resolve(p, premises, conclusion, positions, substs));
var_subst vs(m, false);
for (unsigned i = 0; i < premises.size(); ++i) {
expr_ref_vector const& sub = substs[i];
premise = m.get_fact(premises[i].get());
if (!sub.empty()) {
if (is_forall(premise)) {
// SASSERT(to_quantifier(premise)->get_num_decls() == sub.size());
premise = to_quantifier(premise)->get_expr();
}
vs(premise, sub.size(), sub.c_ptr(), premise);
}
fmls.push_back(premise.get());
TRACE("proof_checker",
tout << mk_pp(premise.get(), m) << "\n";
for (unsigned j = 0; j < sub.size(); ++j) {
tout << mk_pp(sub[j], m) << " ";
}
tout << "\n";);
}
premise0 = fmls[0].get();
for (unsigned i = 1; i < fmls.size(); ++i) {
expr_ref lit1(m), lit2(m);
expr* lit3 = 0;
std::pair<unsigned, unsigned> pos = positions[i-1];
premise1 = fmls[i].get();
set_false(premise0, pos.first, lit1);
set_false(premise1, pos.second, lit2);
if (m.is_not(lit1, lit3) && lit3 == lit2) {
// ok
}
else if (m.is_not(lit2, lit3) && lit3 == lit1) {
// ok
}
else {
IF_VERBOSE(0, verbose_stream() << "Could not establish complementarity for:\n" <<
mk_pp(lit1, m) << "\n" << mk_pp(lit2, m) << "\n";);
}
fmls[i] = premise1;
}
fmls[0] = premise0;
premise0 = m.mk_or(fmls.size(), fmls.c_ptr());
if (is_forall(conclusion)) {
quantifier* q = to_quantifier(conclusion);
premise0 = m.mk_iff(premise0, q->get_expr());
premise0 = m.mk_forall(q->get_num_decls(), q->get_decl_sorts(), q->get_decl_names(), premise0);
}
else {
premise0 = m.mk_iff(premise0, conclusion);
}
side_conditions.push_back(premise0);
return true;
}
default:
UNREACHABLE();
return false;
}
}
/**
\brief Premises of the rules are of the form
(or l0 l1 l2 .. ln)
or
(=> (and ln+1 ln+2 .. ln+m) l0)
or in the most general (ground) form:
(=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln-1))
In other words we use the following (Prolog style) convention for Horn
implications:
The head of a Horn implication is position 0,
the first conjunct in the body of an implication is position 1
the second conjunct in the body of an implication is position 2
Set the position provided in the argument to 'false'.
*/
void proof_checker::set_false(expr_ref& e, unsigned position, expr_ref& lit) {
app* a = to_app(e);
expr* head, *body;
expr_ref_vector args(m);
if (m.is_or(e)) {
SASSERT(position < a->get_num_args());
args.append(a->get_num_args(), a->get_args());
lit = args[position].get();
args[position] = m.mk_false();
e = m.mk_or(args.size(), args.c_ptr());
}
else if (m.is_implies(e, body, head)) {
expr* const* heads = &head;
unsigned num_heads = 1;
if (m.is_or(head)) {
num_heads = to_app(head)->get_num_args();
heads = to_app(head)->get_args();
}
expr*const* bodies = &body;
unsigned num_bodies = 1;
if (m.is_and(body)) {
num_bodies = to_app(body)->get_num_args();
bodies = to_app(body)->get_args();
}
if (position < num_heads) {
args.append(num_heads, heads);
lit = args[position].get();
args[position] = m.mk_false();
e = m.mk_implies(body, m.mk_or(args.size(), args.c_ptr()));
}
else {
position -= num_heads;
args.append(num_bodies, bodies);
lit = m.mk_not(args[position].get());
args[position] = m.mk_true();
e = m.mk_implies(m.mk_and(args.size(), args.c_ptr()), head);
}
}
else if (position == 0) {
lit = e;
e = m.mk_false();
}
else {
IF_VERBOSE(0, verbose_stream() << position << "\n" << mk_pp(e, m) << "\n";);
UNREACHABLE();
}
}
bool proof_checker::match_fact(proof* p, expr_ref& fact) {
if (m_manager.is_proof(p) &&
m_manager.has_fact(p)) {
fact = m_manager.get_fact(p);
if (m.is_proof(p) &&
m.has_fact(p)) {
fact = m.get_fact(p);
return true;
}
return false;
@ -814,33 +937,33 @@ void proof_checker::add_premise(proof* p) {
bool proof_checker::match_proof(proof* p) {
return
m_manager.is_proof(p) &&
m_manager.get_num_parents(p) == 0;
m.is_proof(p) &&
m.get_num_parents(p) == 0;
}
bool proof_checker::match_proof(proof* p, proof_ref& p0) {
if (m_manager.is_proof(p) &&
m_manager.get_num_parents(p) == 1) {
p0 = m_manager.get_parent(p, 0);
if (m.is_proof(p) &&
m.get_num_parents(p) == 1) {
p0 = m.get_parent(p, 0);
return true;
}
return false;
}
bool proof_checker::match_proof(proof* p, proof_ref& p0, proof_ref& p1) {
if (m_manager.is_proof(p) &&
m_manager.get_num_parents(p) == 2) {
p0 = m_manager.get_parent(p, 0);
p1 = m_manager.get_parent(p, 1);
if (m.is_proof(p) &&
m.get_num_parents(p) == 2) {
p0 = m.get_parent(p, 0);
p1 = m.get_parent(p, 1);
return true;
}
return false;
}
bool proof_checker::match_proof(proof* p, proof_ref_vector& parents) {
if (m_manager.is_proof(p)) {
for (unsigned i = 0; i < m_manager.get_num_parents(p); ++i) {
parents.push_back(m_manager.get_parent(p, i));
if (m.is_proof(p)) {
for (unsigned i = 0; i < m.get_num_parents(p); ++i) {
parents.push_back(m.get_parent(p, i));
}
return true;
}
@ -886,7 +1009,7 @@ bool proof_checker::match_quantifier(expr* e, bool& is_univ, sort_ref_vector& so
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2) {
if (e->get_kind() == AST_APP &&
to_app(e)->get_family_id() == m_manager.get_basic_family_id() &&
to_app(e)->get_family_id() == m.get_basic_family_id() &&
to_app(e)->get_decl_kind() == k &&
to_app(e)->get_num_args() == 2) {
t1 = to_app(e)->get_arg(0);
@ -898,7 +1021,7 @@ bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2) {
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref_vector& terms) {
if (e->get_kind() == AST_APP &&
to_app(e)->get_family_id() == m_manager.get_basic_family_id() &&
to_app(e)->get_family_id() == m.get_basic_family_id() &&
to_app(e)->get_decl_kind() == k) {
for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) {
terms.push_back(to_app(e)->get_arg(i));
@ -911,7 +1034,7 @@ bool proof_checker::match_op(expr* e, decl_kind k, expr_ref_vector& terms) {
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t) {
if (e->get_kind() == AST_APP &&
to_app(e)->get_family_id() == m_manager.get_basic_family_id() &&
to_app(e)->get_family_id() == m.get_basic_family_id() &&
to_app(e)->get_decl_kind() == k &&
to_app(e)->get_num_args() == 1) {
t = to_app(e)->get_arg(0);
@ -953,7 +1076,7 @@ bool proof_checker::match_oeq(expr* e, expr_ref& t1, expr_ref& t2) {
}
bool proof_checker::match_negated(expr* a, expr* b) {
expr_ref t(m_manager);
expr_ref t(m);
return
(match_not(a, t) && t.get() == b) ||
(match_not(b, t) && t.get() == a);
@ -961,7 +1084,7 @@ bool proof_checker::match_negated(expr* a, expr* b) {
void proof_checker::get_ors(expr* e, expr_ref_vector& ors) {
ptr_buffer<expr> buffer;
if (m_manager.is_or(e)) {
if (m.is_or(e)) {
app* a = to_app(e);
ors.append(a->get_num_args(), a->get_args());
}
@ -974,12 +1097,12 @@ void proof_checker::get_ors(expr* e, expr_ref_vector& ors) {
void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) {
ptr_vector<proof> stack;
expr* h = 0;
expr_ref hyp(m_manager);
expr_ref hyp(m);
stack.push_back(p);
while (!stack.empty()) {
p = stack.back();
SASSERT(m_manager.is_proof(p));
SASSERT(m.is_proof(p));
if (m_hypotheses.contains(p)) {
stack.pop_back();
continue;
@ -992,15 +1115,15 @@ void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) {
continue;
}
// in this system all hypotheses get bound by lemmas.
if (m_manager.is_lemma(p)) {
if (m.is_lemma(p)) {
m_hypotheses.insert(p, mk_nil());
stack.pop_back();
continue;
}
bool all_found = true;
ptr_vector<expr> hyps;
for (unsigned i = 0; i < m_manager.get_num_parents(p); ++i) {
proof* p_i = m_manager.get_parent(p, i);
for (unsigned i = 0; i < m.get_num_parents(p); ++i) {
proof* p_i = m.get_parent(p, i);
if (m_hypotheses.find(p_i, h)) {
hyps.push_back(h);
}
@ -1028,7 +1151,7 @@ void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) {
ptr_buffer<expr> todo;
expr_mark mark;
todo.push_back(h);
expr_ref a(m_manager), b(m_manager);
expr_ref a(m), b(m);
while (!todo.empty()) {
h = todo.back();
@ -1051,10 +1174,10 @@ void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) {
}
TRACE("proof_checker",
{
ast_ll_pp(tout << "Getting hypotheses from: ", m_manager, p);
ast_ll_pp(tout << "Getting hypotheses from: ", m, p);
tout << "Found hypotheses:\n";
for (unsigned i = 0; i < ante.size(); ++i) {
ast_ll_pp(tout, m_manager, ante[i].get());
ast_ll_pp(tout, m, ante[i].get());
}
});
@ -1090,11 +1213,11 @@ bool proof_checker::match_atom(expr* e, expr_ref& a) const {
}
expr* proof_checker::mk_atom(expr* e) {
return m_manager.mk_app(m_hyp_fid, OP_ATOM, e);
return m.mk_app(m_hyp_fid, OP_ATOM, e);
}
expr* proof_checker::mk_cons(expr* a, expr* b) {
return m_manager.mk_app(m_hyp_fid, OP_CONS, a, b);
return m.mk_app(m_hyp_fid, OP_CONS, a, b);
}
expr* proof_checker::mk_nil() {
@ -1103,7 +1226,7 @@ expr* proof_checker::mk_nil() {
bool proof_checker::is_hypothesis(proof* p) const {
return
m_manager.is_proof(p) &&
m.is_proof(p) &&
p->get_decl_kind() == PR_HYPOTHESIS;
}
@ -1130,14 +1253,14 @@ expr* proof_checker::mk_hyp(unsigned num_hyps, expr * const * hyps) {
void proof_checker::dump_proof(proof * pr) {
if (!m_dump_lemmas)
return;
SASSERT(m_manager.has_fact(pr));
expr * consequent = m_manager.get_fact(pr);
unsigned num = m_manager.get_num_parents(pr);
SASSERT(m.has_fact(pr));
expr * consequent = m.get_fact(pr);
unsigned num = m.get_num_parents(pr);
ptr_buffer<expr> antecedents;
for (unsigned i = 0; i < num; i++) {
proof * a = m_manager.get_parent(pr, i);
SASSERT(m_manager.has_fact(a));
antecedents.push_back(m_manager.get_fact(a));
proof * a = m.get_parent(pr, i);
SASSERT(m.has_fact(a));
antecedents.push_back(m.get_fact(a));
}
dump_proof(antecedents.size(), antecedents.c_ptr(), consequent);
}
@ -1150,21 +1273,20 @@ void proof_checker::dump_proof(unsigned num_antecedents, expr * const * antecede
sprintf(buffer, "proof_lemma_%d.smt", m_proof_lemma_id);
#endif
std::ofstream out(buffer);
ast_smt_pp pp(m_manager);
ast_smt_pp pp(m);
pp.set_benchmark_name("lemma");
pp.set_status("unsat");
pp.set_logic(m_logic.c_str());
for (unsigned i = 0; i < num_antecedents; i++)
pp.add_assumption(antecedents[i]);
expr_ref n(m_manager);
n = m_manager.mk_not(consequent);
expr_ref n(m);
n = m.mk_not(consequent);
pp.display(out, n);
out.close();
m_proof_lemma_id++;
}
bool proof_checker::check_arith_literal(bool is_pos, app* lit0, rational const& coeff, expr_ref& sum, bool& is_strict) {
ast_manager& m = m_manager;
arith_util a(m);
app* lit = lit0;
@ -1173,7 +1295,7 @@ bool proof_checker::check_arith_literal(bool is_pos, app* lit0, rational const&
is_pos = !is_pos;
}
if (!a.is_le(lit) && !a.is_lt(lit) && !a.is_ge(lit) && !a.is_gt(lit) && !m.is_eq(lit)) {
std::cout << mk_pp(lit, m) << "\n";
IF_VERBOSE(0, verbose_stream() << mk_pp(lit, m) << "\n";);
return false;
}
SASSERT(lit->get_num_args() == 2);
@ -1237,7 +1359,7 @@ bool proof_checker::check_arith_literal(bool is_pos, app* lit0, rational const&
rw(sum);
}
std::cout << coeff << "\n" << mk_pp(lit0, m) << "\n" << mk_pp(sum, m) << "\n";
IF_VERBOSE(0, verbose_stream() << coeff << "\n" << mk_pp(lit0, m) << "\n" << mk_pp(sum, m) << "\n";);
#endif
return true;
@ -1247,7 +1369,6 @@ bool proof_checker::check_arith_proof(proof* p) {
func_decl* d = p->get_decl();
SASSERT(PR_TH_LEMMA == p->get_decl_kind());
SASSERT(d->get_parameter(0).get_symbol() == "arith");
ast_manager& m = m_manager;
unsigned num_params = d->get_num_parameters();
arith_util autil(m);
@ -1257,7 +1378,7 @@ bool proof_checker::check_arith_proof(proof* p) {
return true;
}
expr_ref fact(m);
proof_ref_vector proofs(m_manager);
proof_ref_vector proofs(m);
if (!match_fact(p, fact)) {
UNREACHABLE();
@ -1331,7 +1452,7 @@ bool proof_checker::check_arith_proof(proof* p) {
rw(sum);
if (!m.is_false(sum)) {
std::cout << "Arithmetic proof check failed: " << mk_pp(sum, m) << "\n";
IF_VERBOSE(0, verbose_stream() << "Arithmetic proof check failed: " << mk_pp(sum, m) << "\n";);
m_dump_lemmas = true;
dump_proof(p);
return false;

View file

@ -23,7 +23,7 @@ Revision History:
#include "map.h"
class proof_checker {
ast_manager& m_manager;
ast_manager& m;
proof_ref_vector m_todo;
expr_mark m_marked;
expr_ref_vector m_pinned;
@ -111,6 +111,8 @@ private:
expr* mk_hyp(unsigned num_hyps, expr * const * hyps);
void dump_proof(proof * pr);
void dump_proof(unsigned num_antecedents, expr * const * antecedents, expr * consequent);
void set_false(expr_ref& e, unsigned idx, expr_ref& lit);
};
#endif