mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
fix bug in new core not detecting conflict, fix #6525, add tactic doc
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
feda706d0d
commit
4f7f4376b8
|
@ -1673,6 +1673,7 @@ bool ast_manager::are_distinct(expr* a, expr* b) const {
|
|||
}
|
||||
|
||||
void ast_manager::add_lambda_def(func_decl* f, quantifier* q) {
|
||||
TRACE("model", tout << "add lambda def " << mk_pp(q, *this) << "\n");
|
||||
m_lambda_defs.insert(f, q);
|
||||
f->get_info()->set_lambda(true);
|
||||
inc_ref(q);
|
||||
|
|
|
@ -1631,6 +1631,7 @@ public:
|
|||
void add_lambda_def(func_decl* f, quantifier* q);
|
||||
quantifier* is_lambda_def(func_decl* f);
|
||||
quantifier* is_lambda_def(app* e) { return is_lambda_def(e->get_decl()); }
|
||||
obj_map<func_decl, quantifier*> const& lambda_defs() const { return m_lambda_defs; }
|
||||
|
||||
symbol const& lambda_def_qid() const { return m_lambda_def; }
|
||||
|
||||
|
|
|
@ -83,6 +83,23 @@ void dependent_expr_state::freeze_recfun() {
|
|||
m_num_recfun = sz;
|
||||
}
|
||||
|
||||
/**
|
||||
* Freeze all functions used in lambda defined declarations
|
||||
*/
|
||||
void dependent_expr_state::freeze_lambda() {
|
||||
auto& m = m_frozen_trail.get_manager();
|
||||
unsigned sz = m.lambda_defs().size();
|
||||
if (m_num_lambdas >= sz)
|
||||
return;
|
||||
|
||||
ast_mark visited;
|
||||
for (auto const& [f, body] : m.lambda_defs())
|
||||
freeze_terms(body, false, visited);
|
||||
m_trail.push(value_trail(m_num_lambdas));
|
||||
m_num_lambdas = sz;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* The current qhead is to be updated to qtail.
|
||||
* Before this update, freeze all functions appearing in formulas.
|
||||
|
@ -100,8 +117,9 @@ void dependent_expr_state::freeze_suffix() {
|
|||
if (m_suffix_frozen)
|
||||
return;
|
||||
m_suffix_frozen = true;
|
||||
auto& m = m_frozen_trail.get_manager();
|
||||
freeze_recfun();
|
||||
freeze_lambda();
|
||||
auto& m = m_frozen_trail.get_manager();
|
||||
ast_mark visited;
|
||||
ptr_vector<expr> es;
|
||||
for (unsigned i = qhead(); i < qtail(); ++i) {
|
||||
|
|
|
@ -43,12 +43,13 @@ Author:
|
|||
class dependent_expr_state {
|
||||
unsigned m_qhead = 0;
|
||||
bool m_suffix_frozen = false;
|
||||
unsigned m_num_recfun = 0;
|
||||
unsigned m_num_recfun = 0, m_num_lambdas = 0;
|
||||
lbool m_has_quantifiers = l_undef;
|
||||
ast_mark m_frozen;
|
||||
func_decl_ref_vector m_frozen_trail;
|
||||
void freeze_prefix();
|
||||
void freeze_recfun();
|
||||
void freeze_lambda();
|
||||
void freeze_terms(expr* term, bool only_as_array, ast_mark& visited);
|
||||
void freeze(expr* term);
|
||||
void freeze(func_decl* f);
|
||||
|
|
|
@ -116,10 +116,10 @@ namespace euf {
|
|||
for (auto const& eq : m_next[j]) {
|
||||
auto const& [orig, v, t, d] = eq;
|
||||
SASSERT(j == var2id(v));
|
||||
bool is_safe = true;
|
||||
if (m_fmls.frozen(v))
|
||||
continue;
|
||||
|
||||
bool is_safe = true;
|
||||
unsigned todo_sz = todo.size();
|
||||
|
||||
// determine if substitution is safe.
|
||||
|
@ -223,6 +223,8 @@ namespace euf {
|
|||
|
||||
void solve_eqs::reduce() {
|
||||
|
||||
m_fmls.freeze_suffix();
|
||||
|
||||
for (extract_eq* ex : m_extract_plugins)
|
||||
ex->pre_process(m_fmls);
|
||||
|
||||
|
|
|
@ -13,7 +13,24 @@ Author:
|
|||
|
||||
Leonardo (leonardo) 2012-01-02
|
||||
|
||||
Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic nlsat
|
||||
|
||||
### Short Description
|
||||
|
||||
(try to) solve goal using a nonlinear arithmetic solver
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Real)
|
||||
(declare-const y Real)
|
||||
(assert (> (* x x) (* y x)))
|
||||
(assert (> x 0))
|
||||
(assert (< y 1))
|
||||
(apply (then simplify purify-arith nlsat))
|
||||
```
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -13,7 +13,26 @@ Author:
|
|||
|
||||
Leonardo (leonardo) 2012-01-23
|
||||
|
||||
Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic qfnra-nlsat
|
||||
|
||||
### Short Description
|
||||
|
||||
Self-contained tactic that attempts to solve goal using a nonlinear arithmetic solver.
|
||||
It first applies tactics, such as `purify-arith` to convert the goal into a format
|
||||
where the `nlsat` tactic applies.
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Real)
|
||||
(declare-const y Real)
|
||||
(assert (> (* x x) (* y x)))
|
||||
(assert (> x 0))
|
||||
(assert (< y 1))
|
||||
(apply qfnra-nlsat)
|
||||
```
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -13,9 +13,33 @@ Author:
|
|||
|
||||
Leonardo de Moura (leonardo) 2011-12-28.
|
||||
|
||||
Revision History:
|
||||
Tactic Documentation
|
||||
|
||||
## Tactic qe
|
||||
|
||||
### Short Description
|
||||
|
||||
Apply quantifier elimination on quantified sub-formulas.
|
||||
|
||||
### Long Description
|
||||
|
||||
The tactic applies quantifier elimination procedures on quantified sub-formulas.
|
||||
It relies on theory plugins that can perform quanifier elimination for selected theories.
|
||||
These plugins include Booleans, bit-vectors, arithmetic (linear), arrays, and data-types (term algebra).
|
||||
It performs feasibility checks on cases to throttle the set of sub-formulas where quantifier elimination
|
||||
is applied.
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Int)
|
||||
(declare-const y Int)
|
||||
(assert (exists ((z Int)) (and (<= x (* 2 z)) (<= (* 3 z) y))))
|
||||
(apply qe)
|
||||
```
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "util/params.h"
|
||||
|
|
|
@ -124,6 +124,19 @@ namespace arith {
|
|||
return m_arith_hint.mk(ctx);
|
||||
}
|
||||
|
||||
arith_proof_hint const* solver::explain_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs) {
|
||||
arith_proof_hint* hint = nullptr;
|
||||
if (ctx.use_drat()) {
|
||||
m_arith_hint.set_type(ctx, hint_type::farkas_h);
|
||||
for (auto lit : core)
|
||||
m_arith_hint.add_lit(rational::one(), lit);
|
||||
for (auto const& [a,b] : eqs)
|
||||
m_arith_hint.add_eq(a, b);
|
||||
hint = m_arith_hint.mk(ctx);
|
||||
}
|
||||
return hint;
|
||||
}
|
||||
|
||||
arith_proof_hint const* solver::explain_implied_eq(lp::explanation const& e, euf::enode* a, euf::enode* b) {
|
||||
if (!ctx.use_drat())
|
||||
return nullptr;
|
||||
|
|
|
@ -1196,26 +1196,31 @@ namespace arith {
|
|||
void solver::set_conflict_or_lemma(literal_vector const& core, bool is_conflict) {
|
||||
reset_evidence();
|
||||
m_core.append(core);
|
||||
|
||||
++m_num_conflicts;
|
||||
++m_stats.m_conflicts;
|
||||
for (auto ev : m_explanation)
|
||||
set_evidence(ev.ci());
|
||||
|
||||
TRACE("arith",
|
||||
tout << "Lemma - " << (is_conflict ? "conflict" : "propagation") << "\n";
|
||||
for (literal c : m_core) tout << literal2expr(c) << "\n";
|
||||
for (auto p : m_eqs) tout << ctx.bpp(p.first) << " == " << ctx.bpp(p.second) << "\n";);
|
||||
DEBUG_CODE(
|
||||
if (is_conflict) {
|
||||
for (literal c : m_core) VERIFY(s().value(c) == l_true);
|
||||
for (auto p : m_eqs) VERIFY(p.first->get_root() == p.second->get_root());
|
||||
});
|
||||
for (auto const& eq : m_eqs)
|
||||
m_core.push_back(ctx.mk_literal(m.mk_eq(eq.first->get_expr(), eq.second->get_expr())));
|
||||
for (literal& c : m_core)
|
||||
c.neg();
|
||||
|
||||
add_redundant(m_core, explain(hint_type::farkas_h));
|
||||
if (is_conflict) {
|
||||
DEBUG_CODE(
|
||||
for (literal c : m_core) VERIFY(s().value(c) == l_true);
|
||||
for (auto p : m_eqs) VERIFY(p.first->get_root() == p.second->get_root()));
|
||||
++m_num_conflicts;
|
||||
++m_stats.m_conflicts;
|
||||
auto* hint = explain_conflict(m_core, m_eqs);
|
||||
ctx.set_conflict(euf::th_explain::conflict(*this, m_core, m_eqs, hint));
|
||||
}
|
||||
else {
|
||||
for (auto const& eq : m_eqs)
|
||||
m_core.push_back(ctx.mk_literal(m.mk_eq(eq.first->get_expr(), eq.second->get_expr())));
|
||||
for (literal& c : m_core)
|
||||
c.neg();
|
||||
|
||||
add_redundant(m_core, explain(hint_type::farkas_h));
|
||||
}
|
||||
}
|
||||
|
||||
bool solver::is_infeasible() const {
|
||||
|
|
|
@ -478,6 +478,7 @@ namespace arith {
|
|||
arith_proof_hint const* explain(hint_type ty, sat::literal lit = sat::null_literal);
|
||||
arith_proof_hint const* explain_implied_eq(lp::explanation const& e, euf::enode* a, euf::enode* b);
|
||||
arith_proof_hint const* explain_trichotomy(sat::literal le, sat::literal ge, sat::literal eq);
|
||||
arith_proof_hint const* explain_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs);
|
||||
void explain_assumptions(lp::explanation const& e);
|
||||
|
||||
|
||||
|
|
|
@ -13,7 +13,36 @@ Author:
|
|||
|
||||
Leonardo (leonardo) 2011-10-26
|
||||
|
||||
Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic sat
|
||||
|
||||
### Short Description
|
||||
|
||||
Try to solve goal using a SAT solver
|
||||
|
||||
## Tactic sat-preprocess
|
||||
|
||||
### Short Description
|
||||
|
||||
Apply SAT solver preprocessing procedures (bounded resolution, Boolean constant propagation, 2-SAT, subsumption, subsumption resolution).
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const a Bool)
|
||||
(declare-const b Bool)
|
||||
(declare-const c Bool)
|
||||
(declare-const d Bool)
|
||||
(declare-const e Bool)
|
||||
(declare-const f Bool)
|
||||
(declare-fun p (Bool) Bool)
|
||||
(assert (=> a b))
|
||||
(assert (=> b c))
|
||||
(assert a)
|
||||
(assert (not c))
|
||||
(apply sat-preprocess)
|
||||
```
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -13,7 +13,17 @@ Author:
|
|||
|
||||
Nikolaj (nbjorner) 2012-3-6
|
||||
|
||||
Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic ctx-solver-simplify
|
||||
|
||||
### Short Description
|
||||
|
||||
A heavy handed version of `ctx-simplify`. It applies SMT checks on sub-formulas to check
|
||||
if they can be simplified to `true` or `false` within their context.
|
||||
Note that a sub-formula may occur within multiple contexts due to shared sub-terms.
|
||||
In this case the tactic is partial and simplifies a limited number of context occurrences.
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -13,12 +13,20 @@ Author:
|
|||
|
||||
Nikolaj Bjorner (nbjorner) 2012-9-6
|
||||
|
||||
Notes:
|
||||
Tactic Documentation:
|
||||
|
||||
Background: PDR generates several clauses that subsume each-other.
|
||||
Simplify a goal assuming it is a conjunction of clauses.
|
||||
Subsumed clauses are simplified by using unit-propagation
|
||||
It uses the smt_context for the solver.
|
||||
## Tactic unit-subsume-simplify
|
||||
|
||||
### Short Description
|
||||
|
||||
implify goal using subsumption based on unit propagation
|
||||
|
||||
### Long Description
|
||||
|
||||
Background: PDR generates several clauses that subsume each-other.
|
||||
Simplify a goal assuming it is a conjunction of clauses.
|
||||
Subsumed clauses are simplified by using unit-propagation
|
||||
It uses the default SMT solver.
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
Loading…
Reference in a new issue