mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
remove interpolation and duality dependencies
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
d088a1b9f6
commit
4f5775c531
59 changed files with 3 additions and 26262 deletions
|
@ -188,7 +188,7 @@ namespace datalog {
|
|||
if (m_trail.get_num_scopes() == 0) {
|
||||
throw default_exception("there are no backtracking points to pop to");
|
||||
}
|
||||
if (m_engine.get() && get_engine() != DUALITY_ENGINE) {
|
||||
if (m_engine.get()) {
|
||||
throw default_exception("pop operation is only supported by duality engine");
|
||||
}
|
||||
m_trail.pop_scope(1);
|
||||
|
@ -601,11 +601,6 @@ namespace datalog {
|
|||
m_rule_properties.check_existential_tail();
|
||||
m_rule_properties.check_for_negated_predicates();
|
||||
break;
|
||||
case DUALITY_ENGINE:
|
||||
m_rule_properties.collect(r);
|
||||
m_rule_properties.check_existential_tail();
|
||||
m_rule_properties.check_for_negated_predicates();
|
||||
break;
|
||||
case CLP_ENGINE:
|
||||
m_rule_properties.collect(r);
|
||||
m_rule_properties.check_existential_tail();
|
||||
|
@ -828,9 +823,6 @@ namespace datalog {
|
|||
else if (e == symbol("clp")) {
|
||||
m_engine_type = CLP_ENGINE;
|
||||
}
|
||||
else if (e == symbol("duality")) {
|
||||
m_engine_type = DUALITY_ENGINE;
|
||||
}
|
||||
else if (e == symbol("ddnf")) {
|
||||
m_engine_type = DDNF_ENGINE;
|
||||
}
|
||||
|
@ -875,11 +867,6 @@ namespace datalog {
|
|||
case DDNF_ENGINE:
|
||||
flush_add_rules();
|
||||
break;
|
||||
case DUALITY_ENGINE:
|
||||
// this lets us use duality with SAS 2013 abstraction
|
||||
if(quantify_arrays())
|
||||
flush_add_rules();
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
|
|
@ -32,7 +32,6 @@ namespace datalog {
|
|||
QBMC_ENGINE,
|
||||
TAB_ENGINE,
|
||||
CLP_ENGINE,
|
||||
DUALITY_ENGINE,
|
||||
DDNF_ENGINE,
|
||||
LAST_ENGINE
|
||||
};
|
||||
|
|
|
@ -1,8 +0,0 @@
|
|||
z3_add_component(duality_intf
|
||||
SOURCES
|
||||
duality_dl_interface.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
duality
|
||||
muz
|
||||
transforms
|
||||
)
|
|
@ -1,623 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_dl_interface.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
SMT2 interface for Duality
|
||||
|
||||
Author:
|
||||
|
||||
Krystof Hoder (t-khoder) 2011-9-22.
|
||||
Modified by Ken McMIllan (kenmcmil) 2013-4-18.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include "muz/base/dl_context.h"
|
||||
#include "muz/transforms/dl_mk_coi_filter.h"
|
||||
#include "muz/transforms/dl_mk_interp_tail_simplifier.h"
|
||||
#include "muz/transforms/dl_mk_subsumption_checker.h"
|
||||
#include "muz/transforms/dl_mk_rule_inliner.h"
|
||||
#include "muz/base/dl_rule.h"
|
||||
#include "muz/base/dl_rule_transformer.h"
|
||||
#include "parsers/smt2/smt2parser.h"
|
||||
#include "muz/duality/duality_dl_interface.h"
|
||||
#include "muz/base/dl_rule_set.h"
|
||||
#include "muz/transforms/dl_mk_slice.h"
|
||||
#include "muz/transforms/dl_mk_unfold.h"
|
||||
#include "muz/transforms/dl_mk_coalesce.h"
|
||||
#include "ast/expr_abstract.h"
|
||||
#include "model/model_smt2_pp.h"
|
||||
#include "model/model_v2_pp.h"
|
||||
#include "muz/base/fixedpoint_params.hpp"
|
||||
#include "ast/used_vars.h"
|
||||
#include "ast/func_decl_dependencies.h"
|
||||
#include "muz/transforms/dl_transforms.h"
|
||||
|
||||
// template class symbol_table<family_id>;
|
||||
|
||||
#ifdef WIN32
|
||||
#pragma warning(disable:4996)
|
||||
#pragma warning(disable:4800)
|
||||
#pragma warning(disable:4267)
|
||||
#pragma warning(disable:4101)
|
||||
#endif
|
||||
|
||||
#include "duality/duality.h"
|
||||
#include "duality/duality_profiling.h"
|
||||
|
||||
// using namespace Duality;
|
||||
|
||||
namespace Duality {
|
||||
|
||||
enum DualityStatus {StatusModel, StatusRefutation, StatusUnknown, StatusNull};
|
||||
|
||||
class duality_data {
|
||||
public:
|
||||
context ctx;
|
||||
RPFP::LogicSolver *ls;
|
||||
RPFP *rpfp;
|
||||
|
||||
DualityStatus status;
|
||||
std::vector<expr> clauses;
|
||||
std::vector<std::vector<RPFP::label_struct> > clause_labels;
|
||||
hash_map<RPFP::Edge *,int> map; // edges to clauses
|
||||
Solver *old_rs;
|
||||
Solver::Counterexample cex;
|
||||
|
||||
duality_data(ast_manager &_m) : ctx(_m,config(params_ref())) {
|
||||
ls = nullptr;
|
||||
rpfp = nullptr;
|
||||
status = StatusNull;
|
||||
old_rs = nullptr;
|
||||
}
|
||||
~duality_data(){
|
||||
if(old_rs)
|
||||
dealloc(old_rs);
|
||||
if(rpfp)
|
||||
dealloc(rpfp);
|
||||
if(ls)
|
||||
dealloc(ls);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
dl_interface::dl_interface(datalog::context& dl_ctx) :
|
||||
engine_base(dl_ctx.get_manager(), "duality"),
|
||||
m_ctx(dl_ctx)
|
||||
|
||||
{
|
||||
_d = nullptr;
|
||||
// dl_ctx.get_manager().toggle_proof_mode(PGM_FINE);
|
||||
}
|
||||
|
||||
|
||||
dl_interface::~dl_interface() {
|
||||
if(_d)
|
||||
dealloc(_d);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Check if the new rules are weaker so that we can
|
||||
// re-use existing context.
|
||||
//
|
||||
#if 0
|
||||
void dl_interface::check_reset() {
|
||||
// TODO
|
||||
datalog::rule_ref_vector const& new_rules = m_ctx.get_rules().get_rules();
|
||||
datalog::rule_ref_vector const& old_rules = m_old_rules.get_rules();
|
||||
bool is_subsumed = !old_rules.empty();
|
||||
for (unsigned i = 0; is_subsumed && i < new_rules.size(); ++i) {
|
||||
is_subsumed = false;
|
||||
for (unsigned j = 0; !is_subsumed && j < old_rules.size(); ++j) {
|
||||
if (m_ctx.check_subsumes(*old_rules[j], *new_rules[i])) {
|
||||
is_subsumed = true;
|
||||
}
|
||||
}
|
||||
if (!is_subsumed) {
|
||||
TRACE("pdr", new_rules[i]->display(m_ctx, tout << "Fresh rule "););
|
||||
m_context->reset();
|
||||
}
|
||||
}
|
||||
m_old_rules.reset();
|
||||
m_old_rules.add_rules(new_rules.size(), new_rules.c_ptr());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
lbool dl_interface::query(::expr * query) {
|
||||
|
||||
// we restore the initial state in the datalog context
|
||||
m_ctx.ensure_opened();
|
||||
|
||||
// if there is old data, get the cex and dispose (later)
|
||||
duality_data *old_data = _d;
|
||||
Solver *old_rs = nullptr;
|
||||
if(old_data){
|
||||
old_rs = old_data->old_rs;
|
||||
old_rs->GetCounterexample().swap(old_data->cex);
|
||||
}
|
||||
|
||||
scoped_proof generate_proofs_please(m_ctx.get_manager());
|
||||
|
||||
// make a new problem and solver
|
||||
_d = alloc(duality_data,m_ctx.get_manager());
|
||||
_d->ctx.set("mbqi",m_ctx.get_params().duality_mbqi());
|
||||
_d->ls = alloc(RPFP::iZ3LogicSolver,_d->ctx);
|
||||
_d->rpfp = alloc(RPFP,_d->ls);
|
||||
|
||||
|
||||
|
||||
expr_ref_vector rules(m_ctx.get_manager());
|
||||
svector< ::symbol> names;
|
||||
unsigned_vector bounds;
|
||||
// m_ctx.get_rules_as_formulas(rules, names);
|
||||
|
||||
|
||||
// If using SAS 2013 abstractiion, we need to perform some transforms
|
||||
expr_ref query_ref(m_ctx.get_manager());
|
||||
if(m_ctx.quantify_arrays()){
|
||||
datalog::rule_manager& rm = m_ctx.get_rule_manager();
|
||||
rm.mk_query(query, m_ctx.get_rules());
|
||||
apply_default_transformation(m_ctx);
|
||||
datalog::rule_set &rs = m_ctx.get_rules();
|
||||
if(m_ctx.get_rules().get_output_predicates().empty())
|
||||
query_ref = m_ctx.get_manager().mk_false();
|
||||
else {
|
||||
func_decl_ref query_pred(m_ctx.get_manager());
|
||||
query_pred = m_ctx.get_rules().get_output_predicate();
|
||||
ptr_vector<sort> sorts;
|
||||
unsigned nargs = query_pred.get()->get_arity();
|
||||
expr_ref_vector vars(m_ctx.get_manager());
|
||||
for(unsigned i = 0; i < nargs; i++){
|
||||
::sort *s = query_pred.get()->get_domain(i);
|
||||
vars.push_back(m_ctx.get_manager().mk_var(nargs-1-i,s));
|
||||
}
|
||||
query_ref = m_ctx.get_manager().mk_app(query_pred.get(),nargs,vars.c_ptr());
|
||||
query = query_ref.get();
|
||||
}
|
||||
unsigned nrules = rs.get_num_rules();
|
||||
for(unsigned i = 0; i < nrules; i++){
|
||||
expr_ref f(m_ctx.get_manager());
|
||||
rm.to_formula(*rs.get_rule(i), f);
|
||||
rules.push_back(f);
|
||||
}
|
||||
}
|
||||
else
|
||||
m_ctx.get_raw_rule_formulas(rules, names, bounds);
|
||||
|
||||
// get all the rules as clauses
|
||||
std::vector<expr> &clauses = _d->clauses;
|
||||
clauses.clear();
|
||||
for (unsigned i = 0; i < rules.size(); ++i) {
|
||||
expr e(_d->ctx,rules[i].get());
|
||||
clauses.push_back(e);
|
||||
}
|
||||
|
||||
std::vector<sort> b_sorts;
|
||||
std::vector<symbol> b_names;
|
||||
used_vars uv;
|
||||
uv.process(query);
|
||||
unsigned nuv = uv.get_max_found_var_idx_plus_1();
|
||||
for(int i = nuv-1; i >= 0; i--){ // var indices are backward
|
||||
::sort * s = uv.get(i);
|
||||
if(!s)
|
||||
s = _d->ctx.m().mk_bool_sort(); // missing var, whatever
|
||||
b_sorts.push_back(sort(_d->ctx,s));
|
||||
b_names.push_back(symbol(_d->ctx,::symbol(i))); // names?
|
||||
}
|
||||
|
||||
#if 0
|
||||
// turn the query into a clause
|
||||
expr q(_d->ctx,m_ctx.bind_variables(query,false));
|
||||
|
||||
std::vector<sort> b_sorts;
|
||||
std::vector<symbol> b_names;
|
||||
if (q.is_quantifier() && !q.is_quantifier_forall()) {
|
||||
int bound = q.get_quantifier_num_bound();
|
||||
for(int j = 0; j < bound; j++){
|
||||
b_sorts.push_back(q.get_quantifier_bound_sort(j));
|
||||
b_names.push_back(q.get_quantifier_bound_name(j));
|
||||
}
|
||||
q = q.arg(0);
|
||||
}
|
||||
#else
|
||||
expr q(_d->ctx,query);
|
||||
#endif
|
||||
|
||||
expr qc = implies(q,_d->ctx.bool_val(false));
|
||||
qc = _d->ctx.make_quant(Forall,b_sorts,b_names,qc);
|
||||
clauses.push_back(qc);
|
||||
bounds.push_back(UINT_MAX);
|
||||
|
||||
// get the background axioms
|
||||
unsigned num_asserts = m_ctx.get_num_assertions();
|
||||
for (unsigned i = 0; i < num_asserts; ++i) {
|
||||
expr e(_d->ctx,m_ctx.get_assertion(i));
|
||||
_d->rpfp->AssertAxiom(e);
|
||||
}
|
||||
|
||||
// make sure each predicate is the head of at least one clause
|
||||
func_decl_set heads;
|
||||
for(unsigned i = 0; i < clauses.size(); i++){
|
||||
expr cl = clauses[i];
|
||||
|
||||
while(true){
|
||||
if(cl.is_app()){
|
||||
decl_kind k = cl.decl().get_decl_kind();
|
||||
if(k == Implies)
|
||||
cl = cl.arg(1);
|
||||
else {
|
||||
heads.insert(cl.decl());
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if(cl.is_quantifier())
|
||||
cl = cl.body();
|
||||
else break;
|
||||
}
|
||||
}
|
||||
ast_ref_vector const &pinned = m_ctx.get_pinned();
|
||||
for(unsigned i = 0; i < pinned.size(); i++){
|
||||
::ast *fa = pinned[i];
|
||||
if(is_func_decl(fa)){
|
||||
::func_decl *fd = to_func_decl(fa);
|
||||
if (m_ctx.is_predicate(fd)) {
|
||||
func_decl f(_d->ctx, fd);
|
||||
if (!heads.contains(fd)) {
|
||||
int arity = f.arity();
|
||||
std::vector<expr> args;
|
||||
args.reserve(arity);
|
||||
for (int j = 0; j < arity; j++)
|
||||
args.push_back(_d->ctx.fresh_func_decl("X", f.domain(j))());
|
||||
expr c = implies(_d->ctx.bool_val(false), f(args));
|
||||
c = _d->ctx.make_quant(Forall, args, c);
|
||||
clauses.push_back(c);
|
||||
bounds.push_back(UINT_MAX);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
unsigned rb = m_ctx.get_params().duality_recursion_bound();
|
||||
std::vector<unsigned> std_bounds;
|
||||
for(unsigned i = 0; i < bounds.size(); i++){
|
||||
unsigned b = bounds[i];
|
||||
if (b == UINT_MAX) b = rb;
|
||||
std_bounds.push_back(b);
|
||||
}
|
||||
|
||||
// creates 1-1 map between clauses and rpfp edges
|
||||
_d->rpfp->FromClauses(clauses,&std_bounds);
|
||||
|
||||
// populate the edge-to-clause map
|
||||
for(unsigned i = 0; i < _d->rpfp->edges.size(); ++i)
|
||||
_d->map[_d->rpfp->edges[i]] = i;
|
||||
|
||||
// create a solver object
|
||||
|
||||
Solver *rs = Solver::Create("duality", _d->rpfp);
|
||||
|
||||
if(old_rs)
|
||||
rs->LearnFrom(old_rs); // new solver gets hints from old solver
|
||||
|
||||
// set its options
|
||||
IF_VERBOSE(1, rs->SetOption("report","1"););
|
||||
rs->SetOption("full_expand",m_ctx.get_params().duality_full_expand() ? "1" : "0");
|
||||
rs->SetOption("no_conj",m_ctx.get_params().duality_no_conj() ? "1" : "0");
|
||||
rs->SetOption("feasible_edges",m_ctx.get_params().duality_feasible_edges() ? "1" : "0");
|
||||
rs->SetOption("use_underapprox",m_ctx.get_params().duality_use_underapprox() ? "1" : "0");
|
||||
rs->SetOption("stratified_inlining",m_ctx.get_params().duality_stratified_inlining() ? "1" : "0");
|
||||
rs->SetOption("batch_expand",m_ctx.get_params().duality_batch_expand() ? "1" : "0");
|
||||
rs->SetOption("conjecture_file",m_ctx.get_params().duality_conjecture_file());
|
||||
rs->SetOption("enable_restarts",m_ctx.get_params().duality_enable_restarts() ? "1" : "0");
|
||||
#if 0
|
||||
if(rb != UINT_MAX){
|
||||
std::ostringstream os; os << rb;
|
||||
rs->SetOption("recursion_bound", os.str());
|
||||
}
|
||||
#endif
|
||||
|
||||
// Solve!
|
||||
bool ans;
|
||||
try {
|
||||
ans = rs->Solve();
|
||||
}
|
||||
catch (Duality::solver::cancel_exception &exn){
|
||||
throw default_exception(Z3_CANCELED_MSG);
|
||||
}
|
||||
catch (Duality::Solver::Incompleteness &exn){
|
||||
throw default_exception("incompleteness");
|
||||
}
|
||||
|
||||
// profile!
|
||||
|
||||
if(m_ctx.get_params().duality_profile())
|
||||
print_profile(std::cout);
|
||||
|
||||
// save the result and counterexample if there is one
|
||||
_d->status = ans ? StatusModel : StatusRefutation;
|
||||
_d->cex.swap(rs->GetCounterexample()); // take ownership of cex
|
||||
_d->old_rs = rs; // save this for later hints
|
||||
|
||||
if(old_data){
|
||||
dealloc(old_data); // this deallocates the old solver if there is one
|
||||
}
|
||||
|
||||
// dealloc(rs); this is now owned by data
|
||||
|
||||
// true means the RPFP problem is SAT, so the query is UNSAT
|
||||
// but we return undef if the UNSAT result is bounded
|
||||
if(ans){
|
||||
if(rs->IsResultRecursionBounded()){
|
||||
#if 0
|
||||
m_ctx.set_status(datalog::BOUNDED);
|
||||
return l_undef;
|
||||
#else
|
||||
return l_false;
|
||||
#endif
|
||||
}
|
||||
return l_false;
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
expr_ref dl_interface::get_cover_delta(int level, ::func_decl* pred_orig) {
|
||||
SASSERT(false);
|
||||
return expr_ref(m_ctx.get_manager());
|
||||
}
|
||||
|
||||
void dl_interface::add_cover(int level, ::func_decl* pred, ::expr* property) {
|
||||
SASSERT(false);
|
||||
}
|
||||
|
||||
unsigned dl_interface::get_num_levels(::func_decl* pred) {
|
||||
SASSERT(false);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void dl_interface::collect_statistics(::statistics& st) const {
|
||||
}
|
||||
|
||||
void dl_interface::reset_statistics() {
|
||||
}
|
||||
|
||||
static hash_set<func_decl> *local_func_decls;
|
||||
|
||||
static void print_proof(dl_interface *d, std::ostream& out, RPFP *tree, RPFP::Node *root) {
|
||||
context &ctx = d->dd()->ctx;
|
||||
RPFP::Node &node = *root;
|
||||
RPFP::Edge &edge = *node.Outgoing;
|
||||
|
||||
// first, prove the children (that are actually used)
|
||||
|
||||
for(unsigned i = 0; i < edge.Children.size(); i++){
|
||||
if(!tree->Empty(edge.Children[i])){
|
||||
print_proof(d,out,tree,edge.Children[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// print the label and the proved fact
|
||||
|
||||
out << "(step s!" << node.number;
|
||||
out << " (" << node.Name.name();
|
||||
for(unsigned i = 0; i < edge.F.IndParams.size(); i++)
|
||||
out << " " << tree->Eval(&edge,edge.F.IndParams[i]);
|
||||
out << ")\n";
|
||||
|
||||
// print the rule number
|
||||
|
||||
out << " rule!" << node.Outgoing->map->number;
|
||||
|
||||
// print the substitution
|
||||
|
||||
out << " (subst\n";
|
||||
RPFP::Edge *orig_edge = edge.map;
|
||||
int orig_clause = d->dd()->map[orig_edge];
|
||||
expr &t = d->dd()->clauses[orig_clause];
|
||||
if (t.is_quantifier() && t.is_quantifier_forall()) {
|
||||
int bound = t.get_quantifier_num_bound();
|
||||
std::vector<sort> sorts;
|
||||
std::vector<symbol> names;
|
||||
hash_map<int,expr> subst;
|
||||
for(int j = 0; j < bound; j++){
|
||||
sort the_sort = t.get_quantifier_bound_sort(j);
|
||||
symbol name = t.get_quantifier_bound_name(j);
|
||||
expr skolem = ctx.constant(symbol(ctx,name),sort(ctx,the_sort));
|
||||
out << " (= " << skolem << " " << tree->Eval(&edge,skolem) << ")\n";
|
||||
expr local_skolem = tree->Localize(&edge,skolem);
|
||||
(*local_func_decls).insert(local_skolem.decl());
|
||||
}
|
||||
}
|
||||
out << " )\n";
|
||||
|
||||
out << " (labels";
|
||||
std::vector<symbol> labels;
|
||||
tree->GetLabels(&edge,labels);
|
||||
for(unsigned j = 0; j < labels.size(); j++){
|
||||
out << " " << labels[j];
|
||||
}
|
||||
|
||||
out << " )\n";
|
||||
|
||||
// reference the proofs of all the children, in syntactic order
|
||||
// "true" means the child is not needed
|
||||
|
||||
out << " (ref ";
|
||||
for(unsigned i = 0; i < edge.Children.size(); i++){
|
||||
if(!tree->Empty(edge.Children[i]))
|
||||
out << " s!" << edge.Children[i]->number;
|
||||
else
|
||||
out << " true";
|
||||
}
|
||||
out << " )";
|
||||
out << ")\n";
|
||||
}
|
||||
|
||||
|
||||
void dl_interface::display_certificate(std::ostream& out) const {
|
||||
((dl_interface *)this)->display_certificate_non_const(out);
|
||||
}
|
||||
|
||||
void dl_interface::display_certificate_non_const(std::ostream& out) {
|
||||
if(_d->status == StatusModel){
|
||||
ast_manager &m = m_ctx.get_manager();
|
||||
model_ref md = get_model();
|
||||
out << "(fixedpoint \n";
|
||||
model_smt2_pp(out, m, *md.get(), 0);
|
||||
out << ")\n";
|
||||
}
|
||||
else if(_d->status == StatusRefutation){
|
||||
out << "(derivation\n";
|
||||
// negation of the query is the last clause -- prove it
|
||||
hash_set<func_decl> locals;
|
||||
local_func_decls = &locals;
|
||||
print_proof(this,out,_d->cex.get_tree(),_d->cex.get_root());
|
||||
out << ")\n";
|
||||
out << "(model \n\"";
|
||||
::model mod(m_ctx.get_manager());
|
||||
model orig_model = _d->cex.get_tree()->dualModel;
|
||||
for(unsigned i = 0; i < orig_model.num_consts(); i++){
|
||||
func_decl cnst = orig_model.get_const_decl(i);
|
||||
if (locals.find(cnst) == locals.end()) {
|
||||
expr thing = orig_model.get_const_interp(cnst);
|
||||
mod.register_decl(to_func_decl(cnst.raw()), to_expr(thing.raw()));
|
||||
}
|
||||
}
|
||||
for(unsigned i = 0; i < orig_model.num_funcs(); i++){
|
||||
func_decl cnst = orig_model.get_func_decl(i);
|
||||
if (locals.find(cnst) == locals.end()) {
|
||||
func_interp thing = orig_model.get_func_interp(cnst);
|
||||
::func_interp *thing_raw = thing;
|
||||
mod.register_decl(to_func_decl(cnst.raw()), thing_raw->copy());
|
||||
}
|
||||
}
|
||||
model_v2_pp(out,mod);
|
||||
out << "\")\n";
|
||||
}
|
||||
}
|
||||
|
||||
expr_ref dl_interface::get_answer() {
|
||||
SASSERT(false);
|
||||
return expr_ref(m_ctx.get_manager());
|
||||
}
|
||||
|
||||
void dl_interface::cancel() {
|
||||
#if 0
|
||||
if(_d && _d->ls)
|
||||
_d->ls->cancel();
|
||||
#else
|
||||
// HACK: duality can't cancel at all times, we just exit here
|
||||
std::cout << "(error \"duality canceled\")\nunknown\n";
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
|
||||
void dl_interface::cleanup() {
|
||||
}
|
||||
|
||||
void dl_interface::updt_params() {
|
||||
}
|
||||
|
||||
model_ref dl_interface::get_model() {
|
||||
ast_manager &m = m_ctx.get_manager();
|
||||
model_ref md(alloc(::model, m));
|
||||
std::vector<RPFP::Node *> &nodes = _d->rpfp->nodes;
|
||||
expr_ref_vector conjs(m);
|
||||
for (unsigned i = 0; i < nodes.size(); ++i) {
|
||||
RPFP::Node *node = nodes[i];
|
||||
func_decl &pred = node->Name;
|
||||
expr_ref prop(m);
|
||||
prop = to_expr(node->Annotation.Formula);
|
||||
std::vector<expr> ¶ms = node->Annotation.IndParams;
|
||||
expr_ref q(m);
|
||||
expr_ref_vector sig_vars(m);
|
||||
for (unsigned j = 0; j < params.size(); ++j)
|
||||
sig_vars.push_back(params[params.size()-j-1]); // TODO: why backwards?
|
||||
expr_abstract(m, 0, sig_vars.size(), sig_vars.c_ptr(), prop, q);
|
||||
if (params.empty()) {
|
||||
md->register_decl(pred, q);
|
||||
}
|
||||
else {
|
||||
::func_interp* fi = alloc(::func_interp, m, params.size());
|
||||
fi->set_else(q);
|
||||
md->register_decl(pred, fi);
|
||||
}
|
||||
}
|
||||
return md;
|
||||
}
|
||||
|
||||
static proof_ref extract_proof(dl_interface *d, RPFP *tree, RPFP::Node *root) {
|
||||
context &ctx = d->dd()->ctx;
|
||||
ast_manager &mgr = ctx.m();
|
||||
RPFP::Node &node = *root;
|
||||
RPFP::Edge &edge = *node.Outgoing;
|
||||
RPFP::Edge *orig_edge = edge.map;
|
||||
|
||||
// first, prove the children (that are actually used)
|
||||
|
||||
proof_ref_vector prems(mgr);
|
||||
::vector<expr_ref_vector> substs;
|
||||
int orig_clause = d->dd()->map[orig_edge];
|
||||
expr &t = d->dd()->clauses[orig_clause];
|
||||
prems.push_back(mgr.mk_asserted(ctx.uncook(t)));
|
||||
|
||||
substs.push_back(expr_ref_vector(mgr));
|
||||
if (t.is_quantifier() && t.is_quantifier_forall()) {
|
||||
int bound = t.get_quantifier_num_bound();
|
||||
std::vector<sort> sorts;
|
||||
std::vector<symbol> names;
|
||||
hash_map<int,expr> subst;
|
||||
for(int j = 0; j < bound; j++){
|
||||
sort the_sort = t.get_quantifier_bound_sort(j);
|
||||
symbol name = t.get_quantifier_bound_name(j);
|
||||
expr skolem = ctx.constant(symbol(ctx,name),sort(ctx,the_sort));
|
||||
expr val = tree->Eval(&edge,skolem);
|
||||
expr_ref thing(ctx.uncook(val),mgr);
|
||||
substs[0].push_back(thing);
|
||||
expr local_skolem = tree->Localize(&edge,skolem);
|
||||
(*local_func_decls).insert(local_skolem.decl());
|
||||
}
|
||||
}
|
||||
|
||||
svector<std::pair<unsigned, unsigned> > pos;
|
||||
for(unsigned i = 0; i < edge.Children.size(); i++){
|
||||
if(!tree->Empty(edge.Children[i])){
|
||||
pos.push_back(std::pair<unsigned,unsigned>(i+1,0));
|
||||
proof_ref prem = extract_proof(d,tree,edge.Children[i]);
|
||||
prems.push_back(prem);
|
||||
substs.push_back(expr_ref_vector(mgr));
|
||||
}
|
||||
}
|
||||
|
||||
func_decl f = node.Name;
|
||||
std::vector<expr> args;
|
||||
for(unsigned i = 0; i < edge.F.IndParams.size(); i++)
|
||||
args.push_back(tree->Eval(&edge,edge.F.IndParams[i]));
|
||||
expr conc = f(args);
|
||||
|
||||
|
||||
::vector< ::proof *> pprems;
|
||||
for(unsigned i = 0; i < prems.size(); i++)
|
||||
pprems.push_back(prems[i].get());
|
||||
|
||||
proof_ref res(mgr.mk_hyper_resolve(pprems.size(),&pprems[0], ctx.uncook(conc), pos, substs),mgr);
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
proof_ref dl_interface::get_proof() {
|
||||
if(_d->status == StatusRefutation){
|
||||
hash_set<func_decl> locals;
|
||||
local_func_decls = &locals;
|
||||
return extract_proof(this,_d->cex.get_tree(),_d->cex.get_root());
|
||||
}
|
||||
else
|
||||
return proof_ref(m_ctx.get_manager());
|
||||
}
|
||||
}
|
|
@ -1,80 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_dl_interface.h
|
||||
|
||||
Abstract:
|
||||
|
||||
SMT2 interface for Duality
|
||||
|
||||
Author:
|
||||
|
||||
Krystof Hoder (t-khoder) 2011-9-22.
|
||||
Modified by Ken McMIllan (kenmcmil) 2013-4-18.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef DUALITY_DL_INTERFACE_H_
|
||||
#define DUALITY_DL_INTERFACE_H_
|
||||
|
||||
#include "util/lbool.h"
|
||||
#include "muz/base/dl_rule.h"
|
||||
#include "muz/base/dl_rule_set.h"
|
||||
#include "muz/base/dl_engine_base.h"
|
||||
#include "util/statistics.h"
|
||||
|
||||
namespace datalog {
|
||||
class context;
|
||||
}
|
||||
|
||||
namespace Duality {
|
||||
|
||||
class duality_data;
|
||||
|
||||
class dl_interface : public datalog::engine_base {
|
||||
duality_data *_d;
|
||||
datalog::context &m_ctx;
|
||||
|
||||
public:
|
||||
dl_interface(datalog::context& ctx);
|
||||
~dl_interface() override;
|
||||
|
||||
lbool query(expr* query) override;
|
||||
|
||||
void cancel() override;
|
||||
|
||||
void cleanup() override;
|
||||
|
||||
void display_certificate(std::ostream& out) const override;
|
||||
|
||||
void collect_statistics(statistics& st) const override;
|
||||
|
||||
void reset_statistics() override;
|
||||
|
||||
expr_ref get_answer() override;
|
||||
|
||||
unsigned get_num_levels(func_decl* pred) override;
|
||||
|
||||
expr_ref get_cover_delta(int level, func_decl* pred) override;
|
||||
|
||||
void add_cover(int level, func_decl* pred, expr* property) override;
|
||||
|
||||
void updt_params() override;
|
||||
|
||||
model_ref get_model() override;
|
||||
|
||||
proof_ref get_proof() override;
|
||||
|
||||
duality_data *dd(){return _d;}
|
||||
|
||||
private:
|
||||
void display_certificate_non_const(std::ostream& out);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
#endif
|
|
@ -8,7 +8,6 @@ z3_add_component(fp
|
|||
bmc
|
||||
clp
|
||||
ddnf
|
||||
duality_intf
|
||||
muz
|
||||
pdr
|
||||
rel
|
||||
|
|
|
@ -23,7 +23,6 @@ Revision History:
|
|||
#include "muz/rel/rel_context.h"
|
||||
#include "muz/pdr/pdr_dl_interface.h"
|
||||
#include "muz/ddnf/ddnf.h"
|
||||
#include "muz/duality/duality_dl_interface.h"
|
||||
#include "muz/spacer/spacer_dl_interface.h"
|
||||
|
||||
namespace datalog {
|
||||
|
@ -45,8 +44,6 @@ namespace datalog {
|
|||
return alloc(tab, *m_ctx);
|
||||
case CLP_ENGINE:
|
||||
return alloc(clp, *m_ctx);
|
||||
case DUALITY_ENGINE:
|
||||
return alloc(Duality::dl_interface, *m_ctx);
|
||||
case DDNF_ENGINE:
|
||||
return alloc(ddnf, *m_ctx);
|
||||
case LAST_ENGINE:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue