3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-20 04:43:39 +00:00

remove interpolation and duality dependencies

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-05-24 08:33:19 -07:00
parent d088a1b9f6
commit 4f5775c531
59 changed files with 3 additions and 26262 deletions

View file

@ -48,7 +48,6 @@ z3_add_component(api
api_datatype.cpp
api_fpa.cpp
api_goal.cpp
api_interp.cpp
api_log.cpp
api_model.cpp
api_numeral.cpp
@ -67,7 +66,6 @@ z3_add_component(api
z3_replayer.cpp
${full_path_generated_files}
COMPONENT_DEPENDENCIES
interp
opt
portfolio
realclosure

View file

@ -195,7 +195,6 @@ extern "C" {
MK_BINARY(Z3_mk_xor, mk_c(c)->get_basic_fid(), OP_XOR, SKIP);
MK_NARY(Z3_mk_and, mk_c(c)->get_basic_fid(), OP_AND, SKIP);
MK_NARY(Z3_mk_or, mk_c(c)->get_basic_fid(), OP_OR, SKIP);
MK_UNARY(Z3_mk_interpolant, mk_c(c)->get_basic_fid(), OP_INTERP, SKIP);
Z3_ast mk_ite_core(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3) {
expr * result = mk_c(c)->m().mk_ite(to_expr(t1), to_expr(t2), to_expr(t3));
@ -900,7 +899,6 @@ extern "C" {
case OP_NOT: return Z3_OP_NOT;
case OP_IMPLIES: return Z3_OP_IMPLIES;
case OP_OEQ: return Z3_OP_OEQ;
case OP_INTERP: return Z3_OP_INTERP;
case PR_UNDEF: return Z3_OP_PR_UNDEF;
case PR_TRUE: return Z3_OP_PR_TRUE;

View file

@ -80,7 +80,6 @@ set(Z3_DOTNET_ASSEMBLY_SOURCES_IN_SRC_TREE
Global.cs
Goal.cs
IDecRefQueue.cs
InterpolationContext.cs
IntExpr.cs
IntNum.cs
IntSort.cs

View file

@ -1,161 +0,0 @@
/*++
Copyright (c) 2015 Microsoft Corporation
--*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics.Contracts;
using System.Runtime.InteropServices;
namespace Microsoft.Z3
{
/// <summary>
/// The InterpolationContext is suitable for generation of interpolants.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the C/C++ API, which is well documented.</remarks>
[ContractVerification(true)]
public class InterpolationContext : Context
{
/// <summary>
/// Constructor.
/// </summary>
public InterpolationContext() : base() { }
/// <summary>
/// Constructor.
/// </summary>
/// <remarks><seealso cref="Context"/></remarks>
public InterpolationContext(Dictionary<string, string> settings) : base(settings) { }
#region Terms
/// <summary>
/// Create an expression that marks a formula position for interpolation.
/// </summary>
public BoolExpr MkInterpolant(BoolExpr a)
{
Contract.Requires(a != null);
Contract.Ensures(Contract.Result<BoolExpr>() != null);
CheckContextMatch(a);
return new BoolExpr(this, Native.Z3_mk_interpolant(nCtx, a.NativeObject));
}
#endregion
/// <summary>
/// Computes an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_get_interpolant in the C/C++ API, which is
/// well documented.</remarks>
public BoolExpr[] GetInterpolant(Expr pf, Expr pat, Params p)
{
Contract.Requires(pf != null);
Contract.Requires(pat != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.Result<Expr>() != null);
CheckContextMatch(pf);
CheckContextMatch(pat);
CheckContextMatch(p);
ASTVector seq = new ASTVector(this, Native.Z3_get_interpolant(nCtx, pf.NativeObject, pat.NativeObject, p.NativeObject));
return seq.ToBoolExprArray();
}
/// <summary>
/// Computes an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_compute_interpolant in the C/C++ API, which is
/// well documented.</remarks>
public Z3_lbool ComputeInterpolant(Expr pat, Params p, out BoolExpr[] interp, out Model model)
{
Contract.Requires(pat != null);
Contract.Requires(p != null);
Contract.Ensures(Contract.ValueAtReturn(out interp) != null);
Contract.Ensures(Contract.ValueAtReturn(out model) != null);
CheckContextMatch(pat);
CheckContextMatch(p);
IntPtr i = IntPtr.Zero, m = IntPtr.Zero;
int r = Native.Z3_compute_interpolant(nCtx, pat.NativeObject, p.NativeObject, ref i, ref m);
interp = new ASTVector(this, i).ToBoolExprArray();
model = new Model(this, m);
return (Z3_lbool)r;
}
/// <summary>
/// Return a string summarizing cumulative time used for interpolation.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_interpolation_profile in the C/C++ API, which is
/// well documented.</remarks>
public string InterpolationProfile()
{
return Native.Z3_interpolation_profile(nCtx);
}
/// <summary>
/// Checks the correctness of an interpolant.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_check_interpolant in the C/C++ API, which is
/// well documented.</remarks>
public int CheckInterpolant(Expr[] cnsts, uint[] parents, BoolExpr[] interps, out string error, Expr[] theory)
{
Contract.Requires(cnsts.Length == parents.Length);
Contract.Requires(cnsts.Length == interps.Length + 1);
IntPtr n_err_str;
int r = Native.Z3_check_interpolant(nCtx,
(uint)cnsts.Length,
Expr.ArrayToNative(cnsts),
parents,
Expr.ArrayToNative(interps),
out n_err_str,
(uint)theory.Length,
Expr.ArrayToNative(theory));
error = Marshal.PtrToStringAnsi(n_err_str);
return r;
}
/// <summary>
/// Reads an interpolation problem from a file.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_read_interpolation_problem in the C/C++ API, which is
/// well documented.</remarks>
public int ReadInterpolationProblem(string filename, out Expr[] cnsts, out uint[] parents, out string error, out Expr[] theory)
{
uint num = 0;
IntPtr n_err_str;
ASTVector _cnsts = new ASTVector(this);
ASTVector _theory = new ASTVector(this);
int r = Native.Z3_read_interpolation_problem(nCtx, _cnsts.NativeObject, ref num, out parents, filename, out n_err_str, _theory.NativeObject);
error = Marshal.PtrToStringAnsi(n_err_str);
cnsts = _cnsts.ToExprArray();
parents = new uint[num];
theory = _theory.ToExprArray();
return r;
}
/// <summary>
/// Writes an interpolation problem to a file.
/// </summary>
/// <remarks>For more information on interpolation please refer
/// too the function Z3_write_interpolation_problem in the C/C++ API, which is
/// well documented.</remarks>
public void WriteInterpolationProblem(string filename, Expr[] cnsts, uint[] parents, Expr[] theory)
{
Contract.Requires(cnsts.Length == parents.Length);
Native.Z3_write_interpolation_problem(nCtx, (uint)cnsts.Length, Expr.ArrayToNative(cnsts), parents, filename, (uint)theory.Length, Expr.ArrayToNative(theory));
}
}
}

View file

@ -137,7 +137,6 @@ set(Z3_JAVA_JAR_SOURCE_FILES
GoalDecRefQueue.java
Goal.java
IDecRefQueue.java
InterpolationContext.java
IntExpr.java
IntNum.java
IntSort.java

View file

@ -1,210 +0,0 @@
/**
Copyright (c) 2012-2014 Microsoft Corporation
Module Name:
InterpolationContext.java
Abstract:
Author:
@author Christoph Wintersteiger (cwinter) 2012-03-15
Notes:
**/
package com.microsoft.z3;
import com.microsoft.z3.enumerations.Z3_lbool;
import java.util.Map;
/**
* The InterpolationContext is suitable for generation of interpolants.
*
* Remarks: For more information on interpolation please refer
* too the C/C++ API, which is well documented.
**/
public class InterpolationContext extends Context
{
/**
* Constructor.
**/
public static InterpolationContext mkContext()
{
long m_ctx;
synchronized(creation_lock) {
m_ctx = Native.mkInterpolationContext(0);
}
return new InterpolationContext(m_ctx);
}
/**
* Constructor.
*
*
* Remarks:
* @see Context#Context
**/
public static InterpolationContext mkContext(Map<String, String> settings)
{
long m_ctx;
synchronized(creation_lock) {
long cfg = Native.mkConfig();
for (Map.Entry<String, String> kv : settings.entrySet())
Native.setParamValue(cfg, kv.getKey(), kv.getValue());
m_ctx = Native.mkInterpolationContext(cfg);
Native.delConfig(cfg);
}
return new InterpolationContext(m_ctx);
}
private InterpolationContext(long m_ctx) {
super(m_ctx);
}
/**
* Create an expression that marks a formula position for interpolation.
* @throws Z3Exception
**/
public BoolExpr MkInterpolant(BoolExpr a)
{
checkContextMatch(a);
return new BoolExpr(this, Native.mkInterpolant(nCtx(), a.getNativeObject()));
}
/**
* Computes an interpolant.
* Remarks: For more information on interpolation please refer
* too the function Z3_get_interpolant in the C/C++ API, which is
* well documented.
* @throws Z3Exception
**/
public BoolExpr[] GetInterpolant(Expr pf, Expr pat, Params p)
{
checkContextMatch(pf);
checkContextMatch(pat);
checkContextMatch(p);
ASTVector seq = new ASTVector(this, Native.getInterpolant(nCtx(), pf.getNativeObject(), pat.getNativeObject(), p.getNativeObject()));
return seq.ToBoolExprArray();
}
public class ComputeInterpolantResult
{
public Z3_lbool status = Z3_lbool.Z3_L_UNDEF;
public BoolExpr[] interp = null;
public Model model = null;
};
/**
* Computes an interpolant.
* Remarks: For more information on interpolation please refer
* too the function Z3_compute_interpolant in the C/C++ API, which is
* well documented.
* @throws Z3Exception
**/
public ComputeInterpolantResult ComputeInterpolant(Expr pat, Params p)
{
checkContextMatch(pat);
checkContextMatch(p);
ComputeInterpolantResult res = new ComputeInterpolantResult();
Native.LongPtr n_i = new Native.LongPtr();
Native.LongPtr n_m = new Native.LongPtr();
res.status = Z3_lbool.fromInt(Native.computeInterpolant(nCtx(), pat.getNativeObject(), p.getNativeObject(), n_i, n_m));
if (res.status == Z3_lbool.Z3_L_FALSE)
res.interp = (new ASTVector(this, n_i.value)).ToBoolExprArray();
if (res.status == Z3_lbool.Z3_L_TRUE)
res.model = new Model(this, n_m.value);
return res;
}
///
/// Return a string summarizing cumulative time used for interpolation.
///
/// Remarks: For more information on interpolation please refer
/// too the function Z3_interpolation_profile in the C/C++ API, which is
/// well documented.
public String InterpolationProfile()
{
return Native.interpolationProfile(nCtx());
}
public class CheckInterpolantResult
{
public int return_value = 0;
public String error = null;
}
///
/// Checks the correctness of an interpolant.
///
/// Remarks: For more information on interpolation please refer
/// too the function Z3_check_interpolant in the C/C++ API, which is
/// well documented.
public CheckInterpolantResult CheckInterpolant(Expr[] cnsts, int[] parents, BoolExpr[] interps, String error, Expr[] theory)
{
CheckInterpolantResult res = new CheckInterpolantResult();
Native.StringPtr n_err_str = new Native.StringPtr();
res.return_value = Native.checkInterpolant(nCtx(),
cnsts.length,
Expr.arrayToNative(cnsts),
parents,
Expr.arrayToNative(interps),
n_err_str,
theory.length,
Expr.arrayToNative(theory));
res.error = n_err_str.value;
return res;
}
public class ReadInterpolationProblemResult
{
public int return_value = 0;
public Expr[] cnsts;
public int[] parents;
public String error;
public Expr[] theory;
};
///
/// Reads an interpolation problem from a file.
///
/// Remarks: For more information on interpolation please refer
/// too the function Z3_read_interpolation_problem in the C/C++ API, which is
/// well documented.
public ReadInterpolationProblemResult ReadInterpolationProblem(String filename)
{
ReadInterpolationProblemResult res = new ReadInterpolationProblemResult();
Native.UIntArrayPtr n_parents = new Native.UIntArrayPtr();
ASTVector _cnsts = new ASTVector(this);
ASTVector _theory = new ASTVector(this);
Native.StringPtr n_err_str = new Native.StringPtr();
Native.IntPtr n_num = new Native.IntPtr();
res.return_value = Native.readInterpolationProblem(nCtx(), _cnsts.getNativeObject(), n_num,
n_parents, filename, n_err_str, _theory.getNativeObject());
res.error = n_err_str.value;
res.theory = _theory.ToExprArray();
res.cnsts = _cnsts.ToExprArray();
int num = n_num.value;
res.parents = new int[num];
for (int i = 0; i < num; i++) {
res.parents[i] = n_parents.value[i];
}
return res;
}
///
/// Writes an interpolation problem to a file.
///
/// Remarks: For more information on interpolation please refer
/// too the function Z3_write_interpolation_problem in the C/C++ API, which is
/// well documented.
public void WriteInterpolationProblem(String filename, Expr[] cnsts, int[] parents, String error, Expr[] theory)
{
Native.writeInterpolationProblem(nCtx(), cnsts.length, Expr.arrayToNative(cnsts), parents, filename, theory.length, Expr.arrayToNative(theory));
}
}

View file

@ -32,7 +32,6 @@ Notes:
#include "z3_rcf.h"
#include "z3_fixedpoint.h"
#include "z3_optimization.h"
#include "z3_interp.h"
#include "z3_fpa.h"
#include "z3_spacer.h"
#endif

View file

@ -212,8 +212,6 @@ typedef enum
- Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms.
It captures equisatisfiability and equivalence modulo renamings.
- Z3_OP_INTERP Marks a sub-formula for interpolation.
- Z3_OP_ANUM Arithmetic numeral.
- Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.
@ -991,7 +989,6 @@ typedef enum {
Z3_OP_NOT,
Z3_OP_IMPLIES,
Z3_OP_OEQ,
Z3_OP_INTERP,
// Arithmetic
Z3_OP_ANUM = 0x200,

View file

@ -1,283 +0,0 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
z3_interp.h
Abstract:
API for interpolation
Author:
Kenneth McMillan (kenmcmil)
Notes:
--*/
#ifndef Z3_INTERPOLATION_H_
#define Z3_INTERPOLATION_H_
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/** \defgroup capi C API */
/*@{*/
/** @name Interpolation facilities */
/*@{*/
/**
\brief Create an AST node marking a formula position for interpolation.
The node \c a must have Boolean sort.
def_API('Z3_mk_interpolant', AST, (_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_interpolant(Z3_context c, Z3_ast a);
/** \brief This function generates a Z3 context suitable for generation of
interpolants. Formulas can be generated as abstract syntax trees in
this context using the Z3 C API.
Interpolants are also generated as AST's in this context.
If cfg is non-null, it will be used as the base configuration
for the Z3 context. This makes it possible to set Z3 options
to be used during interpolation. This feature should be used
with some caution however, as it may be that certain Z3 options
are incompatible with interpolation.
def_API('Z3_mk_interpolation_context', CONTEXT, (_in(CONFIG),))
*/
Z3_context Z3_API Z3_mk_interpolation_context(Z3_config cfg);
/** Compute an interpolant from a refutation. This takes a proof of
"false" from a set of formulas C, and an interpolation
pattern. The pattern pat is a formula combining the formulas in C
using logical conjunction and the "interp" operator (see
#Z3_mk_interpolant). This interp operator is logically the identity
operator. It marks the sub-formulas of the pattern for which interpolants should
be computed. The interpolant is a map sigma from marked subformulas to
formulas, such that, for each marked subformula phi of pat (where phi sigma
is phi with sigma(psi) substituted for each subformula psi of phi such that
psi in dom(sigma)):
1) phi sigma implies sigma(phi), and
2) sigma(phi) is in the common uninterpreted vocabulary between
the formulas of C occurring in phi and those not occurring in
phi
and moreover pat sigma implies false. In the simplest case
an interpolant for the pattern "(and (interp A) B)" maps A
to an interpolant for A /\ B.
The return value is a vector of formulas representing sigma. The
vector contains sigma(phi) for each marked subformula of pat, in
pre-order traversal. This means that subformulas of phi occur before phi
in the vector. Also, subformulas that occur multiply in pat will
occur multiply in the result vector.
In particular, calling Z3_get_interpolant on a pattern of the
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
result in a sequence interpolant for A_1, A_2,... A_N.
Neglecting interp markers, the pattern must be a conjunction of
formulas in C, the set of premises of the proof. Otherwise an
error is flagged.
Any premises of the proof not present in the pattern are
treated as "background theory". Predicate and function symbols
occurring in the background theory are treated as interpreted and
thus always allowed in the interpolant.
Interpolant may not necessarily be computable from all
proofs. To be sure an interpolant can be computed, the proof
must be generated by an SMT solver for which interpolation is
supported, and the premises must be expressed using only
theories and operators for which interpolation is supported.
Currently, the only SMT solver that is supported is the legacy
SMT solver. Such a solver is available as the default solver in
\c Z3_context objects produced by #Z3_mk_interpolation_context.
Currently, the theories supported are equality with
uninterpreted functions, linear integer arithmetic, and the
theory of arrays (in SMT-LIB terms, this is AUFLIA).
Quantifiers are allowed. Use of any other operators (including
"labels") may result in failure to compute an interpolant from a
proof.
Parameters:
\param c logical context.
\param pf a refutation from premises (assertions) C
\param pat an interpolation pattern over C
\param p parameters
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
*/
Z3_ast_vector Z3_API Z3_get_interpolant(Z3_context c, Z3_ast pf, Z3_ast pat, Z3_params p);
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
This takes as an argument an interpolation pattern as in
#Z3_get_interpolant. This is a conjunction, some subformulas of
which are marked with the "interp" operator (see #Z3_mk_interpolant).
The conjunction is first checked for unsatisfiability. The result
of this check is returned in the out parameter "status". If the result
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
and returned as a vector of formulas. Otherwise the return value is
an empty formula.
See #Z3_get_interpolant for a discussion of supported theories.
The advantage of this function over #Z3_get_interpolant is that
it is not necessary to create a suitable SMT solver and generate
a proof. The disadvantage is that it is not possible to use the
solver incrementally.
Parameters:
\param c logical context.
\param pat an interpolation pattern
\param p parameters for solver creation
\param status returns the status of the sat check
\param model returns model if satisfiable
Return value: status of SAT check
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR), _out(MODEL)))
*/
Z3_lbool Z3_API Z3_compute_interpolant(Z3_context c,
Z3_ast pat,
Z3_params p,
Z3_ast_vector *interp,
Z3_model *model);
/** Return a string summarizing cumulative time used for
interpolation. This string is purely for entertainment purposes
and has no semantics.
\param ctx The context (currently ignored)
def_API('Z3_interpolation_profile', STRING, (_in(CONTEXT),))
*/
Z3_string Z3_API Z3_interpolation_profile(Z3_context ctx);
/**
\brief Read an interpolation problem from file.
\param ctx The Z3 context. This resets the error handler of ctx.
\param filename The file name to read.
\param num Returns length of sequence.
\param cnsts Returns sequence of formulas (do not free)
\param parents Returns the parents vector (or NULL for sequence)
\param error Returns an error message in case of failure (do not free the string)
\param num_theory Number of theory terms
\param theory Theory terms
Returns true on success.
File formats: Currently two formats are supported, based on
SMT-LIB2. For sequence interpolants, the sequence of constraints is
represented by the sequence of "assert" commands in the file.
For tree interpolants, one symbol of type bool is associated to
each vertex of the tree. For each vertex v there is an "assert"
of the form:
(implies (and c1 ... cn f) v)
where c1 .. cn are the children of v (which must precede v in the file)
and f is the formula associated to node v. The last formula in the
file is the root vertex, and is represented by the predicate "false".
A solution to a tree interpolation problem can be thought of as a
valuation of the vertices that makes all the implications true
where each value is represented using the common symbols between
the formulas in the subtree and the remainder of the formulas.
def_API('Z3_read_interpolation_problem', INT, (_in(CONTEXT), _in(AST_VECTOR), _out(UINT), _out_managed_array(2, UINT), _in(STRING), _out(STRING), _in(AST_VECTOR)))
*/
int Z3_API Z3_read_interpolation_problem(Z3_context ctx,
Z3_ast_vector cnsts,
unsigned* num,
unsigned* parents[],
Z3_string filename,
Z3_string_ptr error,
Z3_ast_vector theory);
/** Check the correctness of an interpolant. The Z3 context must
have no constraints asserted when this call is made. That means
that after interpolating, you must first fully pop the Z3
context before calling this. See Z3_interpolate for meaning of parameters.
\param ctx The Z3 context. Must be generated by Z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints (AST's in context ctx)
\param parents The parents vector (or NULL for sequence)
\param interps The interpolant to check
\param error Returns an error message if interpolant incorrect (do not free the string)
\param num_theory Number of theory terms
\param theory Theory terms
Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if
incorrect, and Z3_L_UNDEF if unknown.
def_API('Z3_check_interpolant', INT, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in_array(1, AST), _out(STRING), _in(UINT), _in_array(6, AST)))
*/
int Z3_API Z3_check_interpolant(Z3_context ctx,
unsigned num,
Z3_ast cnsts[],
unsigned parents[],
Z3_ast *interps,
Z3_string_ptr error,
unsigned num_theory,
Z3_ast theory[]);
/** Write an interpolation problem to file suitable for reading with
Z3_read_interpolation_problem. The output file is a sequence
of SMT-LIB2 format commands, suitable for reading with command-line Z3
or other interpolating solvers.
\param ctx The Z3 context. Must be generated by z3_mk_interpolation_context
\param num The number of constraints in the sequence
\param cnsts Array of constraints
\param parents The parents vector (or NULL for sequence)
\param filename The file name to write
\param num_theory Number of theory terms
\param theory Theory terms
def_API('Z3_write_interpolation_problem', VOID, (_in(CONTEXT), _in(UINT), _in_array(1, AST), _in_array(1, UINT), _in(STRING), _in(UINT), _in_array(5, AST)))
*/
void Z3_API Z3_write_interpolation_problem(Z3_context ctx,
unsigned num,
Z3_ast cnsts[],
unsigned parents[],
Z3_string filename,
unsigned num_theory,
Z3_ast theory[]);
/*@}*/
/*@}*/
#ifdef __cplusplus
}
#endif // __cplusplus
#endif