3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-24 23:03:41 +00:00

functionally complete viable, needs to be debugged

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-06-23 17:44:52 -07:00
parent db242c28c6
commit 4f0ec82957
3 changed files with 158 additions and 47 deletions

View file

@ -46,6 +46,7 @@ public:
bool is_empty() const { return emp; } bool is_empty() const { return emp; }
void set_free() { lo = hi = 0; emp = false; } void set_free() { lo = hi = 0; emp = false; }
void set_bounds(Numeral const& l, Numeral const& h) { lo = l; hi = h; } void set_bounds(Numeral const& l, Numeral const& h) { lo = l; hi = h; }
void set_empty() { emp = true; }
bool contains(Numeral const& n) const; bool contains(Numeral const& n) const;
mod_interval operator&(mod_interval const& other) const; mod_interval operator&(mod_interval const& other) const;
mod_interval operator+(mod_interval const& other) const; mod_interval operator+(mod_interval const& other) const;

View file

@ -14,43 +14,146 @@ Author:
#include "math/polysat/viable.h" #include "math/polysat/viable.h"
#include "math/polysat/solver.h" #include "math/polysat/solver.h"
#include "math/interval/mod_interval_def.h"
namespace polysat { namespace polysat {
#if NEW_VIABLE
dd::find_t viable_set::find_hint(rational const& d, rational& val) const {
if (is_empty())
return dd::find_t::empty;
//
// ignore d since with a single interval,
// backtracking does not ensure that non-boundary bounds are removed.
// viable_set could have multiple intervals to support arbitrary partitions
// this is similar to interval_set or might even be an instance of it.
//
val = lo;
if (lo + 1 == hi || hi == 0 && is_max(lo))
return dd::find_t::singleton;
return dd::find_t::multiple;
}
bool viable_set::is_max(rational const& a) const {
return a + 1 == rational::power_of_two(m_num_bits);
}
bool viable_set::is_singleton(rational& val) const {
return !is_empty() && (lo + 1 == hi || (hi == 0 && is_max(lo)));
}
void viable_set::intersect_eq(rational const& a, bool is_positive) {
if (is_empty())
return;
if (is_positive) {
if (!contains(a))
set_empty();
else if (is_max(a))
lo = a, hi = 0;
else
lo = a, hi = a + 1;
}
else {
if (!contains(a))
return;
if (a == lo && a + 1 == hi)
set_empty();
if (a == lo && hi == 0 && is_max(a))
set_empty();
else if (a == lo)
lo = a + 1;
else if (a + 1 == hi)
hi = a;
else if (hi == 0 && is_max(a))
hi = a;
}
}
void viable_set::intersect_eq(rational const& a, rational const& b, bool is_positive) {
if (a.is_odd()) {
if (b == 0)
intersect_eq(b, is_positive);
else {
rational a_inv;
VERIFY(a.mult_inverse(m_num_bits, a_inv));
intersect_eq(mod(a_inv * -b, rational::power_of_two(m_num_bits)), is_positive);
}
}
}
void viable_set::intersect_ule(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
// x <= 0
if (a == 1 && b == 0 && c == 0 && d == 0)
intersect_eq(b, is_positive);
else if (a == 1 && b == 0 && c == 0) {
// x <= d
if (is_positive)
set_hi(d);
// x > d
else if (is_max(d))
set_empty();
else
set_lo(d + 1);
}
else if (a == 0 && c == 1 && d == 0) {
// x >= b
if (is_positive)
set_lo(b);
else if (b == 0)
set_empty();
else
set_hi(b - 1);
}
}
void viable_set::set_hi(rational const& d) {
if (is_max(d))
return;
else if (lo > d)
set_empty();
else if (hi != 0 || d + 1 < hi)
hi = d + 1;
}
void viable_set::set_lo(rational const& b) {
if (hi != 0 && hi <= b)
set_empty();
else if (is_free())
lo = b, hi = 0;
else if (lo < b)
lo = b;
}
#endif
viable::viable(solver& s): viable::viable(solver& s):
s(s), s(s)
#if !NEW_VIABLE
,
m_bdd(1000) m_bdd(1000)
#endif
{} {}
void viable::push_viable(pvar v) { void viable::push_viable(pvar v) {
#if NEW_VIABLE
#else
s.m_trail.push_back(trail_instr_t::viable_i); s.m_trail.push_back(trail_instr_t::viable_i);
m_viable_trail.push_back(std::make_pair(v, m_viable_bdd[v])); m_viable_trail.push_back(std::make_pair(v, m_viable[v]));
#endif
} }
void viable::pop_viable() { void viable::pop_viable() {
#if NEW_VIABLE
#else
auto p = m_viable_trail.back(); auto p = m_viable_trail.back();
LOG_V("Undo viable_i"); m_viable[p.first] = p.second;
m_viable_bdd[p.first] = p.second;
m_viable_trail.pop_back(); m_viable_trail.pop_back();
#endif
} }
// a*v + b == 0 or a*v + b != 0 // a*v + b == 0 or a*v + b != 0
void viable::intersect_eq(rational const& a, pvar v, rational const& b, bool is_positive) { void viable::intersect_eq(rational const& a, pvar v, rational const& b, bool is_positive) {
#if NEW_VIABLE #if NEW_VIABLE
save_viable(v); push_viable(v);
m_viable[v].intersect_eq(a, b, is_positive); m_viable[v].intersect_eq(a, b, is_positive);
if (m_viable[v].is_empty()) if (m_viable[v].is_empty())
set_conflict(v); s.set_conflict(v);
#else #else
bddv const& x = var2bits(v).var(); bddv const& x = var2bits(v).var();
@ -79,10 +182,10 @@ namespace polysat {
void viable::intersect_ule(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) { void viable::intersect_ule(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
#if NEW_VIABLE #if NEW_VIABLE
save_viable(v); push_viable(v);
m_viable[v].intersect_ule(a, b, c, d, is_positive); m_viable[v].intersect_ule(a, b, c, d, is_positive);
if (m_viable[v].is_empty()) if (m_viable[v].is_empty())
set_conflict(v); s.set_conflict(v);
#else #else
bddv const& x = var2bits(v).var(); bddv const& x = var2bits(v).var();
// hacky special case // hacky special case
@ -103,7 +206,7 @@ namespace polysat {
#if NEW_VIABLE #if NEW_VIABLE
return !m_viable[v].is_empty(); return !m_viable[v].is_empty();
#else #else
return !m_viable_bdd[v].is_false(); return !m_viable[v].is_false();
#endif #endif
} }
@ -111,16 +214,16 @@ namespace polysat {
#if NEW_VIABLE #if NEW_VIABLE
return m_viable[v].contains(val); return m_viable[v].contains(val);
#else #else
return var2bits(v).contains(m_viable_bdd[v], val); return var2bits(v).contains(m_viable[v], val);
#endif #endif
} }
void viable::add_non_viable(pvar v, rational const& val) { void viable::add_non_viable(pvar v, rational const& val) {
#if NEW_VIABLE #if NEW_VIABLE
save_viable(v); push_viable(v);
m_viable[v].set_ne(val); m_viable[v].set_ne(val);
if (m_viable[v].is_empty()) if (m_viable[v].is_empty())
set_conflict(); s.set_conflict(v);
#else #else
LOG("pvar " << v << " /= " << val); LOG("pvar " << v << " /= " << val);
SASSERT(is_viable(v, val)); SASSERT(is_viable(v, val));
@ -129,21 +232,24 @@ namespace polysat {
#endif #endif
} }
#if !NEW_VIABLE
void viable::intersect_viable(pvar v, bdd vals) { void viable::intersect_viable(pvar v, bdd vals) {
push_viable(v); push_viable(v);
m_viable_bdd[v] &= vals; m_viable[v] &= vals;
if (m_viable_bdd[v].is_false()) if (m_viable[v].is_false())
s.set_conflict(v); s.set_conflict(v);
} }
#endif
dd::find_t viable::find_viable(pvar v, rational & val) { dd::find_t viable::find_viable(pvar v, rational & val) {
#if NEW_VIABLE #if NEW_VIABLE
return m_viable[v].find_hint(s.m_value[v], val); return m_viable[v].find_hint(s.m_value[v], val);
#else #else
return var2bits(v).find_hint(m_viable_bdd[v], s.m_value[v], val); return var2bits(v).find_hint(m_viable[v], s.m_value[v], val);
#endif #endif
} }
#if !NEW_VIABLE
dd::fdd const& viable::sz2bits(unsigned sz) { dd::fdd const& viable::sz2bits(unsigned sz) {
m_bits.reserve(sz + 1); m_bits.reserve(sz + 1);
auto* bits = m_bits[sz]; auto* bits = m_bits[sz];
@ -153,11 +259,12 @@ namespace polysat {
} }
return *bits; return *bits;
} }
#endif
#if POLYSAT_LOGGING_ENABLED #if POLYSAT_LOGGING_ENABLED
void viable::log() { void viable::log() {
// only for small problems // only for small problems
for (pvar v = 0; v < std::min(10u, m_viable_bdd.size()); ++v) for (pvar v = 0; v < std::min(10u, m_viable.size()); ++v)
log(v); log(v);
} }
@ -176,7 +283,9 @@ namespace polysat {
} }
#endif #endif
#if !NEW_VIABLE
dd::fdd const& viable::var2bits(pvar v) { return sz2bits(s.size(v)); } dd::fdd const& viable::var2bits(pvar v) { return sz2bits(s.size(v)); }
#endif
} }

View file

@ -14,18 +14,23 @@ Author:
--*/ --*/
#pragma once #pragma once
#include <limits>
#include "util/tbv.h"
#include "math/dd/dd_bdd.h"
#include "math/interval/mod_interval.h"
#include "math/polysat/types.h"
#define NEW_VIABLE 0 #define NEW_VIABLE 0
#include <limits>
#if !NEW_VIABLE
#include "math/dd/dd_bdd.h"
#endif
#include "math/polysat/types.h"
#include "math/interval/mod_interval.h"
namespace polysat { namespace polysat {
class solver; class solver;
#if NEW_VIABLE
// //
// replace BDDs by viable sets that emulate affine relations. // replace BDDs by viable sets that emulate affine relations.
// viable_set has an interval of feasible values. // viable_set has an interval of feasible values.
@ -36,30 +41,30 @@ namespace polysat {
// //
class viable_set : public mod_interval<rational> { class viable_set : public mod_interval<rational> {
unsigned m_num_bits; unsigned m_num_bits;
tbv* m_tbv = nullptr; bool is_max(rational const& a) const;
void set_lo(rational const& lo); void set_lo(rational const& lo);
void set_hi(rational const& hi); void set_hi(rational const& hi);
void set_eq(rational const& val); void intersect_eq(rational const& a, bool is_positive);
void seq_ne(rational const& val);
void set_ule(rational const& a, rational const& b, rational const& c, rational const& d);
void set_ugt(rational const& a, rational const& b, rational const& c, rational const& d);
public: public:
viable_set(unsigned num_bits): m_num_bits(num_bits) {} viable_set(unsigned num_bits): m_num_bits(num_bits) {}
bool is_singleton(rational& val) const; // all bits in tbv are fixed and !is_empty() for mod_interval bool is_singleton(rational& val) const;
void intersect_eq(rational const& a, rational const& b, bool is_positive) {} dd::find_t find_hint(rational const& c, rational& val) const;
void intersect_ule(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {} void set_ne(rational const& a) { intersect_eq(a, false); }
void intersect_eq(rational const& a, rational const& b, bool is_positive);
void intersect_ule(rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive);
}; };
#endif
class viable { class viable {
solver& s; solver& s;
#if NEW_VIABLE #if NEW_VIABLE
vector<viable_set> m_viable; // future representation of viable values vector<viable_set> m_viable; // future representation of viable values
vector<std::pair<pvar, viable_set>> m_viable_trail;
#else #else
typedef dd::bdd bdd; typedef dd::bdd bdd;
dd::bdd_manager m_bdd; dd::bdd_manager m_bdd;
scoped_ptr_vector<dd::fdd> m_bits; scoped_ptr_vector<dd::fdd> m_bits;
vector<bdd> m_viable_bdd; // set of viable values. vector<bdd> m_viable; // set of viable values.
vector<std::pair<pvar, bdd>> m_viable_trail; vector<std::pair<pvar, bdd>> m_viable_trail;
@ -80,16 +85,12 @@ namespace polysat {
#if NEW_VIABLE #if NEW_VIABLE
m_viable.push_back(viable_set(num_bits)); m_viable.push_back(viable_set(num_bits));
#else #else
m_viable_bdd.push_back(m_bdd.mk_true()); m_viable.push_back(m_bdd.mk_true());
#endif #endif
} }
void pop() { void pop() {
#if NEW_VIABLE
m_viable.pop_back(); m_viable.pop_back();
#else
m_viable_bdd.pop_back();
#endif
} }
void push_viable(pvar v); void push_viable(pvar v);