diff --git a/src/api/ml/z3.mli b/src/api/ml/z3.mli
index b2f0939d0..f82492e8a 100644
--- a/src/api/ml/z3.mli
+++ b/src/api/ml/z3.mli
@@ -1,3001 +1,978 @@
(**
- The Z3 ML/OCaml Interface.
+ The Z3 ML/Ocaml Interface.
Copyright (C) 2012 Microsoft Corporation
@author CM Wintersteiger (cwinter) 2012-12-17
*)
-(** General Z3 exceptions
-
- Many functions in this API may throw an exception; if they do, it is this one.*)
-exception Error of string
-
-(** Context objects.
-
- Most interactions with Z3 are interpreted in some context; many users will only
- require one such object, but power users may require more than one. To start using
- Z3, do
-
-
- let ctx = (mk_context []) in
- (...)
-
-
- where a list of pairs of strings may be passed to set options on
- the context, e.g., like so:
-
-
- let cfg = [("model", "true"); ("...", "...")] in
- let ctx = (mk_context cfg) in
- (...)
-
-*)
type context
-(** Create a context object
- The following parameters can be set:
-
- - proof (Boolean) Enable proof generation
- - debug_ref_count (Boolean) Enable debug support for Z3_ast reference counting
- - trace (Boolean) Tracing support for VCC
- - trace_file_name (String) Trace out file for VCC traces
- - timeout (unsigned) default timeout (in milliseconds) used for solvers
- - well_sorted_check type checker
- - auto_config use heuristics to automatically select solver and configure it
- - model model generation for solvers, this parameter can be overwritten when creating a solver
- - model_validate validate models produced by solvers
- - unsat_core unsat-core generation for solvers, this parameter can be overwritten when creating a solver
-*)
-val mk_context : (string * string) list -> context
+type int_symbol
+type string_symbol
+type symbol = S_Int of int_symbol | S_Str of string_symbol
+
+type ast
+type ast_vector
+type ast_map
+
+type sort = Sort of ast
+
+type uninterpreted_sort = UninterpretedSort of sort
+type bool_sort = BoolSort of sort
+type array_sort = ArraySort of sort
+type set_sort = SetSort of sort
+type datatype_sort = DatatypeSort of sort
+type relation_sort = RelationSort of sort
+type finite_domain_sort = FiniteDomainSort of sort
+type enum_sort = EnumSort of sort
+type list_sort = ListSort of sort
+type tuple_sort = TupleSort of sort
+type arith_sort = ArithSort of sort
+type bitvec_sort = BitVecSort of sort
+type int_sort = IntSort of arith_sort
+type real_sort = RealSort of arith_sort
+
+type func_decl = FuncDecl of ast
+
+type parameter =
+ P_Int of int
+ | P_Dbl of float
+ | P_Sym of symbol
+ | P_Srt of sort
+ | P_Ast of ast
+ | P_Fdl of func_decl
+ | P_Rat of string
+
+type params
+type param_descrs
+
+type expr = Expr of ast
+type bool_expr = BoolExpr of expr
+type arith_expr = ArithExpr of expr
+type int_expr = IntExpr of arith_expr
+type real_expr = RealExpr of arith_expr
+type bitvec_expr = BitVecExpr of expr
+type array_expr = ArrayExpr of expr
+type datatype_expr = DatatypeExpr of expr
+type int_num = IntNum of int_expr
+type rat_num = RatNum of real_expr
+type algebraic_num = AlgebraicNum of arith_expr
+type bitvec_num = BitVecNum of bitvec_expr
+type quantifier = Quantifier of expr
+type pattern = Pattern of ast
+
+type constructor
+
+type goal
+
+type model
+type func_interp
+type func_entry
+
+type probe
+
+type tactic
+type apply_result
+
+type solver
+type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE
+
+type statistics
+type statistics_entry
+
+type fixedpoint
+
+val ast_of_sort : sort -> ast
+val sort_of_uninterpreted_sort : uninterpreted_sort -> sort
+val sort_of_bool_sort : bool_sort -> sort
+val sort_of_array_sort : array_sort -> sort
+val sort_of_set_sort : set_sort -> sort
+val sort_of_datatype_sort : datatype_sort -> sort
+val sort_of_relation_sort : relation_sort -> sort
+val sort_of_finite_domain_sort : finite_domain_sort -> sort
+val sort_of_enum_sort : enum_sort -> sort
+val sort_of_list_sort : list_sort -> sort
+val sort_of_tuple_sort : tuple_sort -> sort
+val sort_of_arith_sort : arith_sort -> sort
+val sort_of_bitvec_sort : bitvec_sort -> sort
+val arith_sort_of_int_sort : int_sort -> arith_sort
+val arith_sort_of_real_sort : real_sort -> arith_sort
+val uninterpreted_sort_of_sort : sort -> uninterpreted_sort
+val bool_sort_of_sort : sort -> bool_sort
+val array_sort_of_sort : sort -> array_sort
+val datatype_sort_of_sort : sort -> datatype_sort
+val relation_sort_of_sort : sort -> relation_sort
+val finite_domain_sort_of_sort : sort -> finite_domain_sort
+val arith_sort_of_sort : sort -> arith_sort
+val bitvec_sort_of_sort : sort -> bitvec_sort
+val int_sort_of_arith_sort : arith_sort -> int_sort
+val real_sort_of_arith_sort : arith_sort -> real_sort
+val ast_of_func_decl : func_decl -> ast
+val ast_of_expr : expr -> ast
+val expr_of_bool_expr : bool_expr -> expr
+val expr_of_arith_expr : arith_expr -> expr
+val expr_of_bitvec_expr : bitvec_expr -> expr
+val expr_of_array_expr : array_expr -> expr
+val expr_of_datatype_expr : datatype_expr -> expr
+val arith_expr_of_int_expr : int_expr -> arith_expr
+val arith_expr_of_real_expr : real_expr -> arith_expr
+val int_expr_of_int_num : int_num -> int_expr
+val real_expr_of_rat_num : rat_num -> real_expr
+val arith_expr_of_algebraic_num : algebraic_num -> arith_expr
+val bitvec_expr_of_bitvec_num : bitvec_num -> bitvec_expr
+val expr_of_quantifier : quantifier -> expr
+val ast_of_pattern : pattern -> ast
+val expr_of_ast : ast -> expr
+val bool_expr_of_expr : expr -> bool_expr
+val arith_expr_of_expr : expr -> arith_expr
+val bitvec_expr_of_expr : expr -> bitvec_expr
+val array_expr_of_expr : expr -> array_expr
+val datatype_expr_of_expr : expr -> datatype_expr
+val int_expr_of_arith_expr : arith_expr -> int_expr
+val real_expr_of_arith_expr : arith_expr -> real_expr
+val int_num_of_int_expr : int_expr -> int_num
+val rat_num_of_real_expr : real_expr -> rat_num
+val algebraic_num_of_arith_expr : arith_expr -> algebraic_num
+val bitvec_num_of_bitvec_expr : bitvec_expr -> bitvec_num
+val quantifier_of_expr : expr -> quantifier
+val pattern_of_ast : ast -> pattern
-(** Interaction logging for Z3
- Note that this is a global, static log and if multiple Context
- objects are created, it logs the interaction with all of them. *)
module Log :
sig
- (** Open an interaction log file.
- @return True if opening the log file succeeds, false otherwise. *)
- (* CMW: "open" is a reserved keyword. *)
val open_ : string -> bool
-
- (** Closes the interaction log. *)
- val close : unit -> unit
-
- (** Appends a user-provided string to the interaction log. *)
+ val close : unit
val append : string -> unit
end
-(** Version information *)
module Version :
sig
- (** The major version. *)
val major : int
-
- (** The minor version. *)
val minor : int
-
- (** The build version. *)
val build : int
-
- (** The revision. *)
val revision : int
-
- (** A string representation of the version information. *)
val to_string : string
end
-(** Symbols are used to name several term and type constructors *)
+val mk_context : (string * string) list -> context
+
module Symbol :
sig
- type symbol
-
- (** The kind of the symbol (int or string) *)
val kind : symbol -> Z3enums.symbol_kind
-
- (** Indicates whether the symbol is of Int kind *)
val is_int_symbol : symbol -> bool
-
- (** Indicates whether the symbol is of string kind. *)
val is_string_symbol : symbol -> bool
-
- (** The int value of the symbol. *)
- val get_int : symbol -> int
-
- (** The string value of the symbol. *)
- val get_string : symbol -> string
-
- (** A string representation of the symbol. *)
+ val get_int : int_symbol -> int
+ val get_string : string_symbol -> string
val to_string : symbol -> string
-
- (** Creates a new symbol using an integer.
- Not all integers can be passed to this function.
- The legal range of unsigned integers is 0 to 2^30-1. *)
val mk_int : context -> int -> symbol
-
- (** Creates a new symbol using a string. *)
val mk_string : context -> string -> symbol
-
- (** Create a list of symbols. *)
- val mk_ints : context -> int list -> symbol list
-
- (** Create a list of symbols. *)
- val mk_strings : context -> string list -> symbol list
+ val mk_ints : context -> int array -> symbol array
+ val mk_strings : context -> string array -> symbol array
end
-(** The abstract syntax tree (AST) module *)
module AST :
sig
- type ast
- (** Vectors of ASTs *)
module ASTVector :
sig
- type ast_vector
-
- (** Create an empty AST vector *)
- val mk_ast_vector : context -> ast_vector
-
- (** The size of the vector *)
val get_size : ast_vector -> int
-
- (** Retrieves the i-th object in the vector.
- @return An AST *)
- val get : ast_vector -> int -> ast
-
- (** Sets the i-th object in the vector. *)
+ val get : ast_vector -> int -> ast_vector
val set : ast_vector -> int -> ast -> unit
-
- (** Resize the vector to a new size. *)
val resize : ast_vector -> int -> unit
-
- (** Add an ast to the back of the vector. The size
- is increased by 1. *)
val push : ast_vector -> ast -> unit
-
- (** Translates all ASTs in the vector to another context.
- @return A new ASTVector *)
val translate : ast_vector -> context -> ast_vector
-
- (** Retrieves a string representation of the vector. *)
val to_string : ast_vector -> string
end
- (** Map from AST to AST *)
module ASTMap :
sig
- type ast_map
-
- (** Create an empty mapping from AST to AST *)
- val mk_ast_map : context -> ast_map
-
- (** Checks whether the map contains a key.
- @return True if the key in the map, false otherwise. *)
val contains : ast_map -> ast -> bool
-
- (** Finds the value associated with the key.
- This function signs an error when the key is not a key in the map. *)
- val find : ast_map -> ast -> ast
-
- (** Stores or replaces a new key/value pair in the map. *)
+ val find : ast_map -> ast -> ast_map
val insert : ast_map -> ast -> ast -> unit
-
- (** Erases the key from the map.*)
val erase : ast_map -> ast -> unit
-
- (** Removes all keys from the map. *)
val reset : ast_map -> unit
-
- (** The size of the map *)
val get_size : ast_map -> int
-
- (** The keys stored in the map. *)
- val get_keys : ast_map -> ast list
-
- (** Retrieves a string representation of the map.*)
+ val get_keys : ast_map -> ast_vector
val to_string : ast_map -> string
end
- (** The AST's hash code.
- @return A hash code *)
- val hash : ast -> int
-
- (** A unique identifier for the AST (unique among all ASTs). *)
+ val get_hash_code : ast -> int
val get_id : ast -> int
-
- (** The kind of the AST. *)
val get_ast_kind : ast -> Z3enums.ast_kind
-
- (** Indicates whether the AST is an Expr *)
val is_expr : ast -> bool
-
- (** Indicates whether the AST is a bound variable*)
val is_var : ast -> bool
-
- (** Indicates whether the AST is a Quantifier *)
val is_quantifier : ast -> bool
-
- (** Indicates whether the AST is a Sort *)
val is_sort : ast -> bool
-
- (** Indicates whether the AST is a func_decl *)
val is_func_decl : ast -> bool
-
- (** A string representation of the AST. *)
val to_string : ast -> string
-
- (** A string representation of the AST in s-expression notation. *)
val to_sexpr : ast -> string
-
- (** Comparison operator.
- @return True if the two ast's are from the same context
- and represent the same sort; false otherwise. *)
- val equal : ast -> ast -> bool
-
- (** Object Comparison.
- @return Negative if the first ast should be sorted before the second, positive if after else zero. *)
+ val ( = ) : ast -> ast -> bool
val compare : ast -> ast -> int
-
- (** Translates (copies) the AST to another context.
- @return A copy of the AST which is associated with the other context. *)
+ val ( < ) : ast -> ast -> int
val translate : ast -> context -> ast
-
- (** Unwraps an AST.
- This function is used for transitions between native and
- managed objects. It returns the native pointer to the AST. Note that
- AST objects are reference counted and unwrapping an AST disables automatic
- reference counting, i.e., all references to the IntPtr that is returned
- must be handled externally and through native calls (see e.g.,
- [Z3native.inc_ref]).
- {!wrap_ast} *)
+ val wrap : context -> Z3native.z3_ast -> ast
val unwrap_ast : ast -> Z3native.ptr
-
- (** Wraps an AST.
-
- This function is used for transitions between native and
- managed objects. Note that the native ast that is passed must be a
- native object obtained from Z3 (e.g., through {!unwrap_ast})
- and that it must have a correct reference count (see e.g.,
- [Z3native.inc_ref]). *)
- val wrap_ast : context -> Z3native.z3_ast -> ast
end
-(** The Sort module implements type information for ASTs *)
module Sort :
sig
- type sort = Sort of AST.ast
-
- val ast_of_sort : sort -> AST.ast
-
- (** Comparison operator.
- @return True if the two sorts are from the same context
- and represent the same sort; false otherwise. *)
- val equal : sort -> sort -> bool
-
- (** Returns a unique identifier for the sort. *)
+ val ( = ) : sort -> sort -> bool
val get_id : sort -> int
-
- (** The kind of the sort. *)
val get_sort_kind : sort -> Z3enums.sort_kind
-
- (** The name of the sort *)
- val get_name : sort -> Symbol.symbol
-
- (** A string representation of the sort. *)
+ val get_name : sort -> symbol
val to_string : sort -> string
-
- (** Create a new uninterpreted sort. *)
- val mk_uninterpreted : context -> Symbol.symbol -> sort
-
- (** Create a new uninterpreted sort. *)
- val mk_uninterpreted_s : context -> string -> sort
+ val mk_uninterpreted : context -> symbol -> uninterpreted_sort
+ val mk_uninterpreted_s : context -> string -> uninterpreted_sort
end
-(** Function declarations *)
-module rec FuncDecl :
+module FuncDecl :
sig
- type func_decl = FuncDecl of AST.ast
- val ast_of_func_decl : FuncDecl.func_decl -> AST.ast
-
- (** Parameters of Func_Decls *)
module Parameter :
sig
- (** Parameters of func_decls *)
- type parameter =
- P_Int of int
- | P_Dbl of float
- | P_Sym of Symbol.symbol
- | P_Srt of Sort.sort
- | P_Ast of AST.ast
- | P_Fdl of func_decl
- | P_Rat of string
-
- (** The kind of the parameter. *)
val get_kind : parameter -> Z3enums.parameter_kind
-
- (** The int value of the parameter.*)
val get_int : parameter -> int
-
- (** The float value of the parameter.*)
val get_float : parameter -> float
-
- (** The Symbol.Symbol value of the parameter.*)
- val get_symbol : parameter -> Symbol.symbol
-
- (** The Sort value of the parameter.*)
- val get_sort : parameter -> Sort.sort
-
- (** The AST value of the parameter.*)
- val get_ast : parameter -> AST.ast
-
- (** The FunctionDeclaration value of the parameter.*)
- val get_func_decl : parameter -> func_decl
-
- (** The rational string value of the parameter.*)
- val get_rational : parameter -> string
+ val get_symbol : parameter -> symbol
+ val get_sort : parameter -> sort
+ val get_ast : parameter -> ast
+ val get_func_decl : parameter -> string
end
- (** Creates a new function declaration. *)
- val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl
-
- (** Creates a new function declaration. *)
- val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl
- (** Creates a fresh function declaration with a name prefixed with a prefix string. *)
-
- val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl
-
- (** Creates a new constant function declaration. *)
- val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl
-
- (** Creates a new constant function declaration. *)
- val mk_const_decl_s : context -> string -> Sort.sort -> func_decl
-
- (** Creates a fresh constant function declaration with a name prefixed with a prefix string.
- {!mk_func_decl}
- {!mk_func_decl} *)
- val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl
-
- (** Comparison operator.
- @return True if a and b are from the same context and represent the same func_decl; false otherwise. *)
- val equal : func_decl -> func_decl -> bool
-
- (** A string representations of the function declaration. *)
+ val mk_func_decl : context -> symbol -> sort array -> sort -> func_decl
+ val mk_func_decl_s : context -> string -> sort array -> sort -> func_decl
+ val mk_fresh_func_decl : context -> string -> sort array -> sort -> func_decl
+ val mk_const_decl : context -> symbol -> sort -> func_decl
+ val mk_const_decl_s : context -> string -> sort -> func_decl
+ val mk_fresh_const_decl : context -> string -> sort -> func_decl
+ val ( = ) : func_decl -> func_decl -> bool
val to_string : func_decl -> string
-
- (** Returns a unique identifier for the function declaration. *)
val get_id : func_decl -> int
-
- (** The arity of the function declaration *)
val get_arity : func_decl -> int
-
- (** The size of the domain of the function declaration
- {!get_arity} *)
val get_domain_size : func_decl -> int
-
- (** The domain of the function declaration *)
- val get_domain : func_decl -> Sort.sort list
-
- (** The range of the function declaration *)
- val get_range : func_decl -> Sort.sort
-
- (** The kind of the function declaration. *)
+ val get_domain : func_decl -> sort array
+ val get_range : func_decl -> sort
val get_decl_kind : func_decl -> Z3enums.decl_kind
-
- (** The name of the function declaration*)
- val get_name : func_decl -> Symbol.symbol
-
- (** The number of parameters of the function declaration *)
+ val get_name : func_decl -> symbol
val get_num_parameters : func_decl -> int
-
- (** The parameters of the function declaration *)
- val get_parameters : func_decl -> Parameter.parameter list
-
- (** Create expression that applies function to arguments. *)
- val apply : func_decl -> Expr.expr list -> Expr.expr
+ val get_parameters : func_decl -> parameter list
+ val apply : func_decl -> expr array -> expr
end
-(** Parameter sets (of Solvers, Tactics, ...)
-
- A Params objects represents a configuration in the form of Symbol.symbol/value pairs. *)
-and Params :
+module Params :
sig
- type params
- (** ParamDescrs describe sets of parameters (of Solvers, Tactics, ...) *)
module ParamDescrs :
sig
- type param_descrs
-
- (** Validate a set of parameters. *)
val validate : param_descrs -> params -> unit
-
- (** Retrieve kind of parameter. *)
- val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind
-
- (** Retrieve all names of parameters. *)
- val get_names : param_descrs -> Symbol.symbol list
-
- (** The size of the ParamDescrs. *)
+ val get_kind : param_descrs -> symbol -> Z3enums.param_kind
+ val get_names : param_descrs -> symbol array
val get_size : param_descrs -> int
-
- (** Retrieves a string representation of the ParamDescrs. *)
val to_string : param_descrs -> string
end
- (** Adds a parameter setting. *)
- val add_bool : params -> Symbol.symbol -> bool -> unit
-
- (** Adds a parameter setting. *)
- val add_int : params -> Symbol.symbol -> int -> unit
-
- (** Adds a parameter setting. *)
- val add_float : params -> Symbol.symbol -> float -> unit
-
- (** Adds a parameter setting. *)
- val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit
-
- (** Creates a new parameter set *)
+ val add_bool : params -> symbol -> bool -> unit
+ val add_int : params -> symbol -> int -> unit
+ val add_double : params -> symbol -> float -> unit
+ val add_symbol : params -> symbol -> symbol -> unit
+ val add_s_bool : params -> string -> bool -> unit
+ val add_s_int : params -> string -> int -> unit
+ val add_s_double : params -> string -> float -> unit
+ val add_s_symbol : params -> string -> symbol -> unit
val mk_params : context -> params
-
- (** A string representation of the parameter set. *)
val to_string : params -> string
-
- (** Update a mutable configuration parameter.
-
- The list of all configuration parameters can be obtained using the Z3 executable:
- [z3.exe -p]
- Only a few configuration parameters are mutable once the context is created.
- An exception is thrown when trying to modify an immutable parameter. *)
- val update_param_value : context -> string -> string -> unit
-
- (** Selects the format used for pretty-printing expressions.
-
- The default mode for pretty printing expressions is to produce
- SMT-LIB style output where common subexpressions are printed
- at each occurrence. The mode is called PRINT_SMTLIB_FULL.
- To print shared common subexpressions only once,
- use the PRINT_LOW_LEVEL mode.
- To print in way that conforms to SMT-LIB standards and uses let
- expressions to share common sub-expressions use PRINT_SMTLIB_COMPLIANT.
- {!AST.to_string}
- {!Quantifier.Pattern.to_string}
- {!FuncDecl.to_string}
- {!Sort.to_string} *)
- val set_print_mode : context -> Z3enums.ast_print_mode -> unit
end
-(** General Expressions (terms) *)
-and Expr :
+module Expr :
sig
- type expr = Expr of AST.ast
-
- val ast_of_expr : Expr.expr -> AST.ast
- val expr_of_ast : AST.ast -> Expr.expr
-
- (** Returns a simplified version of the expression.
- {!get_simplify_help} *)
- val simplify : Expr.expr -> Params.params option -> expr
-
- (** A string describing all available parameters to [Expr.Simplify]. *)
+ val simplify : expr -> params option -> expr
val get_simplify_help : context -> string
-
- (** Retrieves parameter descriptions for simplifier. *)
- val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs
-
- (** The function declaration of the function that is applied in this expression. *)
- val get_func_decl : Expr.expr -> FuncDecl.func_decl
-
- (** The number of arguments of the expression. *)
- val get_num_args : Expr.expr -> int
-
- (** The arguments of the expression. *)
- val get_args : Expr.expr -> Expr.expr list
-
- (** Update the arguments of the expression using an array of expressions.
- The number of new arguments should coincide with the current number of arguments. *)
- val update : Expr.expr -> Expr.expr list -> expr
-
- (** Substitute every occurrence of [from[i]] in the expression with [to[i]], for [i] smaller than [num_exprs].
-
- The result is the new expression. The arrays [from] and [to] must have size [num_exprs].
- For every [i] smaller than [num_exprs], we must have that
- sort of [from[i]] must be equal to sort of [to[i]]. *)
- val substitute : Expr.expr -> Expr.expr list -> Expr.expr list -> expr
-
- (** Substitute every occurrence of [from] in the expression with [to].
- {!substitute} *)
- val substitute_one : Expr.expr -> Expr.expr -> Expr.expr -> expr
-
- (** Substitute the free variables in the expression with the expressions in the expr array
-
- For every [i] smaller than [num_exprs], the variable with de-Bruijn index [i] is replaced with term [to[i]]. *)
- val substitute_vars : Expr.expr -> Expr.expr list -> expr
-
- (** Translates (copies) the term to another context.
- @return A copy of the term which is associated with the other context *)
- val translate : Expr.expr -> context -> expr
-
- (** Returns a string representation of the expression. *)
- val to_string : Expr.expr -> string
-
- (** Indicates whether the term is a numeral *)
- val is_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is well-sorted.
- @return True if the term is well-sorted, false otherwise. *)
- val is_well_sorted : Expr.expr -> bool
-
- (** The Sort of the term. *)
- val get_sort : Expr.expr -> Sort.sort
-
- (** Indicates whether the term represents a constant. *)
- val is_const : Expr.expr -> bool
-
- (** Creates a new constant. *)
- val mk_const : context -> Symbol.symbol -> Sort.sort -> expr
-
- (** Creates a new constant. *)
- val mk_const_s : context -> string -> Sort.sort -> expr
-
- (** Creates a constant from the func_decl. *)
- val mk_const_f : context -> FuncDecl.func_decl -> expr
-
- (** Creates a fresh constant with a name prefixed with a string. *)
- val mk_fresh_const : context -> string -> Sort.sort -> expr
-
- (** Create a new function application. *)
- val mk_app : context -> FuncDecl.func_decl -> Expr.expr list -> expr
-
- (** Create a numeral of a given sort.
- @return A Term with the given value and sort *)
- val mk_numeral_string : context -> string -> Sort.sort -> expr
-
- (** Create a numeral of a given sort. This function can be use to create numerals that fit in a machine integer.
- It is slightly faster than [MakeNumeral] since it is not necessary to parse a string.
- @return A Term with the given value and sort *)
- val mk_numeral_int : context -> int -> Sort.sort -> expr
-
- (** Comparison operator.
- @return True if the two expr's are equal; false otherwise. *)
- val equal : expr -> expr -> bool
-
- (** Object Comparison.
- @return Negative if the first expr should be sorted before the second, positive if after, else zero. *)
- val compare : expr -> expr -> int
+ val get_simplify_parameter_descrs : context -> param_descrs
+ val get_func_decl : expr -> func_decl
+ val get_bool_value : expr -> Z3enums.lbool
+ val get_num_args : expr -> int
+ val get_args : expr -> expr array
+ val update : expr -> expr array -> expr
+ val substitute : expr -> expr array -> expr array -> expr
+ val substitute_one : expr -> expr -> expr -> expr
+ val substitute_vars : expr -> expr array -> expr
+ val translate : expr -> context -> expr
+ val to_string : expr -> string
+ val is_numeral : expr -> bool
+ val is_well_sorted : expr -> bool
+ val get_sort : expr -> sort
+ val is_bool : expr -> bool
+ val is_const : expr -> bool
+ val is_true : expr -> bool
+ val is_false : expr -> bool
+ val is_eq : expr -> bool
+ val is_distinct : expr -> bool
+ val is_ite : expr -> bool
+ val is_and : expr -> bool
+ val is_or : expr -> bool
+ val is_iff : expr -> bool
+ val is_xor : expr -> bool
+ val is_not : expr -> bool
+ val is_implies : expr -> bool
+ val is_label : expr -> bool
+ val is_oeq : expr -> bool
+ val mk_const : context -> symbol -> sort -> expr
+ val mk_const_s : context -> string -> sort -> expr
+ val mk_const_f : context -> func_decl -> expr
+ val mk_fresh_const : context -> string -> sort -> expr
+ val mk_app : context -> func_decl -> expr array -> expr
+ val mk_numeral_string : context -> string -> sort -> expr
+ val mk_numeral_int : context -> int -> sort -> expr
end
-(** Boolean expressions; Propositional logic and equality *)
module Boolean :
sig
- (** Create a Boolean sort *)
- val mk_sort : context -> Sort.sort
-
- (** Create a Boolean constant. *)
- val mk_const : context -> Symbol.symbol -> Expr.expr
-
- (** Create a Boolean constant. *)
- val mk_const_s : context -> string -> Expr.expr
-
- (** The true Term. *)
- val mk_true : context -> Expr.expr
-
- (** The false Term. *)
- val mk_false : context -> Expr.expr
-
- (** Creates a Boolean value. *)
- val mk_val : context -> bool -> Expr.expr
-
- (** Mk an expression representing [not(a)]. *)
- val mk_not : context -> Expr.expr -> Expr.expr
-
- (** Create an expression representing an if-then-else: [ite(t1, t2, t3)]. *)
- val mk_ite : context -> Expr.expr -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 iff t2]. *)
- val mk_iff : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 -> t2]. *)
- val mk_implies : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 xor t2]. *)
- val mk_xor : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing the AND of args *)
- val mk_and : context -> Expr.expr list -> Expr.expr
-
- (** Create an expression representing the OR of args *)
- val mk_or : context -> Expr.expr list -> Expr.expr
-
- (** Creates the equality between two expr's. *)
- val mk_eq : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Creates a [distinct] term. *)
- val mk_distinct : context -> Expr.expr list -> Expr.expr
-
- (** Indicates whether the expression is the true or false expression
- or something else (L_UNDEF). *)
- val get_bool_value : Expr.expr -> Z3enums.lbool
-
- (** Indicates whether the term has Boolean sort. *)
- val is_bool : Expr.expr -> bool
-
- (** Indicates whether the term is the constant true. *)
- val is_true : Expr.expr -> bool
-
- (** Indicates whether the term is the constant false. *)
- val is_false : Expr.expr -> bool
-
- (** Indicates whether the term is an equality predicate. *)
- val is_eq : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct). *)
- val is_distinct : Expr.expr -> bool
-
- (** Indicates whether the term is a ternary if-then-else term *)
- val is_ite : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary conjunction *)
- val is_and : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary disjunction *)
- val is_or : Expr.expr -> bool
-
- (** Indicates whether the term is an if-and-only-if (Boolean equivalence, binary) *)
- val is_iff : Expr.expr -> bool
-
- (** Indicates whether the term is an exclusive or *)
- val is_xor : Expr.expr -> bool
-
- (** Indicates whether the term is a negation *)
- val is_not : Expr.expr -> bool
-
- (** Indicates whether the term is an implication *)
- val is_implies : Expr.expr -> bool
+ val mk_sort : context -> bool_sort
+ val mk_const : context -> symbol -> bool_expr
+ val mk_const_s : context -> string -> bool_expr
+ val mk_true : context -> bool_expr
+ val mk_false : context -> bool_expr
+ val mk_val : context -> bool -> bool_expr
+ val mk_eq : context -> expr -> expr -> bool_expr
+ val mk_distinct : context -> expr array -> bool_expr
+ val mk_not : context -> bool_expr -> bool_expr
+ val mk_ite : context -> bool_expr -> bool_expr -> bool_expr -> bool_expr
+ val mk_iff : context -> bool_expr -> bool_expr -> bool_expr
+ val mk_implies : context -> bool_expr -> bool_expr -> bool_expr
+ val mk_xor : context -> bool_expr -> bool_expr -> bool_expr
+ val mk_and : context -> bool_expr array -> bool_expr
+ val mk_or : context -> bool_expr array -> bool_expr
end
-(** Quantifier expressions *)
module Quantifier :
sig
- type quantifier = Quantifier of Expr.expr
- val expr_of_quantifier : quantifier -> Expr.expr
- val quantifier_of_expr : Expr.expr -> quantifier
-
- (** Quantifier patterns
-
- Patterns comprise a list of terms. The list should be
- non-empty. If the list comprises of more than one term, it is
- also called a multi-pattern. *)
module Pattern :
sig
- type pattern = Pattern of AST.ast
-
- val ast_of_pattern : pattern -> AST.ast
- val pattern_of_ast : AST.ast -> pattern
-
- (** The number of terms in the pattern. *)
val get_num_terms : pattern -> int
-
- (** The terms in the pattern. *)
- val get_terms : pattern -> Expr.expr list
-
- (** A string representation of the pattern. *)
+ val get_terms : pattern -> expr array
val to_string : pattern -> string
end
-
- (** The de-Burijn index of a bound variable.
-
- Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
- the meaning of de-Bruijn indices by indicating the compilation process from
- non-de-Bruijn formulas to de-Bruijn format.
-
- abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
- abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
- abs1(x, x, n) = b_n
- abs1(y, x, n) = y
- abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
- abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
-
- The last line is significant: the index of a bound variable is different depending
- on the scope in which it appears. The deeper ( x : expr ) appears, the higher is its
- index. *)
- val get_index : Expr.expr -> int
-
- (** Indicates whether the quantifier is universal. *)
+ val get_index : expr -> int
val is_universal : quantifier -> bool
-
- (** Indicates whether the quantifier is existential. *)
val is_existential : quantifier -> bool
-
- (** The weight of the quantifier. *)
val get_weight : quantifier -> int
-
- (** The number of patterns. *)
val get_num_patterns : quantifier -> int
-
- (** The patterns. *)
- val get_patterns : quantifier -> Pattern.pattern list
-
- (** The number of no-patterns. *)
+ val get_patterns : quantifier -> pattern array
val get_num_no_patterns : quantifier -> int
-
- (** The no-patterns. *)
- val get_no_patterns : quantifier -> Pattern.pattern list
-
- (** The number of bound variables. *)
+ val get_no_patterns : quantifier -> pattern array
val get_num_bound : quantifier -> int
-
- (** The symbols for the bound variables. *)
- val get_bound_variable_names : quantifier -> Symbol.symbol list
-
- (** The sorts of the bound variables. *)
- val get_bound_variable_sorts : quantifier -> Sort.sort list
-
- (** The body of the quantifier. *)
- val get_body : quantifier -> Expr.expr
-
- (** Creates a new bound variable. *)
- val mk_bound : context -> int -> Sort.sort -> Expr.expr
-
- (** Create a quantifier pattern. *)
- val mk_pattern : context -> Expr.expr list -> Pattern.pattern
-
- (** Create a universal Quantifier. *)
- val mk_forall : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a universal Quantifier. *)
- val mk_forall_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create an existential Quantifier. *)
- val mk_exists : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create an existential Quantifier. *)
- val mk_exists_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a Quantifier. *)
- val mk_quantifier : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a Quantifier. *)
- val mk_quantifier : context -> bool -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** A string representation of the quantifier. *)
- val to_string : quantifier -> string
+ val get_bound_variable_names : quantifier -> symbol array
+ val get_bound_variable_sorts : quantifier -> sort array
+ val get_body : quantifier -> bool_expr
+ val mk_bound : context -> int -> sort -> expr
+ val mk_pattern : context -> expr array -> pattern
+ val mk_forall :
+ context ->
+ sort array ->
+ symbol array ->
+ expr ->
+ int option ->
+ pattern array ->
+ expr array -> symbol option -> symbol option -> quantifier
+ val mk_forall_const :
+ context ->
+ expr array ->
+ expr ->
+ int option ->
+ pattern array ->
+ expr array -> symbol option -> symbol option -> quantifier
+ val mk_exists :
+ context ->
+ sort array ->
+ symbol array ->
+ expr ->
+ int option ->
+ pattern array ->
+ expr array -> symbol option -> symbol option -> quantifier
+ val mk_exists_const :
+ context ->
+ expr array ->
+ expr ->
+ int option ->
+ pattern array ->
+ expr array -> symbol option -> symbol option -> quantifier
+ val mk_quantifier :
+ context ->
+ bool ->
+ expr array ->
+ expr ->
+ int option ->
+ pattern array ->
+ expr array -> symbol option -> symbol option -> quantifier
end
-(** Functions to manipulate Array expressions *)
-module Z3Array :
+module Array_ :
sig
- (** Create a new array sort. *)
- val mk_sort : context -> Sort.sort -> Sort.sort -> Sort.sort
-
- (** Indicates whether the term is an array store.
- It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
- Array store takes at least 3 arguments. *)
- val is_store : Expr.expr -> bool
-
- (** Indicates whether the term is an array select. *)
- val is_select : Expr.expr -> bool
-
- (** Indicates whether the term is a constant array.
- For example, select(const(v),i) = v holds for every v and i. The function is unary. *)
- val is_constant_array : Expr.expr -> bool
-
- (** Indicates whether the term is a default array.
- For example default(const(v)) = v. The function is unary. *)
- val is_default_array : Expr.expr -> bool
-
- (** Indicates whether the term is an array map.
- It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i. *)
- val is_array_map : Expr.expr -> bool
-
- (** Indicates whether the term is an as-array term.
- An as-array term is n array value that behaves as the function graph of the
- function passed as parameter. *)
- val is_as_array : Expr.expr -> bool
-
- (** Indicates whether the term is of an array sort. *)
- val is_array : Expr.expr -> bool
-
- (** The domain of the array sort. *)
- val get_domain : Sort.sort -> Sort.sort
-
- (** The range of the array sort. *)
- val get_range : Sort.sort -> Sort.sort
-
- (** Create an array constant. *)
- val mk_const : context -> Symbol.symbol -> Sort.sort -> Sort.sort -> Expr.expr
-
- (** Create an array constant. *)
- val mk_const_s : context -> string -> Sort.sort -> Sort.sort -> Expr.expr
-
- (** Array read.
-
- The argument [a] is the array and [i] is the index
- of the array that gets read.
-
- The node [a] must have an array sort [[domain -> range]],
- and [i] must have the sort [domain].
- The sort of the result is [range].
- {!Z3Array.mk_sort}
- {!mk_store} *)
- val mk_select : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Array update.
-
- The node [a] must have an array sort [[domain -> range]],
- [i] must have sort [domain],
- [v] must have sort range. The sort of the result is [[domain -> range]].
- The semantics of this function is given by the theory of arrays described in the SMT-LIB
- standard. See http://smtlib.org for more details.
- The result of this function is an array that is equal to [a]
- (with respect to [select])
- on all indices except for [i], where it maps to [v]
- (and the [select] of [a] with
- respect to [i] may be a different value).
- {!Z3Array.mk_sort}
- {!mk_select} *)
- val mk_store : context -> Expr.expr -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create a constant array.
-
- The resulting term is an array, such that a [select]on an arbitrary index
- produces the value [v].
- {!Z3Array.mk_sort}
- {!mk_select} *)
- val mk_const_array : context -> Sort.sort -> Expr.expr -> Expr.expr
-
- (** Maps f on the argument arrays.
-
- Eeach element of [args] must be of an array sort [[domain_i -> range_i]].
- The function declaration [f] must have type [ range_1 .. range_n -> range].
- [v] must have sort range. The sort of the result is [[domain_i -> range]].
- {!Z3Array.mk_sort}
- {!mk_select}
- {!mk_store} *)
- val mk_map : context -> FuncDecl.func_decl -> Expr.expr list -> Expr.expr
-
- (** Access the array default value.
-
- Produces the default range value, for arrays that can be represented as
- finite maps with a default range value. *)
- val mk_term_array : context -> Expr.expr -> Expr.expr
+ val mk_sort : context -> sort -> sort -> array_sort
+ val is_store : expr -> bool
+ val is_select : expr -> bool
+ val is_constant_array : expr -> bool
+ val is_default_array : expr -> bool
+ val is_array_map : expr -> bool
+ val is_as_array : expr -> bool
+ val is_array : expr -> bool
+ val get_domain : array_sort -> sort
+ val get_range : array_sort -> sort
+ val mk_const : context -> symbol -> sort -> sort -> array_expr
+ val mk_const_s : context -> string -> sort -> sort -> array_expr
+ val mk_select : context -> array_expr -> expr -> expr -> expr
+ val mk_const_array : context -> sort -> expr -> expr
+ val mk_map : context -> func_decl -> array_expr array -> expr
+ val mk_term_array : context -> array_expr -> expr
end
-(** Functions to manipulate Set expressions *)
module Set :
sig
- (** Create a set type. *)
- val mk_sort : context -> Sort.sort -> Sort.sort
-
- (** Indicates whether the term is set union *)
- val is_union : Expr.expr -> bool
-
- (** Indicates whether the term is set intersection *)
- val is_intersect : Expr.expr -> bool
-
- (** Indicates whether the term is set difference *)
- val is_difference : Expr.expr -> bool
-
- (** Indicates whether the term is set complement *)
- val is_complement : Expr.expr -> bool
-
- (** Indicates whether the term is set subset *)
- val is_subset : Expr.expr -> bool
-
- (** Create an empty set. *)
- val mk_empty : context -> Sort.sort -> Expr.expr
-
- (** Create the full set. *)
- val mk_full : context -> Sort.sort -> Expr.expr
-
- (** Add an element to the set. *)
- val mk_set_add : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Remove an element from a set. *)
- val mk_del : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Take the union of a list of sets. *)
- val mk_union : context -> Expr.expr list -> Expr.expr
-
- (** Take the intersection of a list of sets. *)
- val mk_intersection : context -> Expr.expr list -> Expr.expr
-
- (** Take the difference between two sets. *)
- val mk_difference : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Take the complement of a set. *)
- val mk_complement : context -> Expr.expr -> Expr.expr
-
- (** Check for set membership. *)
- val mk_membership : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Check for subsetness of sets. *)
- val mk_subset : context -> Expr.expr -> Expr.expr -> Expr.expr
+ val is_union : expr -> bool
+ val is_intersect : expr -> bool
+ val is_difference : expr -> bool
+ val is_complement : expr -> bool
+ val is_subset : expr -> bool
+ val mk_sort : context -> sort -> set_sort
+ val mk_empty : context -> sort -> expr
+ val mk_full : context -> sort -> expr
+ val mk_set_add : context -> expr -> expr -> expr
+ val mk_del : context -> expr -> expr -> expr
+ val mk_union : context -> expr array -> expr
+ val mk_intersection : context -> expr array -> expr
+ val mk_difference : context -> expr -> expr -> expr
+ val mk_complement : context -> expr -> expr
+ val mk_membership : context -> expr -> expr -> expr
+ val mk_subset : context -> expr -> expr -> expr
end
-(** Functions to manipulate Finite Domain expressions *)
module FiniteDomain :
sig
- (** Create a new finite domain sort. *)
- val mk_sort : context -> Symbol.symbol -> int -> Sort.sort
-
- (** Create a new finite domain sort. *)
- val mk_sort_s : context -> string -> int -> Sort.sort
-
- (** Indicates whether the term is of an array sort. *)
- val is_finite_domain : Expr.expr -> bool
-
- (** Indicates whether the term is a less than predicate over a finite domain. *)
- val is_lt : Expr.expr -> bool
-
- (** The size of the finite domain sort. *)
- val get_size : Sort.sort -> int
+ val mk_sort : context -> symbol -> int -> finite_domain_sort
+ val mk_sort_s : context -> string -> int -> finite_domain_sort
+ val is_finite_domain : expr -> bool
+ val is_lt : expr -> bool
+ val get_size : finite_domain_sort -> int
end
-
-(** Functions to manipulate Relation expressions *)
module Relation :
sig
- (** Indicates whether the term is of a relation sort. *)
- val is_relation : Expr.expr -> bool
-
- (** Indicates whether the term is an relation store
-
- Insert a record into a relation.
- The function takes [n+1] arguments, where the first argument is the relation and the remaining [n] elements
- correspond to the [n] columns of the relation. *)
- val is_store : Expr.expr -> bool
-
- (** Indicates whether the term is an empty relation *)
- val is_empty : Expr.expr -> bool
-
- (** Indicates whether the term is a test for the emptiness of a relation *)
- val is_is_empty : Expr.expr -> bool
-
- (** Indicates whether the term is a relational join *)
- val is_join : Expr.expr -> bool
-
- (** Indicates whether the term is the union or convex hull of two relations.
- The function takes two arguments. *)
- val is_union : Expr.expr -> bool
-
- (** Indicates whether the term is the widening of two relations
- The function takes two arguments. *)
- val is_widen : Expr.expr -> bool
-
- (** Indicates whether the term is a projection of columns (provided as numbers in the parameters).
- The function takes one argument. *)
- val is_project : Expr.expr -> bool
-
- (** Indicates whether the term is a relation filter
-
- Filter (restrict) a relation with respect to a predicate.
- The first argument is a relation.
- The second argument is a predicate with free de-Brujin indices
- corresponding to the columns of the relation.
- So the first column in the relation has index 0. *)
- val is_filter : Expr.expr -> bool
-
- (** Indicates whether the term is an intersection of a relation with the negation of another.
-
- Intersect the first relation with respect to negation
- of the second relation (the function takes two arguments).
- Logically, the specification can be described by a function
-
- target = filter_by_negation(pos, neg, columns)
-
- where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
- target are elements in ( x : expr ) in pos, such that there is no y in neg that agrees with
- ( x : expr ) on the columns c1, d1, .., cN, dN. *)
- val is_negation_filter : Expr.expr -> bool
-
- (** Indicates whether the term is the renaming of a column in a relation
-
- The function takes one argument.
- The parameters contain the renaming as a cycle. *)
- val is_rename : Expr.expr -> bool
-
- (** Indicates whether the term is the complement of a relation *)
- val is_complement : Expr.expr -> bool
-
- (** Indicates whether the term is a relational select
-
- Check if a record is an element of the relation.
- The function takes [n+1] arguments, where the first argument is a relation,
- and the remaining [n] arguments correspond to a record. *)
- val is_select : Expr.expr -> bool
-
- (** Indicates whether the term is a relational clone (copy)
-
- Create a fresh copy (clone) of a relation.
- The function is logically the identity, but
- in the context of a register machine allows
- for terms of kind {!is_union}
- to perform destructive updates to the first argument. *)
- val is_clone : Expr.expr -> bool
-
- (** The arity of the relation sort. *)
- val get_arity : Sort.sort -> int
-
- (** The sorts of the columns of the relation sort. *)
- val get_column_sorts : Sort.sort -> Sort.sort list
+ val is_relation : expr -> bool
+ val is_store : expr -> bool
+ val is_empty : expr -> bool
+ val is_is_empty : expr -> bool
+ val is_join : expr -> bool
+ val is_union : expr -> bool
+ val is_widen : expr -> bool
+ val is_project : expr -> bool
+ val is_filter : expr -> bool
+ val is_negation_filter : expr -> bool
+ val is_rename : expr -> bool
+ val is_complement : expr -> bool
+ val is_select : expr -> bool
+ val is_clone : expr -> bool
+ val get_arity : relation_sort -> int
+ val get_column_sorts : relation_sort -> relation_sort array
end
-(** Functions to manipulate Datatype expressions *)
module Datatype :
sig
- (** Datatype Constructors *)
+
module Constructor :
sig
- type constructor
-
- (** The number of fields of the constructor. *)
+ val get_n : constructor -> int
+ val tester_decl : constructor -> func_decl
+ val constructor_decl : constructor -> func_decl
+ val accessor_decls : constructor -> func_decl array
val get_num_fields : constructor -> int
-
- (** The function declaration of the constructor. *)
- val get_constructor_decl : constructor -> FuncDecl.func_decl
-
- (** The function declaration of the tester. *)
- val get_tester_decl : constructor -> FuncDecl.func_decl
-
- (** The function declarations of the accessors *)
- val get_accessor_decls : constructor -> FuncDecl.func_decl list
+ val get_constructor_decl : constructor -> func_decl
+ val get_tester_decl : constructor -> func_decl
+ val get_accessor_decls : constructor -> func_decl array
end
- (** Create a datatype constructor.
- if the corresponding sort reference is 0, then the value in sort_refs should be an index
- referring to one of the recursive datatypes that is declared. *)
- val mk_constructor : context -> Symbol.symbol -> Symbol.symbol -> Symbol.symbol list -> Sort.sort option list -> int list -> Constructor.constructor
-
- (** Create a datatype constructor.
- if the corresponding sort reference is 0, then the value in sort_refs should be an index
- referring to one of the recursive datatypes that is declared. *)
- val mk_constructor_s : context -> string -> Symbol.symbol -> Symbol.symbol list -> Sort.sort option list -> int list -> Constructor.constructor
-
- (** Create a new datatype sort. *)
- val mk_sort : context -> Symbol.symbol -> Constructor.constructor list -> Sort.sort
-
- (** Create a new datatype sort. *)
- val mk_sort_s : context -> string -> Constructor.constructor list -> Sort.sort
-
- (** Create mutually recursive datatypes. *)
- val mk_sorts : context -> Symbol.symbol list -> Constructor.constructor list list -> Sort.sort list
-
- (** Create mutually recursive data-types. *)
- val mk_sorts_s : context -> string list -> Constructor.constructor list list -> Sort.sort list
-
-
- (** The number of constructors of the datatype sort. *)
- val get_num_constructors : Sort.sort -> int
-
- (** The constructors. *)
- val get_constructors : Sort.sort -> FuncDecl.func_decl list
-
- (** The recognizers. *)
- val get_recognizers : Sort.sort -> FuncDecl.func_decl list
-
- (** The constructor accessors. *)
- val get_accessors : Sort.sort -> FuncDecl.func_decl list list
+ val mk_constructor : context -> symbol -> symbol -> symbol array -> sort array -> int array -> constructor
+ val mk_constructor_s : context -> string -> symbol -> symbol array -> sort array -> int array -> constructor
+ val mk_sort : context -> symbol -> constructor array -> datatype_sort
+ val mk_sort_s : context -> string -> constructor array -> datatype_sort
+ val mk_sorts : context -> symbol array -> constructor array array -> datatype_sort array
+ val mk_sorts_s : context -> string array -> constructor array array -> datatype_sort array
+ val get_num_constructors : datatype_sort -> int
+ val get_constructors : datatype_sort -> func_decl array
+ val get_recognizers : datatype_sort -> func_decl array
+ val get_accessors : datatype_sort -> func_decl array array
end
-(** Functions to manipulate Enumeration expressions *)
module Enumeration :
sig
- (** Create a new enumeration sort. *)
- val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> Sort.sort
-
- (** Create a new enumeration sort. *)
- val mk_sort_s : context -> string -> string list -> Sort.sort
-
- (** The function declarations of the constants in the enumeration. *)
- val get_const_decls : Sort.sort -> FuncDecl.func_decl list
-
- (** The test predicates for the constants in the enumeration. *)
- val get_tester_decls : Sort.sort -> FuncDecl.func_decl list
+ val mk_sort : context -> symbol -> symbol array -> enum_sort
+ val mk_sort_s : context -> string -> string array -> enum_sort
+ val get_const_decls : enum_sort -> func_decl array
+ val get_tester_decls : enum_sort -> func_decl array
end
-(** Functions to manipulate List expressions *)
-module Z3List :
+module List_ :
sig
- (** Create a new list sort. *)
- val mk_sort : context -> Symbol.symbol -> Sort.sort -> Sort.sort
-
- (** Create a new list sort. *)
- val mk_list_s : context -> string -> Sort.sort -> Sort.sort
-
- (** The declaration of the nil function of this list sort. *)
- val get_nil_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The declaration of the isNil function of this list sort. *)
- val get_is_nil_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The declaration of the cons function of this list sort. *)
- val get_cons_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The declaration of the isCons function of this list sort. *)
- val get_is_cons_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The declaration of the head function of this list sort. *)
- val get_head_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The declaration of the tail function of this list sort. *)
- val get_tail_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The empty list. *)
- val nil : Sort.sort -> Expr.expr
+ val mk_sort : context -> symbol -> sort -> list_sort
+ val mk_list_s : context -> string -> sort -> list_sort
+ val get_nil_decl : list_sort -> func_decl
+ val get_is_nil_decl : list_sort -> func_decl
+ val get_cons_decl : list_sort -> func_decl
+ val get_is_cons_decl : list_sort -> func_decl
+ val get_head_decl : list_sort -> func_decl
+ val get_tail_decl : list_sort -> func_decl
+ val nil : list_sort -> expr
end
-(** Functions to manipulate Tuple expressions *)
module Tuple :
sig
- (** Create a new tuple sort. *)
- val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> Sort.sort
-
- (** The constructor function of the tuple. *)
- val get_mk_decl : Sort.sort -> FuncDecl.func_decl
-
- (** The number of fields in the tuple. *)
- val get_num_fields : Sort.sort -> int
-
- (** The field declarations. *)
- val get_field_decls : Sort.sort -> FuncDecl.func_decl list
+ val mk_sort :
+ context -> symbol -> symbol array -> sort array -> tuple_sort
+ val get_mk_decl : tuple_sort -> func_decl
+ val get_num_fields : tuple_sort -> int
+ val get_field_decls : tuple_sort -> func_decl array
end
-(** Functions to manipulate arithmetic expressions *)
module Arithmetic :
sig
- (** Integer Arithmetic *)
+
module Integer :
sig
- (** Create a new integer sort. *)
- val mk_sort : context -> Sort.sort
-
- (** Retrieve the int value. *)
- val get_int : Expr.expr -> int
-
- (** Get a big_int from an integer numeral *)
- val get_big_int : Expr.expr -> Big_int.big_int
-
- (** Returns a string representation of the numeral. *)
- val to_string : Expr.expr -> string
-
- (** Creates an integer constant. *)
- val mk_const : context -> Symbol.symbol -> Expr.expr
-
- (** Creates an integer constant. *)
- val mk_const_s : context -> string -> Expr.expr
-
- (** Create an expression representing [t1 mod t2].
- The arguments must have int type. *)
- val mk_mod : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 rem t2].
- The arguments must have int type. *)
- val mk_rem : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an integer numeral. *)
- val mk_numeral_s : context -> string -> Expr.expr
-
- (** Create an integer numeral.
- @return A Term with the given value and sort Integer *)
- val mk_numeral_i : context -> int -> Expr.expr
-
- (** Coerce an integer to a real.
-
-
- There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
-
- You can take the floor of a real by creating an auxiliary integer Term [k] and
- and asserting [MakeInt2Real(k) <= t1 < MkInt2Real(k)+1].
- The argument must be of integer sort. *)
- val mk_int2real : context -> Expr.expr -> Expr.expr
-
- (** Create an n-bit bit-vector from an integer argument.
-
-
- NB. This function is essentially treated as uninterpreted.
- So you cannot expect Z3 to precisely reflect the semantics of this function
- when solving constraints with this function.
-
- The argument must be of integer sort. *)
- val mk_int2bv : context -> int -> Expr.expr -> Expr.expr
+ val mk_sort : context -> int_sort
+ val get_int : int_num -> int
+ val to_string : int_num -> string
+ val mk_int_const : context -> symbol -> int_expr
+ val mk_int_const_s : context -> string -> int_expr
+ val mk_mod : context -> int_expr -> int_expr -> expr
+ val mk_rem : context -> int_expr -> int_expr -> expr
+ val mk_int_numeral_s : context -> string -> int_num
+ val mk_int_numeral_i : context -> int -> int_num
+ val mk_int2real : context -> int_expr -> real_expr
+ val mk_int2bv : context -> int -> int_expr -> bitvec_expr
end
- (** Real Arithmetic *)
module Real :
sig
- (** Create a real sort. *)
- val mk_sort : context -> Sort.sort
-
- (** The numerator of a rational numeral. *)
- val get_numerator : Expr.expr -> Expr.expr
-
- (** The denominator of a rational numeral. *)
- val get_denominator : Expr.expr -> Expr.expr
-
- (** Get a ratio from a real numeral *)
- val get_ratio : Expr.expr -> Ratio.ratio
-
- (** Returns a string representation in decimal notation.
- The result has at most as many decimal places as indicated by the int argument.*)
- val to_decimal_string : Expr.expr-> int -> string
-
- (** Returns a string representation of the numeral. *)
- val to_string : Expr.expr-> string
-
- (** Creates a real constant. *)
- val mk_const : context -> Symbol.symbol -> Expr.expr
-
- (** Creates a real constant. *)
- val mk_const_s : context -> string -> Expr.expr
-
- (** Create a real numeral from a fraction.
- @return A Term with rational value and sort Real
- {!mk_numeral_s} *)
- val mk_numeral_nd : context -> int -> int -> Expr.expr
-
- (** Create a real numeral.
- @return A Term with the given value and sort Real *)
- val mk_numeral_s : context -> string -> Expr.expr
-
- (** Create a real numeral.
- @return A Term with the given value and sort Real *)
- val mk_numeral_i : context -> int -> Expr.expr
-
- (** Creates an expression that checks whether a real number is an integer. *)
- val mk_is_integer : context -> Expr.expr -> Expr.expr
-
- (** Coerce a real to an integer.
-
- The semantics of this function follows the SMT-LIB standard for the function to_int.
- The argument must be of real sort. *)
- val mk_real2int : context -> Expr.expr -> Expr.expr
-
- (** Algebraic Numbers *)
- module AlgebraicNumber :
- sig
- (** Return a upper bound for a given real algebraic number.
- The interval isolating the number is smaller than 1/10^precision.
- {!is_algebraic_number}
- @return A numeral Expr of sort Real *)
- val to_upper : Expr.expr -> int -> Expr.expr
-
- (** Return a lower bound for the given real algebraic number.
- The interval isolating the number is smaller than 1/10^precision.
- {!is_algebraic_number}
- @return A numeral Expr of sort Real *)
- val to_lower : Expr.expr -> int -> Expr.expr
-
- (** Returns a string representation in decimal notation.
- The result has at most as many decimal places as the int argument provided.*)
- val to_decimal_string : Expr.expr -> int -> string
-
- (** Returns a string representation of the numeral. *)
- val to_string : Expr.expr -> string
- end
+ val mk_sort : context -> real_sort
+ val get_numerator : rat_num -> int_num
+ val get_denominator : rat_num -> int_num
+ val to_decimal_string : rat_num -> int -> string
+ val to_string : rat_num -> string
+ val mk_real_const : context -> symbol -> real_expr
+ val mk_real_const_s : context -> string -> real_expr
+ val mk_numeral_nd : context -> int -> int -> rat_num
+ val mk_numeral_s : context -> string -> rat_num
+ val mk_numeral_i : context -> int -> rat_num
+ val mk_is_integer : context -> real_expr -> bool_expr
+ val mk_real2int : context -> real_expr -> int_expr
end
- (** Indicates whether the term is of integer sort. *)
- val is_int : Expr.expr -> bool
+ module AlgebraicNumber :
+ sig
+ val to_upper : algebraic_num -> int -> rat_num
+ val to_lower : algebraic_num -> int -> rat_num
+ val to_decimal_string : algebraic_num -> int -> string
+ val to_string : algebraic_num -> string
+ end
- (** Indicates whether the term is an arithmetic numeral. *)
- val is_arithmetic_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a less-than-or-equal *)
- val is_le : Expr.expr -> bool
-
- (** Indicates whether the term is a greater-than-or-equal *)
- val is_ge : Expr.expr -> bool
-
- (** Indicates whether the term is a less-than *)
- val is_lt : Expr.expr -> bool
-
- (** Indicates whether the term is a greater-than *)
- val is_gt : Expr.expr -> bool
-
- (** Indicates whether the term is addition (binary) *)
- val is_add : Expr.expr -> bool
-
- (** Indicates whether the term is subtraction (binary) *)
- val is_sub : Expr.expr -> bool
-
- (** Indicates whether the term is a unary minus *)
- val is_uminus : Expr.expr -> bool
-
- (** Indicates whether the term is multiplication (binary) *)
- val is_mul : Expr.expr -> bool
-
- (** Indicates whether the term is division (binary) *)
- val is_div : Expr.expr -> bool
-
- (** Indicates whether the term is integer division (binary) *)
- val is_idiv : Expr.expr -> bool
-
- (** Indicates whether the term is remainder (binary) *)
- val is_remainder : Expr.expr -> bool
-
- (** Indicates whether the term is modulus (binary) *)
- val is_modulus : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion of integer to real (unary) *)
- val is_inttoreal : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion of real to integer (unary) *)
- val is_real_to_int : Expr.expr -> bool
-
- (** Indicates whether the term is a check that tests whether a real is integral (unary) *)
- val is_real_is_int : Expr.expr -> bool
-
- (** Indicates whether the term is of sort real. *)
- val is_real : Expr.expr -> bool
-
- (** Indicates whether the term is an integer numeral. *)
- val is_int_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a real numeral. *)
- val is_rat_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is an algebraic number *)
- val is_algebraic_number : Expr.expr -> bool
-
- (** Create an expression representing [t[0] + t[1] + ...]. *)
- val mk_add : context -> Expr.expr list -> Expr.expr
-
- (** Create an expression representing [t[0] * t[1] * ...]. *)
- val mk_mul : context -> Expr.expr list -> Expr.expr
-
- (** Create an expression representing [t[0] - t[1] - ...]. *)
- val mk_sub : context -> Expr.expr list -> Expr.expr
-
- (** Create an expression representing [-t]. *)
- val mk_unary_minus : context -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 / t2]. *)
- val mk_div : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 ^ t2]. *)
- val mk_power : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 < t2] *)
- val mk_lt : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 <= t2] *)
- val mk_le : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 > t2] *)
- val mk_gt : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an expression representing [t1 >= t2] *)
- val mk_ge : context -> Expr.expr -> Expr.expr -> Expr.expr
+ val is_int : expr -> bool
+ val is_arithmetic_numeral : expr -> bool
+ val is_le : expr -> bool
+ val is_ge : expr -> bool
+ val is_lt : expr -> bool
+ val is_gt : expr -> bool
+ val is_add : expr -> bool
+ val is_sub : expr -> bool
+ val is_uminus : expr -> bool
+ val is_mul : expr -> bool
+ val is_div : expr -> bool
+ val is_idiv : expr -> bool
+ val is_remainder : expr -> bool
+ val is_modulus : expr -> bool
+ val is_inttoreal : expr -> bool
+ val is_real_to_int : expr -> bool
+ val is_real_is_int : expr -> bool
+ val is_real : expr -> bool
+ val is_int_numeral : expr -> bool
+ val is_rat_num : expr -> bool
+ val is_algebraic_number : expr -> bool
+ val mk_add : context -> arith_expr array -> arith_expr
+ val mk_mul : context -> arith_expr array -> arith_expr
+ val mk_sub : context -> arith_expr array -> arith_expr
+ val mk_unary_minus : context -> arith_expr -> arith_expr
+ val mk_div : context -> arith_expr -> arith_expr -> arith_expr
+ val mk_power : context -> arith_expr -> arith_expr -> arith_expr
+ val mk_lt : context -> arith_expr -> arith_expr -> bool_expr
+ val mk_le : context -> arith_expr -> arith_expr -> bool_expr
+ val mk_gt : context -> arith_expr -> arith_expr -> bool_expr
+ val mk_ge : context -> arith_expr -> arith_expr -> bool_expr
end
-(** Functions to manipulate bit-vector expressions *)
module BitVector :
sig
- (** Create a new bit-vector sort. *)
- val mk_sort : context -> int -> Sort.sort
-
- (** Indicates whether the terms is of bit-vector sort. *)
- val is_bv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector numeral *)
- val is_bv_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a one-bit bit-vector with value one *)
- val is_bv_bit1 : Expr.expr -> bool
-
- (** Indicates whether the term is a one-bit bit-vector with value zero *)
- val is_bv_bit0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unary minus *)
- val is_bv_uminus : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector addition (binary) *)
- val is_bv_add : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector subtraction (binary) *)
- val is_bv_sub : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector multiplication (binary) *)
- val is_bv_mul : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed division (binary) *)
- val is_bv_sdiv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned division (binary) *)
- val is_bv_udiv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed remainder (binary) *)
- val is_bv_SRem : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned remainder (binary) *)
- val is_bv_urem : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed modulus *)
- val is_bv_smod : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed division by zero *)
- val is_bv_sdiv0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned division by zero *)
- val is_bv_udiv0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed remainder by zero *)
- val is_bv_srem0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned remainder by zero *)
- val is_bv_urem0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed modulus by zero *)
- val is_bv_smod0 : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector less-than-or-equal *)
- val is_bv_ule : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector less-than-or-equal *)
- val is_bv_sle : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector greater-than-or-equal *)
- val is_bv_uge : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector greater-than-or-equal *)
- val is_bv_sge : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector less-than *)
- val is_bv_ult : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector less-than *)
- val is_bv_slt : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector greater-than *)
- val is_bv_ugt : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector greater-than *)
- val is_bv_sgt : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise AND *)
- val is_bv_and : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise OR *)
- val is_bv_or : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NOT *)
- val is_bv_not : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise XOR *)
- val is_bv_xor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NAND *)
- val is_bv_nand : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NOR *)
- val is_bv_nor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise XNOR *)
- val is_bv_xnor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector concatenation (binary) *)
- val is_bv_concat : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector sign extension *)
- val is_bv_signextension : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector zero extension *)
- val is_bv_zeroextension : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector extraction *)
- val is_bv_extract : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector repetition *)
- val is_bv_repeat : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector reduce OR *)
- val is_bv_reduceor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector reduce AND *)
- val is_bv_reduceand : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector comparison *)
- val is_bv_comp : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector shift left *)
- val is_bv_shiftleft : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector logical shift right *)
- val is_bv_shiftrightlogical : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector arithmetic shift left *)
- val is_bv_shiftrightarithmetic : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate left *)
- val is_bv_rotateleft : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate right *)
- val is_bv_rotateright : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate left (extended)
- Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one. *)
- val is_bv_rotateleftextended : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate right (extended)
- Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one. *)
- val is_bv_rotaterightextended : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion from integer to bit-vector
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
-
- (** Indicates whether the term is a coercion from bit-vector to integer
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
- val is_int_to_bv : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion from integer to bit-vector
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
- val is_bv_to_int : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector carry
- Compute the carry bit in a full-adder. The meaning is given by the
- equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3))) *)
- val is_bv_carry : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector ternary XOR
- The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3) *)
- val is_bv_xor3 : Expr.expr -> bool
-
- (** The size of a bit-vector sort. *)
- val get_size : Sort.sort -> int
-
- (** Retrieve the int value. *)
- val get_int : Expr.expr -> int
-
- (** Returns a string representation of the numeral. *)
- val to_string : Expr.expr -> string
-
- (** Creates a bit-vector constant. *)
- val mk_const : context -> Symbol.symbol -> int -> Expr.expr
-
- (** Creates a bit-vector constant. *)
- val mk_const_s : context -> string -> int -> Expr.expr
-
- (** Bitwise negation.
- The argument must have a bit-vector sort. *)
- val mk_not : context -> Expr.expr -> Expr.expr
-
- (** Take conjunction of bits in a vector,vector of length 1.
- The argument must have a bit-vector sort. *)
- val mk_redand : context -> Expr.expr -> Expr.expr
-
- (** Take disjunction of bits in a vector,vector of length 1.
- The argument must have a bit-vector sort. *)
- val mk_redor : context -> Expr.expr -> Expr.expr
-
- (** Bitwise conjunction.
- The arguments must have a bit-vector sort. *)
- val mk_and : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bitwise disjunction.
- The arguments must have a bit-vector sort. *)
- val mk_or : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bitwise XOR.
- The arguments must have a bit-vector sort. *)
- val mk_xor : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bitwise NAND.
- The arguments must have a bit-vector sort. *)
- val mk_nand : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bitwise NOR.
- The arguments must have a bit-vector sort. *)
- val mk_nor : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bitwise XNOR.
- The arguments must have a bit-vector sort. *)
- val mk_xnor : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Standard two's complement unary minus.
- The arguments must have a bit-vector sort. *)
- val mk_neg : context -> Expr.expr -> Expr.expr
-
- (** Two's complement addition.
- The arguments must have the same bit-vector sort. *)
- val mk_add : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement subtraction.
- The arguments must have the same bit-vector sort. *)
- val mk_sub : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement multiplication.
- The arguments must have the same bit-vector sort. *)
- val mk_mul : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned division.
-
- It is defined as the floor of [t1/t2] if \c t2 is
- different from zero. If [t2] is zero, then the result
- is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_udiv : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Signed division.
-
- It is defined in the following way:
-
- - The \c floor of [t1/t2] if \c t2 is different from zero, and [t1*t2 >= 0].
-
- - The \c ceiling of [t1/t2] if \c t2 is different from zero, and [t1*t2 < 0].
-
- If [t2] is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_sdiv : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned remainder.
-
- It is defined as [t1 - (t1 /u t2) * t2], where [/u] represents unsigned division.
- If [t2] is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_urem : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Signed remainder.
-
- It is defined as [t1 - (t1 /s t2) * t2], where [/s] represents signed division.
- The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
-
- If [t2] is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_srem : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement signed remainder (sign follows divisor).
-
- If [t2] is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_smod : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned less-than
-
- The arguments must have the same bit-vector sort. *)
- val mk_ult : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement signed less-than
-
- The arguments must have the same bit-vector sort. *)
- val mk_slt : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned less-than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_ule : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement signed less-than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sle : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned greater than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_uge : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement signed greater than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sge : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Unsigned greater-than.
-
- The arguments must have the same bit-vector sort. *)
- val mk_ugt : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Two's complement signed greater-than.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sgt : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bit-vector concatenation.
-
- The arguments must have a bit-vector sort.
- @return
- The result is a bit-vector of size [n1+n2], where [n1] ([n2])
- is the size of [t1] ([t2]). *)
- val mk_concat : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Bit-vector extraction.
-
- Extract the bits between two limits from a bitvector of
- size [m] to yield a new bitvector of size [n], where
- [n = high - low + 1]. *)
- val mk_extract : context -> int -> int -> Expr.expr -> Expr.expr
-
- (** Bit-vector sign extension.
-
- Sign-extends the given bit-vector to the (signed) equivalent bitvector of
- size [m+i], where \c m is the size of the given bit-vector. *)
- val mk_sign_ext : context -> int -> Expr.expr -> Expr.expr
-
- (** Bit-vector zero extension.
-
- Extend the given bit-vector with zeros to the (unsigned) equivalent
- bitvector of size [m+i], where \c m is the size of the
- given bit-vector. *)
- val mk_zero_ext : context -> int -> Expr.expr -> Expr.expr
-
- (** Bit-vector repetition. *)
- val mk_repeat : context -> int -> Expr.expr -> Expr.expr
-
- (** Shift left.
-
- It is equivalent to multiplication by [2^x] where \c x is the value of third argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.*)
- val mk_shl : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Logical shift right
-
- It is equivalent to unsigned division by [2^x] where \c x is the value of the third argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.
-
- The arguments must have a bit-vector sort. *)
- val mk_lshr : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Arithmetic shift right
-
- It is like logical shift right except that the most significant
- bits of the result always copy the most significant bit of the
- second argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.
-
- The arguments must have a bit-vector sort. *)
- val mk_ashr : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Rotate Left.
- Rotate bits of \c t to the left \c i times. *)
- val mk_rotate_left : context -> int -> Expr.expr -> Expr.expr
-
- (** Rotate Right.
- Rotate bits of \c t to the right \c i times.*)
- val mk_rotate_right : context -> int -> Expr.expr -> Expr.expr
-
- (** Rotate Left.
- Rotate bits of the second argument to the left.*)
- val mk_ext_rotate_left : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Rotate Right.
- Rotate bits of the second argument to the right. *)
- val mk_ext_rotate_right : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create an integer from the bit-vector argument
-
- If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
- So the result is non-negative and in the range [[0..2^N-1]], where
- N are the number of bits in the argument.
- If \c is_signed is true, \c t1 is treated as a signed bit-vector.
-
- NB. This function is essentially treated as uninterpreted.
- So you cannot expect Z3 to precisely reflect the semantics of this function
- when solving constraints with this function.*)
- val mk_bv2int : context -> Expr.expr -> bool -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise addition does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_add_no_overflow : context -> Expr.expr -> Expr.expr -> bool -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise addition does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_add_no_underflow : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise subtraction does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sub_no_overflow : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise subtraction does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sub_no_underflow : context -> Expr.expr -> Expr.expr -> bool -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise signed division does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sdiv_no_overflow : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise negation does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_neg_no_overflow : context -> Expr.expr -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise multiplication does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_mul_no_overflow : context -> Expr.expr -> Expr.expr -> bool -> Expr.expr
-
- (** Create a predicate that checks that the bit-wise multiplication does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_mul_no_underflow : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Create a bit-vector numeral. *)
- val mk_numeral : context -> string -> int -> Expr.expr
+ val mk_sort : context -> int -> bitvec_sort
+ val is_bv : expr -> bool
+ val is_bv_numeral : expr -> bool
+ val is_bv_bit1 : expr -> bool
+ val is_bv_bit0 : expr -> bool
+ val is_bv_uminus : expr -> bool
+ val is_bv_add : expr -> bool
+ val is_bv_sub : expr -> bool
+ val is_bv_mul : expr -> bool
+ val is_bv_sdiv : expr -> bool
+ val is_bv_udiv : expr -> bool
+ val is_bv_SRem : expr -> bool
+ val is_bv_urem : expr -> bool
+ val is_bv_smod : expr -> bool
+ val is_bv_sdiv0 : expr -> bool
+ val is_bv_udiv0 : expr -> bool
+ val is_bv_srem0 : expr -> bool
+ val is_bv_urem0 : expr -> bool
+ val is_bv_smod0 : expr -> bool
+ val is_bv_ule : expr -> bool
+ val is_bv_sle : expr -> bool
+ val is_bv_uge : expr -> bool
+ val is_bv_sge : expr -> bool
+ val is_bv_ult : expr -> bool
+ val is_bv_slt : expr -> bool
+ val is_bv_ugt : expr -> bool
+ val is_bv_sgt : expr -> bool
+ val is_bv_and : expr -> bool
+ val is_bv_or : expr -> bool
+ val is_bv_not : expr -> bool
+ val is_bv_xor : expr -> bool
+ val is_bv_nand : expr -> bool
+ val is_bv_nor : expr -> bool
+ val is_bv_xnor : expr -> bool
+ val is_bv_concat : expr -> bool
+ val is_bv_signextension : expr -> bool
+ val is_bv_zeroextension : expr -> bool
+ val is_bv_extract : expr -> bool
+ val is_bv_repeat : expr -> bool
+ val is_bv_reduceor : expr -> bool
+ val is_bv_reduceand : expr -> bool
+ val is_bv_comp : expr -> bool
+ val is_bv_shiftleft : expr -> bool
+ val is_bv_shiftrightlogical : expr -> bool
+ val is_bv_shiftrightarithmetic : expr -> bool
+ val is_bv_rotateleft : expr -> bool
+ val is_bv_rotateright : expr -> bool
+ val is_bv_rotateleftextended : expr -> bool
+ val is_bv_rotaterightextended : expr -> bool
+ val is_int_to_bv : expr -> bool
+ val is_bv_to_int : expr -> bool
+ val is_bv_carry : expr -> bool
+ val is_bv_xor3 : expr -> bool
+ val get_size : bitvec_sort -> int
+ val get_int : bitvec_num -> int
+ val to_string : bitvec_num -> string
+ val mk_const : context -> symbol -> int -> bitvec_expr
+ val mk_const_s : context -> string -> int -> bitvec_expr
+ val mk_not : context -> bitvec_expr -> expr
+ val mk_redand : context -> bitvec_expr -> expr
+ val mk_redor : context -> bitvec_expr -> expr
+ val mk_and : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_or : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_xor : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_nand : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_nor : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_xnor : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_neg : context -> bitvec_expr -> expr
+ val mk_add : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_sub : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_mul : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_udiv : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_sdiv : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_urem : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_srem : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_smod : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_ult : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_slt : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_ule : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_sle : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_uge : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_sge : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_ugt : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_sgt : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_concat : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_extract : context -> int -> int -> bitvec_expr -> expr
+ val mk_sign_ext : context -> int -> bitvec_expr -> expr
+ val mk_zero_ext : context -> int -> bitvec_expr -> expr
+ val mk_repeat : context -> int -> bitvec_expr -> expr
+ val mk_shl : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_lshr : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_ashr : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_rotate_left : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_rotate_right : context -> bitvec_expr -> bitvec_expr -> expr
+ val mk_bv2int : context -> bitvec_expr -> bool -> int_expr
+ val mk_add_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> bool_expr
+ val mk_add_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_sub_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_sub_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool -> bool_expr
+ val mk_sdiv_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_neg_no_overflow : context -> bitvec_expr -> bool_expr
+ val mk_mul_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> bool_expr
+ val mk_mul_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool_expr
+ val mk_numeral : context -> string -> int -> bitvec_num
end
-(** Functions to manipulate proof expressions *)
module Proof :
sig
- (** Indicates whether the term is a Proof for the expression 'true'. *)
- val is_true : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a fact asserted by the user. *)
- val is_asserted : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user. *)
- val is_goal : Expr.expr -> bool
-
- (** Indicates whether the term is a binary equivalence modulo namings.
- This binary predicate is used in proof terms.
- It captures equisatisfiability and equivalence modulo renamings. *)
- val is_oeq : Expr.expr -> bool
-
- (** Indicates whether the term is proof via modus ponens
-
- Given a proof for p and a proof for (implies p q), produces a proof for q.
- T1: p
- T2: (implies p q)
- [mp T1 T2]: q
- The second antecedents may also be a proof for (iff p q). *)
- val is_modus_ponens : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
- This proof object has no antecedents.
- The only reflexive relations that are used are
- equivalence modulo namings, equality and equivalence.
- That is, R is either '~', '=' or 'iff'. *)
- val is_reflexivity : Expr.expr -> bool
-
- (** Indicates whether the term is proof by symmetricity of a relation
-
- Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
- T1: (R t s)
- [symmetry T1]: (R s t)
- T1 is the antecedent of this proof object. *)
- val is_symmetry : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by transitivity of a relation
-
- Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
- for (R t u).
- T1: (R t s)
- T2: (R s u)
- [trans T1 T2]: (R t u) *)
- val is_transitivity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by condensed transitivity of a relation
-
- Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
- It combines several symmetry and transitivity proofs.
- Example:
- T1: (R a b)
- T2: (R c b)
- T3: (R c d)
- [trans* T1 T2 T3]: (R a d)
- R must be a symmetric and transitive relation.
-
- Assuming that this proof object is a proof for (R s t), then
- a proof checker must check if it is possible to prove (R s t)
- using the antecedents, symmetry and transitivity. That is,
- if there is a path from s to t, if we view every
- antecedent (R a b) as an edge between a and b. *)
- val is_Transitivity_star : Expr.expr -> bool
-
- (** Indicates whether the term is a monotonicity proof object.
-
- T1: (R t_1 s_1)
- ...
- Tn: (R t_n s_n)
- [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
- Remark: if t_i == s_i, then the antecedent Ti is suppressed.
- That is, reflexivity proofs are supressed to save space. *)
- val is_monotonicity : Expr.expr -> bool
-
- (** Indicates whether the term is a quant-intro proof
-
- Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
- T1: (~ p q)
- [quant-intro T1]: (~ (forall (x) p) (forall (x) q)) *)
- val is_quant_intro : Expr.expr -> bool
-
- (** Indicates whether the term is a distributivity proof object.
-
- Given that f (= or) distributes over g (= and), produces a proof for
- (= (f a (g c d))
- (g (f a c) (f a d)))
- If f and g are associative, this proof also justifies the following equality:
- (= (f (g a b) (g c d))
- (g (f a c) (f a d) (f b c) (f b d)))
- where each f and g can have arbitrary number of arguments.
-
- This proof object has no antecedents.
- Remark. This rule is used by the CNF conversion pass and
- instantiated by f = or, and g = and. *)
- val is_distributivity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by elimination of AND
-
- Given a proof for (and l_1 ... l_n), produces a proof for l_i
- T1: (and l_1 ... l_n)
- [and-elim T1]: l_i *)
- val is_and_elimination : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by eliminiation of not-or
-
- Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
- T1: (not (or l_1 ... l_n))
- [not-or-elim T1]: (not l_i) *)
- val is_or_elimination : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by rewriting
-
- A proof for a local rewriting step (= t s).
- The head function symbol of t is interpreted.
-
- This proof object has no antecedents.
- The conclusion of a rewrite rule is either an equality (= t s),
- an equivalence (iff t s), or equi-satisfiability (~ t s).
- Remark: if f is bool, then = is iff.
-
- Examples:
- (= (+ ( x : expr ) 0) x)
- (= (+ ( x : expr ) 1 2) (+ 3 x))
- (iff (or ( x : expr ) false) x) *)
- val is_rewrite : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by rewriting
-
- A proof for rewriting an expression t into an expression s.
- This proof object is used if the parameter PROOF_MODE is 1.
- This proof object can have n antecedents.
- The antecedents are proofs for equalities used as substitution rules.
- The object is also used in a few cases if the parameter PROOF_MODE is 2.
- The cases are:
- - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
- - When converting bit-vectors to Booleans (BIT2BOOL=true)
- - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true) *)
- val is_rewrite_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pulling quantifiers out.
-
- A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents. *)
- val is_pull_quant : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pulling quantifiers out.
-
- A proof for (iff P Q) where Q is in prenex normal form.
- This proof object is only used if the parameter PROOF_MODE is 1.
- This proof object has no antecedents *)
- val is_pull_quant_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pushing quantifiers in.
-
- A proof for:
- (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
- (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
- ...
- (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
- This proof object has no antecedents *)
- val is_push_quant : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for elimination of unused variables.
-
- A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
- (forall (x_1 ... x_n) p[x_1 ... x_n]))
-
- It is used to justify the elimination of unused variables.
- This proof object has no antecedents. *)
- val is_elim_unused_vars : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for destructive equality resolution
-
- A proof for destructive equality resolution:
- (iff (forall (x) (or (not (= ( x : expr ) t)) P[x])) P[t])
- if ( x : expr ) does not occur in t.
-
- This proof object has no antecedents.
-
- Several variables can be eliminated simultaneously. *)
- val is_der : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for quantifier instantiation
-
- A proof of (or (not (forall (x) (P x))) (P a)) *)
- val is_quant_inst : Expr.expr -> bool
-
- (** Indicates whether the term is a hypthesis marker.
- Mark a hypothesis in a natural deduction style proof. *)
- val is_hypothesis : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by lemma
-
- T1: false
- [lemma T1]: (or (not l_1) ... (not l_n))
-
- This proof object has one antecedent: a hypothetical proof for false.
- It converts the proof in a proof for (or (not l_1) ... (not l_n)),
- when T1 contains the hypotheses: l_1, ..., l_n. *)
- val is_lemma : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by unit resolution
-
- T1: (or l_1 ... l_n l_1' ... l_m')
- T2: (not l_1)
- ...
- T(n+1): (not l_n)
- [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m') *)
- val is_unit_resolution : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by iff-true
-
- T1: p
- [iff-true T1]: (iff p true) *)
- val is_iff_true : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by iff-false
-
- T1: (not p)
- [iff-false T1]: (iff p false) *)
- val is_iff_false : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by commutativity
-
- [comm]: (= (f a b) (f b a))
-
- f is a commutative operator.
-
- This proof object has no antecedents.
- Remark: if f is bool, then = is iff. *)
- val is_commutativity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for Tseitin-like axioms
-
- Proof object used to justify Tseitin's like axioms:
-
- (or (not (and p q)) p)
- (or (not (and p q)) q)
- (or (not (and p q r)) p)
- (or (not (and p q r)) q)
- (or (not (and p q r)) r)
- ...
- (or (and p q) (not p) (not q))
- (or (not (or p q)) p q)
- (or (or p q) (not p))
- (or (or p q) (not q))
- (or (not (iff p q)) (not p) q)
- (or (not (iff p q)) p (not q))
- (or (iff p q) (not p) (not q))
- (or (iff p q) p q)
- (or (not (ite a b c)) (not a) b)
- (or (not (ite a b c)) a c)
- (or (ite a b c) (not a) (not b))
- (or (ite a b c) a (not c))
- (or (not (not a)) (not a))
- (or (not a) a)
-
- This proof object has no antecedents.
- Note: all axioms are propositional tautologies.
- Note also that 'and' and 'or' can take multiple arguments.
- You can recover the propositional tautologies by
- unfolding the Boolean connectives in the axioms a small
- bounded number of steps (=3). *)
- val is_def_axiom : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for introduction of a name
-
- Introduces a name for a formula/term.
- Suppose e is an expression with free variables x, and def-intro
- introduces the name n(x). The possible cases are:
-
- When e is of Boolean type:
- [def-intro]: (and (or n (not e)) (or (not n) e))
-
- or:
- [def-intro]: (or (not n) e)
- when e only occurs positively.
-
- When e is of the form (ite cond th el):
- [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
-
- Otherwise:
- [def-intro]: (= n e) *)
- val is_def_intro : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for application of a definition
-
- [apply-def T1]: F ~ n
- F is 'equivalent' to n, given that T1 is a proof that
- n is a name for F. *)
- val is_apply_def : Expr.expr -> bool
-
- (** Indicates whether the term is a proof iff-oeq
-
- T1: (iff p q)
- [iff~ T1]: (~ p q) *)
- val is_iff_oeq : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a positive NNF step
-
- Proof for a (positive) NNF step. Example:
-
- T1: (not s_1) ~ r_1
- T2: (not s_2) ~ r_2
- T3: s_1 ~ r_1'
- T4: s_2 ~ r_2'
- [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
- (and (or r_1 r_2') (or r_1' r_2)))
-
- The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
- (a) When creating the NNF of a positive force quantifier.
- The quantifier is retained (unless the bound variables are eliminated).
- Example
- T1: q ~ q_new
- [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
-
- (b) When recursively creating NNF over Boolean formulas, where the top-level
- connective is changed during NNF conversion. The relevant Boolean connectives
- for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
- NNF_NEG furthermore handles the case where negation is pushed
- over Boolean connectives 'and' and 'or'. *)
- val is_nnf_pos : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a negative NNF step
-
- Proof for a (negative) NNF step. Examples:
-
- T1: (not s_1) ~ r_1
- ...
- Tn: (not s_n) ~ r_n
- [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
- and
- T1: (not s_1) ~ r_1
- ...
- Tn: (not s_n) ~ r_n
- [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
- and
- T1: (not s_1) ~ r_1
- T2: (not s_2) ~ r_2
- T3: s_1 ~ r_1'
- T4: s_2 ~ r_2'
- [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
- (and (or r_1 r_2) (or r_1' r_2'))) *)
- val is_nnf_neg : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form.
-
- A proof for (~ P Q) where Q is in negation normal form.
-
- This proof object is only used if the parameter PROOF_MODE is 1.
-
- This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *)
- val is_nnf_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form.
-
- A proof for (~ P Q) where Q is in conjunctive normal form.
- This proof object is only used if the parameter PROOF_MODE is 1.
- This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *)
- val is_cnf_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a Skolemization step
-
- Proof for:
-
- [sk]: (~ (not (forall ( x : expr ) (p ( x : expr ) y))) (not (p (sk y) y)))
- [sk]: (~ (exists ( x : expr ) (p ( x : expr ) y)) (p (sk y) y))
-
- This proof object has no antecedents. *)
- val is_skolemize : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by modus ponens for equi-satisfiability.
-
- Modus ponens style rule for equi-satisfiability.
- T1: p
- T2: (~ p q)
- [mp~ T1 T2]: q *)
- val is_modus_ponens_oeq : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for theory lemma
-
- Generic proof for theory lemmas.
-
- The theory lemma function comes with one or more parameters.
- The first parameter indicates the name of the theory.
- For the theory of arithmetic, additional parameters provide hints for
- checking the theory lemma.
- The hints for arithmetic are:
- - farkas - followed by rational coefficients. Multiply the coefficients to the
- inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
- - triangle-eq - Indicates a lemma related to the equivalence:
- (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
- - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test. *)
- val is_theory_lemma : Expr.expr -> bool
+ val is_true : expr -> bool
+ val is_asserted : expr -> bool
+ val is_goal : expr -> bool
+ val is_modus_ponens : expr -> bool
+ val is_reflexivity : expr -> bool
+ val is_symmetry : expr -> bool
+ val is_transitivity : expr -> bool
+ val is_Transitivity_star : expr -> bool
+ val is_monotonicity : expr -> bool
+ val is_quant_intro : expr -> bool
+ val is_distributivity : expr -> bool
+ val is_and_elimination : expr -> bool
+ val is_or_elimination : expr -> bool
+ val is_rewrite : expr -> bool
+ val is_rewrite_star : expr -> bool
+ val is_pull_quant : expr -> bool
+ val is_pull_quant_star : expr -> bool
+ val is_push_quant : expr -> bool
+ val is_elim_unused_vars : expr -> bool
+ val is_der : expr -> bool
+ val is_quant_inst : expr -> bool
+ val is_hypothesis : expr -> bool
+ val is_lemma : expr -> bool
+ val is_unit_resolution : expr -> bool
+ val is_iff_true : expr -> bool
+ val is_iff_false : expr -> bool
+ val is_commutativity : expr -> bool
+ val is_def_axiom : expr -> bool
+ val is_def_intro : expr -> bool
+ val is_apply_def : expr -> bool
+ val is_iff_oeq : expr -> bool
+ val is_nnf_pos : expr -> bool
+ val is_nnf_neg : expr -> bool
+ val is_nnf_star : expr -> bool
+ val is_cnf_star : expr -> bool
+ val is_skolemize : expr -> bool
+ val is_modus_ponens_oeq : expr -> bool
+ val is_theory_lemma : expr -> bool
end
-(** Goals
-
- A goal (aka problem). A goal is essentially a
- of formulas, that can be solved and/or transformed using
- tactics and solvers. *)
module Goal :
sig
- type goal
-
- (** The precision of the goal.
-
- Goals can be transformed using over and under approximations.
- An under approximation is applied when the objective is to find a model for a given goal.
- An over approximation is applied when the objective is to find a proof for a given goal. *)
val get_precision : goal -> Z3enums.goal_prec
-
- (** Indicates whether the goal is precise. *)
val is_precise : goal -> bool
-
- (** Indicates whether the goal is an under-approximation. *)
val is_underapproximation : goal -> bool
-
- (** Indicates whether the goal is an over-approximation. *)
val is_overapproximation : goal -> bool
-
- (** Indicates whether the goal is garbage (i.e., the product of over- and under-approximations). *)
val is_garbage : goal -> bool
-
- (** Adds the constraints to the given goal. *)
- val add : goal -> Expr.expr list -> unit
-
- (** Indicates whether the goal contains `false'. *)
+ val assert_ : goal -> bool_expr array -> unit
val is_inconsistent : goal -> bool
-
- (** The depth of the goal.
- This tracks how many transformations were applied to it. *)
val get_depth : goal -> int
-
- (** Erases all formulas from the given goal. *)
val reset : goal -> unit
-
- (** The number of formulas in the goal. *)
val get_size : goal -> int
-
- (** The formulas in the goal. *)
- val get_formulas : goal -> Expr.expr list
-
- (** The number of formulas, subformulas and terms in the goal. *)
+ val get_formulas : goal -> bool_expr array
val get_num_exprs : goal -> int
-
- (** Indicates whether the goal is empty, and it is precise or the product of an under approximation. *)
val is_decided_sat : goal -> bool
-
- (** Indicates whether the goal contains `false', and it is precise or the product of an over approximation. *)
val is_decided_unsat : goal -> bool
-
- (** Translates (copies) the Goal to another context.. *)
val translate : goal -> context -> goal
-
- (** Simplifies the goal. Essentially invokes the `simplify' tactic on the goal. *)
- val simplify : goal -> Params.params option -> goal
-
- (** Creates a new Goal.
-
- Note that the Context must have been created with proof generation support if
- the fourth argument is set to true here. *)
+ val simplify : goal -> params option -> goal
val mk_goal : context -> bool -> bool -> bool -> goal
-
- (** A string representation of the Goal. *)
val to_string : goal -> string
end
-(** Models
-
- A Model contains interpretations (assignments) of constants and functions. *)
module Model :
sig
- type model
- (** Function interpretations
-
- A function interpretation is represented as a finite map and an 'else'.
- Each entry in the finite map represents the value of a function given a set of arguments. *)
module FuncInterp :
sig
- type func_interp
-
- (** Function interpretations entries
- An Entry object represents an element in the finite map used to a function interpretation. *)
module FuncEntry :
sig
- type func_entry
-
- (** Return the (symbolic) value of this entry.
- *)
- val get_value : func_entry -> Expr.expr
-
- (** The number of arguments of the entry.
- *)
+ val get_value : func_entry -> expr
val get_num_args : func_entry -> int
-
- (** The arguments of the function entry.
- *)
- val get_args : func_entry -> Expr.expr list
-
- (** A string representation of the function entry.
- *)
+ val get_args : func_entry -> expr array
val to_string : func_entry -> string
end
- (** The number of entries in the function interpretation. *)
val get_num_entries : func_interp -> int
-
- (** The entries in the function interpretation *)
- val get_entries : func_interp -> FuncEntry.func_entry list
-
- (** The (symbolic) `else' value of the function interpretation. *)
- val get_else : func_interp -> Expr.expr
-
- (** The arity of the function interpretation *)
+ val get_entries : func_interp -> func_entry array
+ val get_else : func_interp -> expr
val get_arity : func_interp -> int
-
- (** A string representation of the function interpretation. *)
val to_string : func_interp -> string
end
- (** Retrieves the interpretation (the assignment) of a func_decl in the model.
- @return An expression if the function has an interpretation in the model, null otherwise. *)
- val get_const_interp : model -> FuncDecl.func_decl -> Expr.expr option
-
- (** Retrieves the interpretation (the assignment) of an expression in the model.
- @return An expression if the constant has an interpretation in the model, null otherwise. *)
- val get_const_interp_e : model -> Expr.expr -> Expr.expr option
-
- (** Retrieves the interpretation (the assignment) of a non-constant func_decl in the model.
- @return A FunctionInterpretation if the function has an interpretation in the model, null otherwise. *)
- val get_func_interp : model -> FuncDecl.func_decl -> FuncInterp.func_interp option
-
- (** The number of constant interpretations in the model. *)
+ val get_const_interp : model -> func_decl -> expr option
+ val get_const_interp_e : model -> expr -> expr option
+ val get_func_interp : model -> func_decl -> func_interp option
val get_num_consts : model -> int
-
- (** The function declarations of the constants in the model. *)
- val get_const_decls : model -> FuncDecl.func_decl list
-
- (** The number of function interpretations in the model. *)
+ val get_const_decls : model -> func_decl array
val get_num_funcs : model -> int
-
- (** The function declarations of the function interpretations in the model. *)
- val get_func_decls : model -> FuncDecl.func_decl list
-
- (** All symbols that have an interpretation in the model. *)
- val get_decls : model -> FuncDecl.func_decl list
-
- (** Evaluates an expression in the current model.
-
- This function may fail if the argument contains quantifiers,
- is partial (MODEL_PARTIAL enabled), or if it is not well-sorted.
- In this case a [ModelEvaluationFailedException] is thrown.
- *)
- val eval : model -> Expr.expr -> bool -> Expr.expr option
-
- (** Alias for [eval]. *)
- val evaluate : model -> Expr.expr -> bool -> Expr.expr option
-
- (** The number of uninterpreted sorts that the model has an interpretation for. *)
+ val get_func_decls : model -> func_decl array
+ val get_decls : model -> func_decl array
+ exception ModelEvaluationFailedException of string
+ val eval : model -> expr -> bool -> expr
+ val evaluate : model -> expr -> bool -> expr
val get_num_sorts : model -> int
-
- (** The uninterpreted sorts that the model has an interpretation for.
-
- Z3 also provides an intepretation for uninterpreted sorts used in a formula.
- The interpretation for a sort is a finite set of distinct values. We say this finite set is
- the "universe" of the sort.
- {!get_num_sorts}
- {!sort_universe} *)
- val get_sorts : model -> Sort.sort list
-
- (** The finite set of distinct values that represent the interpretation of a sort.
- {!get_sorts}
- @return A list of expressions, where each is an element of the universe of the sort *)
- val sort_universe : model -> Sort.sort -> AST.ast list
-
- (** Conversion of models to strings.
- @return A string representation of the model. *)
+ val get_sorts : model -> sort array
+ val sort_universe : model -> sort -> ast_vector array
val to_string : model -> string
end
-(** Probes
-
- Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
- which solver and/or preprocessing step will be used.
- The complete list of probes may be obtained using the procedures [Context.NumProbes]
- and [Context.ProbeNames].
- It may also be obtained using the command [(help-tactics)] in the SMT 2.0 front-end.
-*)
module Probe :
sig
- type probe
-
- (** Execute the probe over the goal.
- @return A probe always produce a float value.
- "Boolean" probes return 0.0 for false, and a value different from 0.0 for true. *)
- val apply : probe -> Goal.goal -> float
-
- (** The number of supported Probes. *)
+ val apply : probe -> goal -> float
val get_num_probes : context -> int
-
- (** The names of all supported Probes. *)
- val get_probe_names : context -> string list
-
- (** Returns a string containing a description of the probe with the given name. *)
+ val get_probe_names : context -> string array
val get_probe_description : context -> string -> string
-
- (** Creates a new Probe. *)
val mk_probe : context -> string -> probe
-
- (** Create a probe that always evaluates to a float value. *)
val const : context -> float -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is less than the value returned by second argument *)
val lt : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is greater than the value returned by second argument *)
val gt : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is less than or equal the value returned by second argument *)
val le : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is greater than or equal the value returned by second argument *)
val ge : context -> probe -> probe -> probe
-
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is equal the value returned by second argument *)
val eq : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when both of two probes evaluate to "true". *)
val and_ : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when either of two probes evaluates to "true". *)
val or_ : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when another probe does not evaluate to "true". *)
val not_ : context -> probe -> probe
end
-(** Tactics
-
- Tactics are the basic building block for creating custom solvers for specific problem domains.
- The complete list of tactics may be obtained using [Context.get_num_tactics]
- and [Context.get_tactic_names].
- It may also be obtained using the command [(help-tactics)] in the SMT 2.0 front-end.
-*)
module Tactic :
sig
- type tactic
- (** Tactic application results
-
- ApplyResult objects represent the result of an application of a
- tactic to a goal. It contains the subgoals that were produced. *)
module ApplyResult :
sig
- type apply_result
-
- (** The number of Subgoals. *)
val get_num_subgoals : apply_result -> int
-
- (** Retrieves the subgoals from the apply_result. *)
- val get_subgoals : apply_result -> Goal.goal list
-
- (** Retrieves a subgoal from the apply_result. *)
- val get_subgoal : apply_result -> int -> Goal.goal
-
- (** Convert a model for a subgoal into a model for the original
- goal [g], that the ApplyResult was obtained from.
- #return A model for [g] *)
- val convert_model : apply_result -> int -> Model.model -> Model.model
-
- (** A string representation of the ApplyResult. *)
+ val get_subgoals : apply_result -> goal array
+ val get_subgoal : apply_result -> int -> goal
+ val convert_model : apply_result -> int -> model -> model
val to_string : apply_result -> string
end
- (** A string containing a description of parameters accepted by the tactic. *)
val get_help : tactic -> string
-
- (** Retrieves parameter descriptions for Tactics. *)
- val get_param_descrs : tactic -> Params.ParamDescrs.param_descrs
-
- (** Apply the tactic to the goal. *)
- val apply : tactic -> Goal.goal -> Params.params option -> ApplyResult.apply_result
-
- (** The number of supported tactics. *)
+ val get_param_descrs : tactic -> param_descrs
+ val apply : tactic -> goal -> params option -> apply_result
val get_num_tactics : context -> int
-
- (** The names of all supported tactics. *)
- val get_tactic_names : context -> string list
-
- (** Returns a string containing a description of the tactic with the given name. *)
+ val get_tactic_names : context -> string array
val get_tactic_description : context -> string -> string
-
- (** Creates a new Tactic. *)
val mk_tactic : context -> string -> tactic
-
- (** Create a tactic that applies one tactic to a Goal and
- then another one to every subgoal produced by the first one. *)
- val and_then : context -> tactic -> tactic -> tactic list -> tactic
-
- (** Create a tactic that first applies one tactic to a Goal and
- if it fails then returns the result of another tactic applied to the Goal. *)
+ val and_then : context -> tactic -> tactic -> tactic array -> tactic
val or_else : context -> tactic -> tactic -> tactic
-
- (** Create a tactic that applies one tactic to a goal for some time (in milliseconds).
-
- If the tactic does not terminate within the timeout, then it fails. *)
val try_for : context -> tactic -> int -> tactic
-
- (** Create a tactic that applies one tactic to a given goal if the probe
- evaluates to true.
-
- If the probe evaluates to false, then the new tactic behaves like the [skip] tactic. *)
- val when_ : context -> Probe.probe -> tactic -> tactic
-
- (** Create a tactic that applies a tactic to a given goal if the probe
- evaluates to true and another tactic otherwise. *)
- val cond : context -> Probe.probe -> tactic -> tactic -> tactic
-
- (** Create a tactic that keeps applying one tactic until the goal is not
- modified anymore or the maximum number of iterations is reached. *)
+ val when_ : context -> probe -> tactic -> tactic
+ val cond : context -> probe -> tactic -> tactic -> tactic
val repeat : context -> tactic -> int -> tactic
-
- (** Create a tactic that just returns the given goal. *)
val skip : context -> tactic
-
- (** Create a tactic always fails. *)
val fail : context -> tactic
-
- (** Create a tactic that fails if the probe evaluates to false. *)
- val fail_if : context -> Probe.probe -> tactic
-
- (** Create a tactic that fails if the goal is not triviall satisfiable (i.e., empty)
- or trivially unsatisfiable (i.e., contains `false'). *)
+ val fail_if : context -> probe -> tactic
val fail_if_not_decided : context -> tactic
-
- (** Create a tactic that applies a tactic using the given set of parameters. *)
- val using_params : context -> tactic -> Params.params -> tactic
-
- (** Create a tactic that applies a tactic using the given set of parameters.
- Alias for [UsingParams]*)
- val with_ : context -> tactic -> Params.params -> tactic
-
- (** Create a tactic that applies the given tactics in parallel. *)
- val par_or : context -> tactic list -> tactic
-
- (** Create a tactic that applies a tactic to a given goal and then another tactic
- to every subgoal produced by the first one. The subgoals are processed in parallel. *)
+ val using_params : context -> tactic -> params -> tactic
+ val with_ : context -> tactic -> params -> tactic
+ val par_or : context -> tactic array -> tactic
val par_and_then : context -> tactic -> tactic -> tactic
-
- (** Interrupt the execution of a Z3 procedure.
- This procedure can be used to interrupt: solvers, simplifiers and tactics. *)
val interrupt : context -> unit
end
-(** Solvers *)
module Solver :
sig
- type solver
- type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE
-
val string_of_status : status -> string
- (** Objects that track statistical information about solvers. *)
module Statistics :
sig
- type statistics
- (** Statistical data is organized into pairs of \[Key, Entry\], where every
- Entry is either a floating point or integer value.
- *)
module Entry :
sig
- type statistics_entry
-
- (** The key of the entry. *)
val get_key : statistics_entry -> string
-
- (** The int-value of the entry. *)
val get_int : statistics_entry -> int
-
- (** The float-value of the entry. *)
val get_float : statistics_entry -> float
-
- (** True if the entry is uint-valued. *)
val is_int : statistics_entry -> bool
-
- (** True if the entry is float-valued. *)
val is_float : statistics_entry -> bool
-
- (** The string representation of the the entry's value. *)
val to_string_value : statistics_entry -> string
-
- (** The string representation of the entry (key and value) *)
val to_string : statistics_entry -> string
end
- (** A string representation of the statistical data. *)
val to_string : statistics -> string
-
- (** The number of statistical data. *)
val get_size : statistics -> int
-
- (** The data entries. *)
- val get_entries : statistics -> Entry.statistics_entry list
-
- (** The statistical counters. *)
- val get_keys : statistics -> string list
-
- (** The value of a particular statistical counter. *)
- val get : statistics -> string -> Entry.statistics_entry option
+ val get_entries : statistics -> statistics_entry array
+ val get_keys : statistics -> string array
+ val get : statistics -> string -> statistics_entry option
end
- (** A string that describes all available solver parameters. *)
val get_help : solver -> string
-
- (** Sets the solver parameters. *)
- val set_parameters : solver -> Params.params -> unit
-
- (** Retrieves parameter descriptions for solver. *)
- val get_param_descrs : solver -> Params.ParamDescrs.param_descrs
-
- (** The current number of backtracking points (scopes).
- {!pop}
- {!push} *)
+ val set_parameters : solver -> params -> unit
+ val get_param_descrs : solver -> param_descrs
val get_num_scopes : solver -> int
-
- (** Creates a backtracking point.
- {!pop} *)
val push : solver -> unit
-
- (** Backtracks a number of backtracking points.
- Note that an exception is thrown if the integer is not smaller than {!get_num_scopes}
- {!push} *)
val pop : solver -> int -> unit
-
- (** Resets the Solver.
- This removes all assertions from the solver. *)
val reset : solver -> unit
-
- (** Assert a constraint (or multiple) into the solver. *)
- val add : solver -> Expr.expr list -> unit
-
- (** * Assert multiple constraints (cs) into the solver, and track them (in the
- * unsat) core
- * using the Boolean constants in ps.
- *
- * This API is an alternative to {!check} with assumptions for
- * extracting unsat cores.
- * Both APIs can be used in the same solver. The unsat core will contain a
- * combination
- * of the Boolean variables provided using {!assert_and_track}
- * and the Boolean literals
- * provided using {!check} with assumptions. *)
- val assert_and_track_l : solver -> Expr.expr list -> Expr.expr list -> unit
-
- (** * Assert a constraint (c) into the solver, and track it (in the unsat) core
- * using the Boolean constant p.
- *
- * This API is an alternative to {!check} with assumptions for
- * extracting unsat cores.
- * Both APIs can be used in the same solver. The unsat core will contain a
- * combination
- * of the Boolean variables provided using {!assert_and_track}
- * and the Boolean literals
- * provided using {!check} with assumptions. *)
- val assert_and_track : solver -> Expr.expr -> Expr.expr -> unit
-
- (** The number of assertions in the solver. *)
+ val assert_ : solver -> bool_expr array -> unit
+ val assert_and_track : solver -> bool_expr -> bool_expr -> unit
val get_num_assertions : solver -> int
-
- (** The set of asserted formulas. *)
- val get_assertions : solver -> Expr.expr list
-
- (** Checks whether the assertions in the solver are consistent or not.
-
- {!Model}
- {!get_unsat_core}
- {!Proof} *)
- val check : solver -> Expr.expr list -> status
-
- (** The model of the last [Check].
-
- The result is [None] if [Check] was not invoked before,
- if its results was not [SATISFIABLE], or if model production is not enabled. *)
- val get_model : solver -> Model.model option
-
- (** The proof of the last [Check].
-
- The result is [null] if [Check] was not invoked before,
- if its results was not [UNSATISFIABLE], or if proof production is disabled. *)
- val get_proof : solver -> Expr.expr option
-
- (** The unsat core of the last [Check].
-
- The unsat core is a subset of [Assertions]
- The result is empty if [Check] was not invoked before,
- if its results was not [UNSATISFIABLE], or if core production is disabled. *)
- val get_unsat_core : solver -> AST.ast list
-
- (** A brief justification of why the last call to [Check] returned [UNKNOWN]. *)
+ val get_assertions : solver -> bool_expr array
+ val check : solver -> bool_expr array -> status
+ val get_model : solver -> model option
+ val get_proof : solver -> expr option
+ val get_unsat_core : solver -> ast_vector array
val get_reason_unknown : solver -> string
-
- (** Solver statistics. *)
- val get_statistics : solver -> Statistics.statistics
-
- (** Creates a new (incremental) solver.
-
- This solver also uses a set of builtin tactics for handling the first
- check-sat command, and check-sat commands that take more than a given
- number of milliseconds to be solved. *)
- val mk_solver : context -> Symbol.symbol option -> solver
-
- (** Creates a new (incremental) solver.
- {!mk_solver} *)
+ val get_statistics : solver -> statistics
+ val mk_solver : context -> symbol option -> solver
val mk_solver_s : context -> string -> solver
-
- (** Creates a new (incremental) solver. *)
val mk_simple_solver : context -> solver
-
- (** Creates a solver that is implemented using the given tactic.
-
- The solver supports the commands [Push] and [Pop], but it
- will always solve each check from scratch. *)
- val mk_solver_t : context -> Tactic.tactic -> solver
-
- (** A string representation of the solver. *)
+ val mk_solver_t : context -> tactic -> solver
val to_string : solver -> string
end
-(** Fixedpoint solving *)
module Fixedpoint :
sig
- type fixedpoint
-
- (** A string that describes all available fixedpoint solver parameters. *)
val get_help : fixedpoint -> string
-
- (** Sets the fixedpoint solver parameters. *)
- val set_params : fixedpoint -> Params.params -> unit
-
- (** Retrieves parameter descriptions for Fixedpoint solver. *)
- val get_param_descrs : fixedpoint -> Params.ParamDescrs.param_descrs
-
- (** Assert a constraints into the fixedpoint solver. *)
- val add : fixedpoint -> Expr.expr list -> unit
-
- (** Register predicate as recursive relation. *)
- val register_relation : fixedpoint -> FuncDecl.func_decl -> unit
-
- (** Add rule into the fixedpoint solver. *)
- val add_rule : fixedpoint -> Expr.expr -> Symbol.symbol option -> unit
-
- (** Add table fact to the fixedpoint solver. *)
- val add_fact : fixedpoint -> FuncDecl.func_decl -> int list -> unit
-
- (** Query the fixedpoint solver.
- A query is a conjunction of constraints. The constraints may include the recursively defined relations.
- The query is satisfiable if there is an instance of the query variables and a derivation for it.
- The query is unsatisfiable if there are no derivations satisfying the query variables. *)
- val query : fixedpoint -> Expr.expr -> Solver.status
-
- (** Query the fixedpoint solver.
- A query is an array of relations.
- The query is satisfiable if there is an instance of some relation that is non-empty.
- The query is unsatisfiable if there are no derivations satisfying any of the relations. *)
- val query_r : fixedpoint -> FuncDecl.func_decl list -> Solver.status
-
- (** Creates a backtracking point.
- {!pop} *)
+ val set_params : fixedpoint -> params -> unit
+ val get_param_descrs : fixedpoint -> param_descrs
+ val assert_ : fixedpoint -> bool_expr array -> unit
+ val register_relation : fixedpoint -> func_decl -> unit
+ val add_rule : fixedpoint -> bool_expr -> symbol option -> unit
+ val add_fact : fixedpoint -> func_decl -> int array -> unit
+ val query : fixedpoint -> bool_expr -> status
+ val query_r : fixedpoint -> func_decl array -> status
val push : fixedpoint -> unit
-
- (** Backtrack one backtracking point.
-
- Note that an exception is thrown if Pop is called without a corresponding [Push]
- {!push} *)
val pop : fixedpoint -> unit
-
- (** Update named rule into in the fixedpoint solver. *)
- val update_rule : fixedpoint -> Expr.expr -> Symbol.symbol -> unit
-
- (** Retrieve satisfying instance or instances of solver,
- or definitions for the recursive predicates that show unsatisfiability. *)
- val get_answer : fixedpoint -> Expr.expr option
-
- (** Retrieve explanation why fixedpoint engine returned status Unknown. *)
+ val update_rule : fixedpoint -> bool_expr -> symbol -> unit
+ val get_answer : fixedpoint -> expr option
val get_reason_unknown : fixedpoint -> string
-
- (** Retrieve the number of levels explored for a given predicate. *)
- val get_num_levels : fixedpoint -> FuncDecl.func_decl -> int
-
- (** Retrieve the cover of a predicate. *)
- val get_cover_delta : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr option
-
- (** Add property about the predicate.
- The property is added at level. *)
- val add_cover : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr -> unit
-
- (** Retrieve internal string representation of fixedpoint object. *)
+ val get_num_levels : fixedpoint -> func_decl -> int
+ val get_cover_delta : fixedpoint -> int -> func_decl -> expr option
+ val add_cover : fixedpoint -> int -> func_decl -> expr -> unit
val to_string : fixedpoint -> string
-
- (** Instrument the Datalog engine on which table representation to use for recursive predicate. *)
- val set_predicate_representation : fixedpoint -> FuncDecl.func_decl -> Symbol.symbol list -> unit
-
- (** Convert benchmark given as set of axioms, rules and queries to a string. *)
- val to_string_q : fixedpoint -> Expr.expr list -> string
-
- (** Retrieve set of rules added to fixedpoint context. *)
- val get_rules : fixedpoint -> Expr.expr list
-
- (** Retrieve set of assertions added to fixedpoint context. *)
- val get_assertions : fixedpoint -> Expr.expr list
-
- (** Create a Fixedpoint context. *)
+ val set_predicate_representation : fixedpoint -> func_decl -> symbol array -> unit
+ val to_string_q : fixedpoint -> bool_expr array -> string
+ val get_rules : fixedpoint -> bool_expr array
+ val get_assertions : fixedpoint -> bool_expr array
val mk_fixedpoint : context -> fixedpoint
end
-(** Functions for handling SMT and SMT2 expressions and files *)
+module Options :
+sig
+ val update_param_value : context -> string -> string -> unit
+ val get_param_value : context -> string -> string option
+ val set_print_mode : context -> Z3enums.ast_print_mode -> unit
+ val toggle_warning_messages : bool -> unit
+end
+
module SMT :
sig
- (** Convert a benchmark into an SMT-LIB formatted string.
-
- @return A string representation of the benchmark. *)
- val benchmark_to_smtstring : context -> string -> string -> string -> string -> Expr.expr list -> Expr.expr -> string
-
- (** Parse the given string using the SMT-LIB parser.
-
- The symbol table of the parser can be initialized using the given sorts and declarations.
- The symbols in the arrays in the third and fifth argument
- don't need to match the names of the sorts and declarations in the arrays in the fourth
- and sixth argument. This is a useful feature since we can use arbitrary names to
- reference sorts and declarations. *)
- val parse_smtlib_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit
-
- (** Parse the given file using the SMT-LIB parser.
- {!parse_smtlib_string} *)
- val parse_smtlib_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit
-
- (** The number of SMTLIB formulas parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
+ val benchmark_to_smtstring : context -> string -> string -> string -> string -> bool_expr array -> bool_expr -> string
+ val parse_smtlib_string : context -> string -> symbol array -> sort array -> symbol array -> func_decl array -> unit
+ val parse_smtlib_file : context -> string -> symbol array -> sort array -> symbol array -> func_decl array -> unit
val get_num_smtlib_formulas : context -> int
-
- (** The formulas parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
- val get_smtlib_formulas : context -> Expr.expr list
-
- (** The number of SMTLIB assumptions parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
+ val get_smtlib_formulas : context -> bool_expr array
val get_num_smtlib_assumptions : context -> int
-
- (** The assumptions parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
- val get_smtlib_assumptions : context -> Expr.expr list
-
- (** The number of SMTLIB declarations parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
+ val get_smtlib_assumptions : context -> bool_expr array
val get_num_smtlib_decls : context -> int
-
- (** The declarations parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
- val get_smtlib_decls : context -> FuncDecl.func_decl list
-
- (** The number of SMTLIB sorts parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
+ val get_smtlib_decls : context -> func_decl array
val get_num_smtlib_sorts : context -> int
-
- (** The sort declarations parsed by the last call to [ParseSMTLIBString] or [ParseSMTLIBFile]. *)
- val get_smtlib_sorts : context -> Sort.sort list
-
- (** Parse the given string using the SMT-LIB2 parser.
-
- {!parse_smtlib_string}
- @return A conjunction of assertions in the scope (up to push/pop) at the end of the string. *)
- val parse_smtlib2_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Expr.expr
-
- (** Parse the given file using the SMT-LIB2 parser.
- {!parse_smtlib2_string} *)
- val parse_smtlib2_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Expr.expr
+ val get_smtlib_sorts : context -> sort array
+ val parse_smtlib2_string : context -> string -> symbol array -> sort array -> symbol array -> func_decl array -> bool_expr
+ val parse_smtlib2_file : context -> string -> symbol array -> sort array -> symbol array -> func_decl array -> bool_expr
end
-(** Interpolation *)
-module Interpolation :
-sig
-
- (** Create an AST node marking a formula position for interpolation.
- The expression must have Boolean sort. *)
- val mk_interpolant : context -> Expr.expr -> Expr.expr
-
- (** The interpolation context is suitable for generation of interpolants.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val mk_interpolation_context : (string * string) list -> context
-
- (** Gets an interpolant.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val get_interpolant : context -> Expr.expr -> Expr.expr -> Params.params -> AST.ASTVector.ast_vector
-
- (** Computes an interpolant.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val compute_interpolant : context -> Expr.expr -> Params.params -> (AST.ASTVector.ast_vector * Model.model)
-
- (** Retrieves an interpolation profile.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val get_interpolation_profile : context -> string
-
- (** Read an interpolation problem from file.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val read_interpolation_problem : context -> string -> (Expr.expr list * int list * Expr.expr list)
-
- (** Check the correctness of an interpolant.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val check_interpolant : context -> int -> Expr.expr list -> int list -> Expr.expr list -> int -> Expr.expr list -> unit
-
- (** Write an interpolation problem to file suitable for reading with
- Z3_read_interpolation_problem.
- For more information on interpolation please refer
- too the C/C++ API, which is well documented. *)
- val write_interpolation_problem : context -> int -> Expr.expr list -> int list -> string -> int -> Expr.expr list -> unit
-
-end
-
-(** Set a global (or module) parameter, which is shared by all Z3 contexts.
-
- When a Z3 module is initialized it will use the value of these parameters
- when Z3_params objects are not provided.
- The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
- The character '.' is a delimiter (more later).
- The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
- Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
- This function can be used to set parameters for a specific Z3 module.
- This can be done by using ..
- For example:
- (set_global_param "pp.decimal" "true")
- will set the parameter "decimal" in the module "pp" to true.
-*)
val set_global_param : string -> string -> unit
-
-(** Get a global (or module) parameter.
-
- Returns None if the parameter does not exist.
- The caller must invoke #Z3_global_param_del_value to delete the value returned at param_value.
- This function cannot be invoked simultaneously from different threads without synchronization.
- The result string stored in param_value is stored in a shared location.
-*)
val get_global_param : string -> string option
-
-(** Restore the value of all global (and module) parameters.
-
- This command will not affect already created objects (such as tactics and solvers)
- {!set_global_param}
-*)
-
-val global_param_reset_all : unit -> unit
-
-(** Enable/disable printing of warning messages to the console.
-
- Note that this function is static and effects the behaviour of
- all contexts globally. *)
-val toggle_warning_messages : bool -> unit
-
+val global_param_reset_all : unit