3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

adding monomial bounds

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-05-13 18:44:04 -07:00
parent bdecbe4ed7
commit 4e51633e6f
6 changed files with 136 additions and 117 deletions

View file

@ -29,6 +29,7 @@ core::core(lp::lar_solver& s, reslimit & lim) :
m_monotone(this),
m_intervals(this, lim),
m_horner(this),
m_monomial_bounds(this),
m_pdd_manager(s.number_of_vars()),
m_pdd_grobner(lim, m_pdd_manager),
m_emons(m_evars),
@ -137,13 +138,13 @@ void core::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
}
void core::push() {
TRACE("nla_solver",);
TRACE("nla_solver_verbose", tout << "\n";);
m_emons.push();
}
void core::pop(unsigned n) {
TRACE("nla_solver", tout << "n = " << n << "\n";);
TRACE("nla_solver_verbose", tout << "n = " << n << "\n";);
m_emons.pop(n);
SASSERT(elists_are_consistent(false));
}
@ -403,10 +404,8 @@ bool core::explain_by_equiv(const lp::lar_term& t, lp::explanation& e) const {
m_evars.explain(signed_var(i, false), signed_var(j, sign), e);
TRACE("nla_solver", tout << "explained :"; m_lar_solver.print_term_as_indices(t, tout););
return true;
return true;
}
void core::mk_ineq_no_expl_check(new_lemma& lemma, lp::lar_term& t, llc cmp, const rational& rs) {
TRACE("nla_solver_details", m_lar_solver.print_term_as_indices(t, tout << "t = "););
@ -424,8 +423,7 @@ llc apply_minus(llc cmp) {
default: break;
}
return cmp;
}
}
// the monics should be equal by modulo sign but this is not so in the model
void core::fill_explanation_and_lemma_sign(new_lemma& lemma, const monic& a, const monic & b, rational const& sign) {
@ -475,9 +473,7 @@ int core::vars_sign(const svector<lpvar>& v) {
}
return sign;
}
bool core::has_upper_bound(lpvar j) const {
return m_lar_solver.column_has_upper_bound(j);
}
@ -1214,10 +1210,8 @@ std::ostream& new_lemma::display(std::ostream & out) const {
for (lpvar j : c.collect_vars(lemma)) {
c.print_var(j, out);
}
return out;
}
void core::negate_relation(new_lemma& lemma, unsigned j, const rational& a) {
SASSERT(val(j) != a);
@ -1238,21 +1232,6 @@ bool core::done() const {
lp_settings().get_cancel_flag();
}
void core::incremental_linearization(bool constraint_derived) {
TRACE("nla_solver_details", print_terms(tout); tout << m_lar_solver.constraints(););
m_basics.basic_lemma(constraint_derived);
if (!m_lemma_vec->empty() || constraint_derived || done())
return;
TRACE("nla_solver", tout << "passed constraint_derived and basic lemmas\n";);
SASSERT(elists_are_consistent(true));
if (!done())
m_order.order_lemma();
if (!done())
m_monotone.monotonicity_lemma();
if (!done())
m_tangents.tangent_lemma();
}
bool core::elist_is_consistent(const std::unordered_set<lpvar> & list) const {
bool first = true;
bool p;
@ -1359,12 +1338,9 @@ bool core::patch_blocker(lpvar u, const monic& m) const {
}
bool core::try_to_patch(lpvar k, const rational& v, const monic & m) {
return m_lar_solver.try_to_patch(k, v,
[this, k, m](lpvar u) {
if (u == k)
return false; // ok to patch
return patch_blocker(u, m); },
[this](lpvar u) { update_to_refine_of_var(u); });
auto blocker = [this, k, m](lpvar u) { return u != k && patch_blocker(u, m); };
auto change_report = [this](lpvar u) { update_to_refine_of_var(u); };
return m_lar_solver.try_to_patch(k, v, blocker, change_report);
}
bool in_power(const svector<lpvar>& vs, unsigned l) {
@ -1465,22 +1441,25 @@ lbool core::check(vector<lemma>& l_vec) {
patch_monomials_with_real_vars();
if (m_to_refine.is_empty()) { return l_true; }
init_search();
lbool ret = l_undef;
set_use_nra_model(false);
if (need_to_call_algebraic_methods()) {
if (!m_horner.horner_lemmas() && m_nla_settings.run_grobner() && !done()) {
clear_and_resize_active_var_set();
find_nl_cluster();
run_grobner();
}
}
TRACE("nla_solver_details", print_terms(tout); tout << m_lar_solver.constraints(););
if (!done())
m_basics.basic_lemma(true);
if (false && l_vec.empty() && !done())
m_monomial_bounds();
if (l_vec.empty() && !done () && need_to_call_algebraic_methods())
m_horner.horner_lemmas();
TRACE("nla_solver", tout << "passed constraint_derived and basic lemmas\n";);
SASSERT(!l_vec.empty() || elists_are_consistent(true));
if (l_vec.empty() && !done() && m_nla_settings.run_grobner()) {
clear_and_resize_active_var_set();
find_nl_cluster();
run_grobner();
}
if (l_vec.empty() && !done())
m_basics.basic_lemma(true);
if (l_vec.empty() && !done())
m_basics.basic_lemma(false);
@ -1495,16 +1474,13 @@ lbool core::check(vector<lemma>& l_vec) {
m_tangents.tangent_lemma();
}
if (!m_reslim.inc())
return l_undef;
lbool ret = l_vec.empty() ? l_undef : l_false;
#if 0
if (l_vec.empty())
if (l_vec.empty() && !done())
ret = m_nra.check();
}
#endif
if (ret == l_undef && !l_vec.empty() && m_reslim.inc())
ret = l_false;
TRACE("nla_solver", tout << "ret = " << ret << ", lemmas count = " << l_vec.size() << "\n";);
IF_VERBOSE(2, if(ret == l_undef) {verbose_stream() << "Monomials\n"; print_monics(verbose_stream());});