3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

generate lemma for proportional_case_ge

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-09-27 11:03:48 -07:00 committed by Lev Nachmanson
parent 8350d8702f
commit 4deccebeb4

View file

@ -1107,6 +1107,28 @@ struct solver::imp {
}
};
void restrict_signs_of_xy_and_y_on_lemma(lpvar y, lpvar xy, const rational& _y, const rational& _xy, int& y_sign, int &xy_sign) {
lp::lar_term t;
t.add_coeff_var(rational(1), y);
if (_y.is_pos()) {
y_sign = 1;
m_lemma->push_back(ineq(lp::lconstraint_kind::LE, t, rational::zero()));
} else {
y_sign = -1;
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, rational::zero()));
}
t.clear();
t.add_coeff_var(rational(1), xy);
if (_y.is_pos()) {
xy_sign = 1;
m_lemma->push_back(ineq(lp::lconstraint_kind::LE, t, rational::zero()));
} else {
xy_sign = -1;
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, rational::zero()));
}
}
// we derive a lemma from |x| >= 1 || y = 0 => |xy| >= |y|
bool lemma_for_proportional_factors_on_vars_ge(lpvar xy, lpvar x, lpvar y) {
TRACE("nla_solver",
@ -1125,31 +1147,27 @@ struct solver::imp {
const rational & _xy = vvr(xy);
if (abs(_xy) >= abs(_y))
return false;
// adding negation of x >= 1 or the negation of x <= -1
// Here we just create the lemma.
lp::lar_term t;
t.add_coeff_var(rational(1), x);
if (_x >= rational(1)) {
m_lemma->push_back(ineq(lp::lconstraint_kind::LT, t, rational(1)));
if (abs(_x) >= rational(1)) {
// add to lemma x < -1 || x > 1
t.add_coeff_var(rational(1), x);
if (_x >= rational(1))
m_lemma->push_back(ineq(lp::lconstraint_kind::LT, t, rational(1)));
else {
lp_assert(_x <= -rational(1));
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, -rational(1)));
}
} else {
SASSERT(_x <= -rational(1));
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, -rational(1)));
}
t.clear();
t.add_coeff_var(rational(1), y);
int y_sign;
if (_y.is_pos()) {
y_sign = 1;
m_lemma->push_back(ineq(lp::lconstraint_kind::LE, t, rational::zero()));
} else if (_y.is_neg()) {
y_sign = -1;
m_lemma->push_back(ineq(lp::lconstraint_kind::GE, t, rational::zero()));
} else {
SASSERT(_y.is_zero());
y_sign = 1;
lp_assert(_y.is_zero() && t.is_empty());
// add to lemma y != 0
t.add_coeff_var(rational(1), y);
m_lemma->push_back(ineq(lp::lconstraint_kind::NE, t, rational::zero()));
}
int xy_sign = _xy.is_pos()? 1: -1;
}
int xy_sign, y_sign;
restrict_signs_of_xy_and_y_on_lemma(y, xy, _y, _xy, y_sign, xy_sign);
t.clear(); // abs(xy) - abs(y) <= 0
t.add_coeff_var(rational(xy_sign), xy);
t.add_coeff_var(rational(-y_sign), y);
@ -1157,7 +1175,7 @@ struct solver::imp {
TRACE("nla_solver", tout<< "lemma: ";print_lemma(*m_lemma, tout););
return true;
}
// here xy
// we derive a lemma from |x| <= 1 || y = 0 => |xy| <= |y|
bool lemma_for_proportional_factors_on_vars_le(lpvar xy, lpvar x, lpvar y) {
TRACE("nla_solver",
@ -1189,30 +1207,9 @@ struct solver::imp {
t.add_coeff_var(rational(1), y);
m_lemma->push_back(ineq(lp::lconstraint_kind::NE, t, rational::zero()));
}
t.clear();
t.add_coeff_var(rational(1), y);
int y_sign;
if (_y.is_pos()) {
y_sign = 1;
m_lemma->push_back(ineq(lp::lconstraint_kind::LE, t, rational::zero()));
} else {
y_sign = -1;
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, rational::zero()));
}
t.clear();
t.add_coeff_var(rational(1), xy);
int xy_sign;
if (_y.is_pos()) {
xy_sign = 1;
m_lemma->push_back(ineq(lp::lconstraint_kind::LE, t, rational::zero()));
} else {
xy_sign = -1;
m_lemma->push_back(ineq(lp::lconstraint_kind::GT, t, rational::zero()));
}
int y_sign, xy_sign;
restrict_signs_of_xy_and_y_on_lemma(y, xy, _y, _xy, y_sign, xy_sign);
t.clear(); // abs(xy) - abs(y) <= 0
t.add_coeff_var(rational(xy_sign), xy);