3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-11 13:40:52 +00:00

wip - adding context equation solver

the solve_eqs_tactic is to be replaced by a re-implementation that uses solve_eqs in the simplifiers directory.
The re-implementation should address efficiency issues with the previous code.
At this point it punts on low level proofs. The plan is to use coarser
dependency tracking instead of low level proofs for pre-processing. Dependencies can be converted into a proof hint representation that can be checked using a stronger checker.
This commit is contained in:
Nikolaj Bjorner 2022-11-05 10:34:57 -07:00
parent ae2672f132
commit 4d8860c0bc
15 changed files with 416 additions and 117 deletions

View file

@ -38,9 +38,9 @@ namespace euf {
expr* x, * y;
if (m.is_eq(f, x, y)) {
if (is_uninterp_const(x))
eqs.push_back(dependent_eq(to_app(x), expr_ref(y, m), d));
eqs.push_back(dependent_eq(e.fml(), to_app(x), expr_ref(y, m), d));
if (is_uninterp_const(y))
eqs.push_back(dependent_eq(to_app(y), expr_ref(x, m), d));
eqs.push_back(dependent_eq(e.fml(), to_app(y), expr_ref(x, m), d));
}
expr* c, * th, * el, * x1, * y1, * x2, * y2;
if (m_ite_solver && m.is_ite(f, c, th, el)) {
@ -52,13 +52,13 @@ namespace euf {
if (x2 == y1 && is_uninterp_const(x2))
std::swap(x1, y1);
if (x1 == x2 && is_uninterp_const(x1))
eqs.push_back(dependent_eq(to_app(x1), expr_ref(m.mk_ite(c, y1, y2), m), d));
eqs.push_back(dependent_eq(e.fml(), to_app(x1), expr_ref(m.mk_ite(c, y1, y2), m), d));
}
}
if (is_uninterp_const(f))
eqs.push_back(dependent_eq(to_app(f), expr_ref(m.mk_true(), m), d));
eqs.push_back(dependent_eq(e.fml(), to_app(f), expr_ref(m.mk_true(), m), d));
if (m.is_not(f, x) && is_uninterp_const(x))
eqs.push_back(dependent_eq(to_app(x), expr_ref(m.mk_false(), m), d));
eqs.push_back(dependent_eq(e.fml(), to_app(x), expr_ref(m.mk_false(), m), d));
}
void updt_params(params_ref const& p) {
@ -76,7 +76,7 @@ namespace euf {
// solve u mod r1 = y -> u = r1*mod!1 + y
void solve_mod(expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
void solve_mod(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
expr* u, * z;
rational r1, r2;
if (!a.is_mod(x, u, z))
@ -87,7 +87,11 @@ namespace euf {
return;
expr_ref term(m);
term = a.mk_add(a.mk_mul(z, m.mk_fresh_const("mod", a.mk_int())), y);
solve_eq(u, term, d, eqs);
if (is_uninterp_const(u))
eqs.push_back(dependent_eq(orig, to_app(u), term, d));
else
solve_eq(orig, u, term, d, eqs);
}
/***
@ -96,7 +100,7 @@ namespace euf {
* -1*x + Y = Z -> x = Y - Z
* a*x + Y = Z -> x = (Z - Y)/a for is-real(x)
*/
void solve_add(expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
void solve_add(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
if (!a.is_add(x))
return;
expr* u, * z;
@ -115,18 +119,18 @@ namespace euf {
for (expr* arg : *to_app(x)) {
if (is_uninterp_const(arg)) {
mk_term(i);
eqs.push_back(dependent_eq(to_app(arg), term, d));
eqs.push_back(dependent_eq(orig, to_app(arg), term, d));
}
else if (a.is_mul(arg, u, z) && a.is_numeral(u, r) && is_uninterp_const(z)) {
if (r == -1) {
mk_term(i);
term = a.mk_uminus(term);
eqs.push_back(dependent_eq(to_app(z), term, d));
eqs.push_back(dependent_eq(orig, to_app(z), term, d));
}
else if (a.is_real(arg) && r != 0) {
mk_term(i);
term = a.mk_div(term, u);
eqs.push_back(dependent_eq(to_app(z), term, d));
eqs.push_back(dependent_eq(orig, to_app(z), term, d));
}
}
else if (a.is_real(arg) && a.is_mul(arg)) {
@ -155,7 +159,7 @@ namespace euf {
}
mk_term(i);
term = a.mk_div(term, a.mk_mul(args.size(), args.data()));
eqs.push_back(dependent_eq(to_app(xarg), term, d));
eqs.push_back(dependent_eq(orig, to_app(xarg), term, d));
}
}
++i;
@ -165,7 +169,7 @@ namespace euf {
/***
* Solve for x * Y = Z, where Y != 0 -> x = Z / Y
*/
void solve_mul(expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
void solve_mul(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
if (!a.is_mul(x))
return;
rational r;
@ -193,7 +197,7 @@ namespace euf {
args.push_back(arg2);
}
term = a.mk_div(y, a.mk_mul(args));
eqs.push_back(dependent_eq(to_app(arg), term, d));
eqs.push_back(dependent_eq(orig, to_app(arg), term, d));
}
}
@ -214,22 +218,24 @@ namespace euf {
}
}
void solve_eq(expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
solve_add(x, y, d, eqs);
solve_mod(x, y, d, eqs);
solve_mul(x, y, d, eqs);
void solve_eq(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
solve_add(orig, x, y, d, eqs);
solve_mod(orig, x, y, d, eqs);
solve_mul(orig, x, y, d, eqs);
}
public:
arith_extract_eq(ast_manager& m) : m(m), a(m), m_args(m) {}
void get_eqs(dependent_expr const& e, dep_eq_vector& eqs) override {
if (!m_enabled)
return;
auto [f, d] = e();
expr* x, * y;
if (m.is_eq(f, x, y) && a.is_int_real(x)) {
solve_eq(x, y, d, eqs);
solve_eq(y, x, d, eqs);
solve_eq(f, x, y, d, eqs);
solve_eq(f, y, x, d, eqs);
}
}
@ -237,10 +243,8 @@ namespace euf {
if (!m_enabled)
return;
m_nonzero.reset();
for (unsigned i = 0; i < fmls.size(); ++i) {
auto [f, d] = fmls[i]();
add_pos(f);
}
for (unsigned i = 0; i < fmls.size(); ++i)
add_pos(fmls[i].fml());
}