mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
basic case proportionality
Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
parent
5344dedf42
commit
4ca0ca3ce8
1 changed files with 69 additions and 38 deletions
|
@ -208,6 +208,10 @@ struct solver::imp {
|
|||
{
|
||||
}
|
||||
|
||||
|
||||
rational vvr(unsigned j) const { return m_lar_solver.get_column_value_rational(j); }
|
||||
lp::impq vv(unsigned j) const { return m_lar_solver.get_column_value(j); }
|
||||
|
||||
void add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
m_monomials.push_back(mon_eq(v, sz, vs));
|
||||
}
|
||||
|
@ -990,21 +994,16 @@ struct solver::imp {
|
|||
}
|
||||
|
||||
struct signed_binary_factorization {
|
||||
unsigned m_k; // monomial index
|
||||
bool m_k_is_var;
|
||||
unsigned m_j; // monomial index
|
||||
bool m_j_is_var;
|
||||
unsigned m_j; // var index : the var can correspond to a monomial var or just to a var
|
||||
unsigned m_k; // var index : the var can correspond to a monomial var or just to a var
|
||||
int m_sign;
|
||||
// the default constructor
|
||||
signed_binary_factorization() :m_k(-1) {}
|
||||
signed_binary_factorization(unsigned k, bool k_is_var, unsigned j, bool j_is_var, int sign) : m_k(k),
|
||||
m_k_is_var(k_is_var),
|
||||
m_j(j),
|
||||
m_j_is_var(j_is_var),
|
||||
m_sign(sign) {}
|
||||
signed_binary_factorization() :m_j(-1) {}
|
||||
signed_binary_factorization(unsigned j, unsigned k, int sign) :
|
||||
m_j(j),
|
||||
m_k(k),
|
||||
m_sign(sign) {}
|
||||
|
||||
bool k_is_var() const { return m_k_is_var; }
|
||||
bool j_is_var() const { return m_j_is_var; }
|
||||
};
|
||||
|
||||
struct binary_factorizations_of_monomial {
|
||||
|
@ -1044,7 +1043,7 @@ struct solver::imp {
|
|||
}
|
||||
}
|
||||
|
||||
bool get_factors(unsigned& k, bool& k_is_var, unsigned& j, bool& j_is_var, int& sign) const {
|
||||
bool get_factors(unsigned& k, unsigned& j, int& sign) const {
|
||||
unsigned_vector k_vars;
|
||||
unsigned_vector j_vars;
|
||||
init_vars_by_the_mask(k_vars, j_vars);
|
||||
|
@ -1056,29 +1055,24 @@ struct solver::imp {
|
|||
if (k_vars.size() == 1) {
|
||||
k = k_vars[0];
|
||||
k_sign = 1;
|
||||
k_is_var = true;
|
||||
} else if (m_binary_factorizations.m_imp.find_monomial_of_vars(k_vars, k, k_sign)) {
|
||||
k_is_var = false;
|
||||
} else {
|
||||
} else if (!m_binary_factorizations.m_imp.find_monomial_of_vars(k_vars, k, k_sign)) {
|
||||
return false;
|
||||
}
|
||||
if (j_vars.size() == 1) {
|
||||
j = j_vars[0];
|
||||
j_sign = 1;
|
||||
j_is_var = true;
|
||||
} else if (m_binary_factorizations.m_imp.find_monomial_of_vars(j_vars, j, j_sign)) {
|
||||
j_is_var = false;
|
||||
} else return false;
|
||||
} else if (!m_binary_factorizations.m_imp.find_monomial_of_vars(j_vars, j, j_sign)) {
|
||||
return false;
|
||||
}
|
||||
sign = j_sign * k_sign;
|
||||
return true;
|
||||
}
|
||||
|
||||
reference operator*() const {
|
||||
unsigned k,j; int sign;
|
||||
bool k_is_var, j_is_var;
|
||||
if (!get_factors(k, k_is_var, j, j_is_var, sign))
|
||||
unsigned j, k; int sign;
|
||||
if (!get_factors(j, k, sign))
|
||||
return signed_binary_factorization();
|
||||
return signed_binary_factorization(k, k_is_var, j, j_is_var, m_binary_factorizations.m_sign * sign);
|
||||
return signed_binary_factorization(j, k, m_binary_factorizations.m_sign * sign);
|
||||
}
|
||||
void advance_mask() {
|
||||
SASSERT(false);// not implemented
|
||||
|
@ -1115,23 +1109,60 @@ struct solver::imp {
|
|||
return const_iterator(mask, *this);
|
||||
}
|
||||
};
|
||||
|
||||
// we derive a lemma from |x| >= 1 || |y| = 0 => |xy| >= |y|
|
||||
bool lemma_for_proportional_factors_on_vars_ge(lpvar i, lpvar j, lpvar k) {
|
||||
if (!(abs(vvr(j)) >= rational(1) || vvr(k).is_zero()))
|
||||
return false;
|
||||
// the precondition holds
|
||||
if (! (abs(vvr(i)) >= abs(vvr(k)))) {
|
||||
SASSERT(false); // create here
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// we derive a lemma from |x| <= 1 || |y| = 0 => |xy| <= |y|
|
||||
bool lemma_for_proportional_factors_on_vars_le(lpvar i, lpvar j, lpvar k) {
|
||||
TRACE("nla_solver",
|
||||
tout << "i=";
|
||||
print_var(i, tout);
|
||||
tout << "j=";
|
||||
print_var(j, tout);
|
||||
tout << "k=";
|
||||
print_var(k, tout););
|
||||
|
||||
if (!(abs(vvr(j)) <= rational(1) || vvr(k).is_zero()))
|
||||
return false;
|
||||
// the precondition holds
|
||||
if (! (abs(vvr(i)) <= abs(vvr(k)))) {
|
||||
SASSERT(false); // create here
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// we derive a lemma from |x| >= 1 || |y| = 0 => |xy| >= |y|, or the similar of <=
|
||||
bool lemma_for_proportional_factors(unsigned i_mon, const signed_binary_factorization& f) {
|
||||
TRACE("nla_solver", print_monomial(m_monomials[i_mon], tout);
|
||||
lpvar var_of_mon = m_monomials[i_mon].var();
|
||||
TRACE("nla_solver",
|
||||
m_lar_solver.print_constraints(tout);
|
||||
tout << "\n";
|
||||
print_var(var_of_mon, tout);
|
||||
tout << " is factorized as ";
|
||||
if (f.m_sign == -1) { tout << "-";}
|
||||
if (f.k_is_var()) {
|
||||
tout << m_lar_solver.get_variable_name(f.m_k);
|
||||
} else {
|
||||
print_monomial(m_monomials[f.m_k], tout);
|
||||
}
|
||||
print_var(f.m_j, tout);
|
||||
tout << "*";
|
||||
if (f.j_is_var()) {
|
||||
tout << m_lar_solver.get_variable_name(f.m_j);
|
||||
} else {
|
||||
print_monomial(m_monomials[f.m_j], tout);
|
||||
});
|
||||
SASSERT(false);
|
||||
return false; // not implemented
|
||||
print_var(f.m_k, tout);
|
||||
);
|
||||
if (lemma_for_proportional_factors_on_vars_ge(var_of_mon, f.m_j, f.m_k)
|
||||
|| lemma_for_proportional_factors_on_vars_ge(var_of_mon, f.m_k, f.m_j))
|
||||
return true;
|
||||
if (lemma_for_proportional_factors_on_vars_le(var_of_mon, f.m_j, f.m_k)
|
||||
|| lemma_for_proportional_factors_on_vars_le(var_of_mon, f.m_k, f.m_j))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
// we derive a lemma from |xy| >= |y| => |x| >= 1 || |y| = 0
|
||||
bool basic_lemma_for_mon_proportionality_from_product_to_factors(unsigned i_mon) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue