mirror of
https://github.com/Z3Prover/z3
synced 2025-11-02 04:27:52 +00:00
extend proof logging
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
b96624727d
commit
4c67a7271e
3 changed files with 41 additions and 29 deletions
|
|
@ -39,7 +39,7 @@ void finite_set_axioms::in_empty_axiom(expr *x) {
|
|||
expr_ref empty_set(u.mk_empty(elem_sort), m);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-empty");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-empty", x);
|
||||
ax->clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
|
@ -57,20 +57,20 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b) or (x in c)
|
||||
theory_axiom *ax1 = alloc(theory_axiom, m, "in-union");
|
||||
theory_axiom *ax1 = alloc(theory_axiom, m, "in-union", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
ax1->clause.push_back(x_in_c);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in b) => (x in a)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-union");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-union", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_b));
|
||||
ax2->clause.push_back(x_in_a);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in c) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-union");
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-union", x, a);
|
||||
ax3->clause.push_back(m.mk_not(x_in_c));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
m_add_clause(ax3);
|
||||
|
|
@ -88,19 +88,19 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect");
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-intersect", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x in c)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-intersect", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(x_in_c);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and (x in c) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect");
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-intersect", x, a);
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(m.mk_not(x_in_c));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
|
|
@ -119,19 +119,19 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
|
|||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference");
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-difference", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => not (x in c)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-difference", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(m.mk_not(x_in_c));
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and not (x in c) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference");
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-difference", x, a);
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(x_in_c);
|
||||
ax3->clause.push_back(x_in_a);
|
||||
|
|
@ -147,7 +147,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-singleton", x, a);
|
||||
if (x == b) {
|
||||
// If x and b are syntactically identical, then (x in a) is always true
|
||||
|
||||
|
|
@ -162,7 +162,7 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
|||
ax->clause.push_back(m.mk_not(x_in_a));
|
||||
ax->clause.push_back(x_eq_b);
|
||||
m_add_clause(ax);
|
||||
ax = alloc(theory_axiom, m, "in-singleton");
|
||||
ax = alloc(theory_axiom, m, "in-singleton", x, a);
|
||||
|
||||
// (x == b) => (x in a)
|
||||
ax->clause.push_back(m.mk_not(x_eq_b));
|
||||
|
|
@ -201,19 +201,19 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
|||
m_rewriter(x_le_hi);
|
||||
|
||||
// (x in a) => (lo <= x)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-range");
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(lo_le_x);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => (x <= hi)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-range");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(x_le_hi);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (lo <= x) and (x <= hi) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-range");
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-range", x, a);
|
||||
ax3->clause.push_back(m.mk_not(lo_le_x));
|
||||
ax3->clause.push_back(m.mk_not(x_le_hi));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
|
|
@ -233,16 +233,16 @@ void finite_set_axioms::in_range_axiom(expr* r) {
|
|||
ax->clause.push_back(u.mk_in(lo, r));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax = alloc(theory_axiom, m, "range-bounds", r);
|
||||
ax->clause.push_back(u.mk_in(hi, r));
|
||||
m_add_clause(ax);
|
||||
|
||||
arith_util a(m);
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax = alloc(theory_axiom, m, "range-bounds", r);
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(hi, a.mk_int(1)), r)));
|
||||
m_add_clause(ax);
|
||||
|
||||
ax = alloc(theory_axiom, m, "range-bounds");
|
||||
ax = alloc(theory_axiom, m, "range-bounds", r);
|
||||
ax->clause.push_back(m.mk_not(u.mk_in(a.mk_add(lo, a.mk_int(-1)), r)));
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
|
@ -275,7 +275,7 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
|
|||
expr_ref fx_in_a(u.mk_in(fx, a), m);
|
||||
|
||||
// (x in b) => f(x) in a
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-map-image");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "in-map-image", x, a);
|
||||
ax->clause.push_back(m.mk_not(x_in_b));
|
||||
ax->clause.push_back(fx_in_a);
|
||||
m_add_clause(ax);
|
||||
|
|
@ -296,19 +296,19 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) {
|
|||
expr_ref px(autil.mk_select(p, x), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter");
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
ax1->clause.push_back(m.mk_not(x_in_a));
|
||||
ax1->clause.push_back(x_in_b);
|
||||
m_add_clause(ax1);
|
||||
|
||||
// (x in a) => p(x)
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
ax2->clause.push_back(m.mk_not(x_in_a));
|
||||
ax2->clause.push_back(px);
|
||||
m_add_clause(ax2);
|
||||
|
||||
// (x in b) and p(x) => (x in a)
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter");
|
||||
theory_axiom* ax3 = alloc(theory_axiom, m, "in-filter", x, a);
|
||||
ax3->clause.push_back(m.mk_not(x_in_b));
|
||||
ax3->clause.push_back(m.mk_not(px));
|
||||
ax3->clause.push_back(x_in_a);
|
||||
|
|
@ -327,7 +327,7 @@ void finite_set_axioms::size_singleton_axiom(expr *a) {
|
|||
expr_ref one(arith.mk_int(1), m);
|
||||
expr_ref eq(m.mk_eq(size_a, one), m);
|
||||
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "size-singleton");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "size-singleton", a);
|
||||
ax->clause.push_back(eq);
|
||||
m_add_clause(ax);
|
||||
}
|
||||
|
|
@ -340,12 +340,12 @@ void finite_set_axioms::subset_axiom(expr* a) {
|
|||
expr_ref intersect_bc(u.mk_intersect(b, c), m);
|
||||
expr_ref eq(m.mk_eq(intersect_bc, b), m);
|
||||
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "subset");
|
||||
theory_axiom* ax1 = alloc(theory_axiom, m, "subset", a);
|
||||
ax1->clause.push_back(m.mk_not(a));
|
||||
ax1->clause.push_back(eq);
|
||||
m_add_clause(ax1);
|
||||
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "subset");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "subset", a);
|
||||
ax2->clause.push_back(a);
|
||||
ax2->clause.push_back(m.mk_not(eq));
|
||||
m_add_clause(ax2);
|
||||
|
|
@ -360,13 +360,13 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) {
|
|||
expr_ref diff_in_b(u.mk_in(diff_ab, b), m);
|
||||
|
||||
// (a != b) => (x in diff_ab != x in diff_ba)
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "extensionality");
|
||||
theory_axiom* ax = alloc(theory_axiom, m, "extensionality", a, b);
|
||||
ax->clause.push_back(a_eq_b);
|
||||
ax->clause.push_back(m.mk_not(diff_in_a));
|
||||
ax->clause.push_back(m.mk_not(diff_in_b));
|
||||
m_add_clause(ax);
|
||||
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality");
|
||||
theory_axiom* ax2 = alloc(theory_axiom, m, "extensionality", a, b);
|
||||
ax2->clause.push_back(m.mk_not(a_eq_b));
|
||||
ax2->clause.push_back(diff_in_a);
|
||||
ax2->clause.push_back(diff_in_b);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue