mirror of
https://github.com/Z3Prover/z3
synced 2025-08-23 19:47:52 +00:00
Nl2lin (#7795)
* add linearized projection in nlsat * implement nlsat check for given assignment * add some comments
This commit is contained in:
parent
a38af61d77
commit
4b4e8cbc6e
3 changed files with 272 additions and 2 deletions
|
@ -45,6 +45,7 @@ namespace nlsat {
|
|||
bool m_minimize_cores;
|
||||
bool m_factor;
|
||||
bool m_signed_project;
|
||||
bool m_linear_project;
|
||||
bool m_cell_sample;
|
||||
|
||||
|
||||
|
@ -155,6 +156,7 @@ namespace nlsat {
|
|||
m_full_dimensional = false;
|
||||
m_minimize_cores = false;
|
||||
m_signed_project = false;
|
||||
m_linear_project = false;
|
||||
}
|
||||
|
||||
std::ostream& display(std::ostream & out, polynomial_ref const & p) const {
|
||||
|
@ -1262,8 +1264,212 @@ namespace nlsat {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief add cell literals for the linearized projection and categorize the polynomials in ps
|
||||
* - ps_below will contain all polynomials from ps which have a root below m_assignment w.r.t. x
|
||||
* - ps_above will contain all polynomials from ps which have a root above m_assignment w.r.t. x
|
||||
* - ps_equal will contain at least one polynomial from ps which have a root equal to m_assignment
|
||||
* - In addition, they may contain additional linear polynomials added as cell boundaries
|
||||
* - The back elements of ps_below, ps_above, ps_equal are the polynomials used for the cell literals
|
||||
*/
|
||||
void add_cell_lits_linear(polynomial_ref_vector const& ps,
|
||||
var const x,
|
||||
polynomial_ref_vector& ps_below,
|
||||
polynomial_ref_vector& ps_above,
|
||||
polynomial_ref_vector& ps_equal) {
|
||||
ps_below.reset();
|
||||
ps_above.reset();
|
||||
ps_equal.reset();
|
||||
|
||||
SASSERT(m_assignment.is_assigned(x));
|
||||
anum const & x_val = m_assignment.value(x);
|
||||
|
||||
bool lower_inf = true, upper_inf = true;
|
||||
scoped_anum lower(m_am), upper(m_am);
|
||||
polynomial_ref p_lower(m_pm), p_upper(m_pm);
|
||||
unsigned i_lower = UINT_MAX, i_upper = UINT_MAX;
|
||||
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
polynomial_ref p(m_pm);
|
||||
|
||||
unsigned sz = ps.size();
|
||||
for (unsigned k = 0; k < sz; k++) {
|
||||
p = ps.get(k);
|
||||
if (max_var(p) != x)
|
||||
continue;
|
||||
roots.reset();
|
||||
|
||||
// Temporarily unassign x, s.t. isolate_roots does not assume p as constant.
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
|
||||
unsigned num_roots = roots.size();
|
||||
if (num_roots == 0) continue;
|
||||
|
||||
// find p's smallest root above the sample
|
||||
unsigned i = 0;
|
||||
int s = 1;
|
||||
for (; i < num_roots; ++i) {
|
||||
s = m_am.compare(x_val, roots[i]);
|
||||
if (s <= 0) break;
|
||||
}
|
||||
|
||||
if (s == 0) {
|
||||
// roots[i] == x_val
|
||||
ps_equal.push_back(p);
|
||||
p_lower = p;
|
||||
i_lower = i+1;
|
||||
break; // TODO: choose the best among multiple section polynomials?
|
||||
} else if (s < 0) {
|
||||
// x_val < roots[i]
|
||||
ps_above.push_back(p);
|
||||
if (upper_inf || m_am.lt(roots[i], upper)) {
|
||||
upper_inf = false;
|
||||
m_am.set(upper, roots[i]);
|
||||
p_upper = p;
|
||||
i_upper = i + 1;
|
||||
}
|
||||
}
|
||||
// in any case, roots[i-1] might provide a lower bound if it exists
|
||||
if (i > 0) {
|
||||
// roots[i-1] < x_val
|
||||
ps_below.push_back(p);
|
||||
if (lower_inf || m_am.lt(lower, roots[i-1])) {
|
||||
lower_inf = false;
|
||||
m_am.set(lower, roots[i-1]);
|
||||
p_lower = p;
|
||||
i_lower = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// add linear cell bounds
|
||||
|
||||
if (!ps_equal.empty()) {
|
||||
if (!m_am.is_rational(x_val)) {
|
||||
// TODO: FAIL
|
||||
NOT_IMPLEMENTED_YET();
|
||||
} else if (m_pm.total_degree(p_lower) > 1) {
|
||||
rational bound;
|
||||
m_am.to_rational(x_val, bound);
|
||||
p_lower = m_pm.mk_polynomial(x);
|
||||
p_lower = p_lower - bound;
|
||||
}
|
||||
add_root_literal(atom::ROOT_EQ, x, 1, p_lower);
|
||||
// make sure bounding poly is at the back of the vector
|
||||
ps_equal.push_back(p_lower);
|
||||
return;
|
||||
}
|
||||
if (!lower_inf) {
|
||||
bool approximate = (m_pm.total_degree(p_lower) > 1);
|
||||
if (approximate) {
|
||||
scoped_anum between(m_am);
|
||||
m_am.select(lower, x_val, between);
|
||||
rational new_bound;
|
||||
m_am.to_rational(between, new_bound);
|
||||
p_lower = m_pm.mk_polynomial(x);
|
||||
p_lower = p_lower - new_bound;
|
||||
}
|
||||
add_root_literal((approximate || m_full_dimensional) ? atom::ROOT_GE : atom::ROOT_GT, x, 1, p_lower);
|
||||
// make sure bounding poly is at the back of the vector
|
||||
ps_below.push_back(p_lower);
|
||||
}
|
||||
if (!upper_inf) {
|
||||
bool approximate = (m_pm.total_degree(p_upper) > 1);
|
||||
if (approximate) {
|
||||
scoped_anum between(m_am);
|
||||
m_am.select(x_val, upper, between);
|
||||
rational new_bound;
|
||||
m_am.to_rational(between, new_bound);
|
||||
p_upper = m_pm.mk_polynomial(x);
|
||||
p_upper = p_upper - new_bound;
|
||||
}
|
||||
add_root_literal((approximate || m_full_dimensional) ? atom::ROOT_LE : atom::ROOT_LT, x, 1, p_upper);
|
||||
// make sure bounding poly is at the back of the vector
|
||||
ps_below.push_back(p_upper);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief compute the resultants of p with each polynomial in ps w.r.t. x
|
||||
*/
|
||||
void psc_resultants_with(polynomial_ref_vector const& ps, polynomial_ref p, var const x) {
|
||||
polynomial_ref q(m_pm);
|
||||
unsigned sz = ps.size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
q = ps.get(i);
|
||||
if (q == p) continue;
|
||||
psc(p, q, x);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Linearized projection based on:
|
||||
* Valentin Promies, Jasper Nalbach, Erika Abraham and Paul Wagner
|
||||
* "More is Less: Adding Polynomials for Faster Explanations in NLSAT"
|
||||
* in CADE30, 2025
|
||||
*/
|
||||
void project_linear(polynomial_ref_vector & ps, var max_x) {
|
||||
if (ps.empty())
|
||||
return;
|
||||
m_todo.reset();
|
||||
for (poly* p : ps) {
|
||||
m_todo.insert(p);
|
||||
}
|
||||
|
||||
polynomial_ref_vector ps_below_sample(m_pm);
|
||||
polynomial_ref_vector ps_above_sample(m_pm);
|
||||
polynomial_ref_vector ps_equal_sample(m_pm);
|
||||
var x = m_todo.extract_max_polys(ps);
|
||||
if (x == max_x) {
|
||||
// top level projection like original
|
||||
// we could also do a covering-style projection, sparing some resultants
|
||||
add_lcs(ps, x);
|
||||
psc_discriminant(ps, x);
|
||||
psc_resultant(ps, x);
|
||||
x = m_todo.extract_max_polys(ps);
|
||||
}
|
||||
|
||||
while(!m_todo.empty()) {
|
||||
add_cell_lits_linear(ps, x, ps_below_sample, ps_above_sample, ps_equal_sample);
|
||||
if (all_univ(ps, x) && m_todo.empty()) {
|
||||
m_todo.reset();
|
||||
break;
|
||||
}
|
||||
add_lcs(ps, x);
|
||||
psc_discriminant(ps, x);
|
||||
polynomial_ref lb(m_pm);
|
||||
polynomial_ref ub(m_pm);
|
||||
|
||||
if (!ps_equal_sample.empty()) {
|
||||
// section
|
||||
lb = ps_equal_sample.back();
|
||||
psc_resultants_with(ps, lb, x);
|
||||
} else {
|
||||
if (!ps_below_sample.empty()) {
|
||||
lb = ps_below_sample.back();
|
||||
psc_resultants_with(ps_below_sample, lb, x);
|
||||
}
|
||||
if (!ps_above_sample.empty()) {
|
||||
ub = ps_above_sample.back();
|
||||
psc_resultants_with(ps_above_sample, ub, x);
|
||||
if (!ps_below_sample.empty()) {
|
||||
// also need resultant between bounds
|
||||
psc(lb, ub, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
x = m_todo.extract_max_polys(ps);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void project(polynomial_ref_vector & ps, var max_x) {
|
||||
if (m_cell_sample) {
|
||||
if (m_linear_project) {
|
||||
project_linear(ps, max_x);
|
||||
}
|
||||
else if (m_cell_sample) {
|
||||
project_cdcac(ps, max_x);
|
||||
}
|
||||
else {
|
||||
|
@ -2126,6 +2332,10 @@ namespace nlsat {
|
|||
m_imp->m_signed_project = f;
|
||||
}
|
||||
|
||||
void explain::set_linear_project(bool f) {
|
||||
m_imp->m_linear_project = f;
|
||||
}
|
||||
|
||||
void explain::main_operator(unsigned n, literal const * ls, scoped_literal_vector & result) {
|
||||
(*m_imp)(n, ls, result);
|
||||
}
|
||||
|
|
|
@ -45,6 +45,7 @@ namespace nlsat {
|
|||
void set_minimize_cores(bool f);
|
||||
void set_factor(bool f);
|
||||
void set_signed_project(bool f);
|
||||
void set_linear_project(bool f);
|
||||
|
||||
/**
|
||||
\brief Given a set of literals ls[0], ... ls[n-1] s.t.
|
||||
|
|
|
@ -2035,7 +2035,66 @@ namespace nlsat {
|
|||
}
|
||||
|
||||
lbool check(assignment const& rvalues, atom_vector& core) {
|
||||
return l_undef;
|
||||
// temporarily set m_assignment to the given one
|
||||
assignment tmp = m_assignment;
|
||||
m_assignment.reset();
|
||||
m_assignment.copy(rvalues);
|
||||
|
||||
// check whether the asserted atoms are satisfied by rvalues
|
||||
literal best_literal = null_literal;
|
||||
unsigned sz = m_clauses.size();
|
||||
lbool satisfied = l_true;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
bool c_satisfied = false;
|
||||
clause const & c = *(m_clauses[i]);
|
||||
for (literal l : c) {
|
||||
if (const_cast<imp*>(this)->value(l) != l_false) {
|
||||
c_satisfied = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (c_satisfied) continue;
|
||||
|
||||
// take best literal from c
|
||||
for (literal l : c) {
|
||||
if (best_literal == null_literal) {
|
||||
best_literal = l;
|
||||
} else {
|
||||
bool_var b_best = best_literal.var();
|
||||
bool_var b_l = l.var();
|
||||
if (degree(m_atoms[b_l]) < degree(m_atoms[b_best])) {
|
||||
best_literal = l;
|
||||
}
|
||||
// TODO: there might be better criteria than just the degree in the main variable.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (satisfied == l_true) {
|
||||
// nothing to do
|
||||
return l_true;
|
||||
}
|
||||
if (satisfied == l_undef) {
|
||||
// nothing to do?
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
// assignment does not satisfy the constraints -> create lemma
|
||||
SASSERT(best_literal != null_literal);
|
||||
m_lazy_clause.reset();
|
||||
m_explain.set_linear_project(true);
|
||||
m_explain.main_operator(1, &best_literal, m_lazy_clause);
|
||||
m_explain.set_linear_project(false); // TODO: there should be a better way to control this.
|
||||
m_lazy_clause.push_back(~best_literal);
|
||||
|
||||
core.clear();
|
||||
for (literal l : m_lazy_clause) {
|
||||
core.push_back(m_atoms[l.var()]);
|
||||
}
|
||||
|
||||
m_assignment.reset();
|
||||
m_assignment.copy(tmp);
|
||||
return l_false;
|
||||
}
|
||||
|
||||
lbool check(literal_vector& assumptions) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue