3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 19:47:52 +00:00
* add linearized projection in nlsat

* implement nlsat check for given assignment

* add some comments
This commit is contained in:
ValentinPromies 2025-08-20 16:36:35 +02:00 committed by GitHub
parent a38af61d77
commit 4b4e8cbc6e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 272 additions and 2 deletions

View file

@ -45,6 +45,7 @@ namespace nlsat {
bool m_minimize_cores;
bool m_factor;
bool m_signed_project;
bool m_linear_project;
bool m_cell_sample;
@ -155,6 +156,7 @@ namespace nlsat {
m_full_dimensional = false;
m_minimize_cores = false;
m_signed_project = false;
m_linear_project = false;
}
std::ostream& display(std::ostream & out, polynomial_ref const & p) const {
@ -1262,8 +1264,212 @@ namespace nlsat {
}
}
/**
* \brief add cell literals for the linearized projection and categorize the polynomials in ps
* - ps_below will contain all polynomials from ps which have a root below m_assignment w.r.t. x
* - ps_above will contain all polynomials from ps which have a root above m_assignment w.r.t. x
* - ps_equal will contain at least one polynomial from ps which have a root equal to m_assignment
* - In addition, they may contain additional linear polynomials added as cell boundaries
* - The back elements of ps_below, ps_above, ps_equal are the polynomials used for the cell literals
*/
void add_cell_lits_linear(polynomial_ref_vector const& ps,
var const x,
polynomial_ref_vector& ps_below,
polynomial_ref_vector& ps_above,
polynomial_ref_vector& ps_equal) {
ps_below.reset();
ps_above.reset();
ps_equal.reset();
SASSERT(m_assignment.is_assigned(x));
anum const & x_val = m_assignment.value(x);
bool lower_inf = true, upper_inf = true;
scoped_anum lower(m_am), upper(m_am);
polynomial_ref p_lower(m_pm), p_upper(m_pm);
unsigned i_lower = UINT_MAX, i_upper = UINT_MAX;
scoped_anum_vector & roots = m_roots_tmp;
polynomial_ref p(m_pm);
unsigned sz = ps.size();
for (unsigned k = 0; k < sz; k++) {
p = ps.get(k);
if (max_var(p) != x)
continue;
roots.reset();
// Temporarily unassign x, s.t. isolate_roots does not assume p as constant.
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
unsigned num_roots = roots.size();
if (num_roots == 0) continue;
// find p's smallest root above the sample
unsigned i = 0;
int s = 1;
for (; i < num_roots; ++i) {
s = m_am.compare(x_val, roots[i]);
if (s <= 0) break;
}
if (s == 0) {
// roots[i] == x_val
ps_equal.push_back(p);
p_lower = p;
i_lower = i+1;
break; // TODO: choose the best among multiple section polynomials?
} else if (s < 0) {
// x_val < roots[i]
ps_above.push_back(p);
if (upper_inf || m_am.lt(roots[i], upper)) {
upper_inf = false;
m_am.set(upper, roots[i]);
p_upper = p;
i_upper = i + 1;
}
}
// in any case, roots[i-1] might provide a lower bound if it exists
if (i > 0) {
// roots[i-1] < x_val
ps_below.push_back(p);
if (lower_inf || m_am.lt(lower, roots[i-1])) {
lower_inf = false;
m_am.set(lower, roots[i-1]);
p_lower = p;
i_lower = i;
}
}
}
// add linear cell bounds
if (!ps_equal.empty()) {
if (!m_am.is_rational(x_val)) {
// TODO: FAIL
NOT_IMPLEMENTED_YET();
} else if (m_pm.total_degree(p_lower) > 1) {
rational bound;
m_am.to_rational(x_val, bound);
p_lower = m_pm.mk_polynomial(x);
p_lower = p_lower - bound;
}
add_root_literal(atom::ROOT_EQ, x, 1, p_lower);
// make sure bounding poly is at the back of the vector
ps_equal.push_back(p_lower);
return;
}
if (!lower_inf) {
bool approximate = (m_pm.total_degree(p_lower) > 1);
if (approximate) {
scoped_anum between(m_am);
m_am.select(lower, x_val, between);
rational new_bound;
m_am.to_rational(between, new_bound);
p_lower = m_pm.mk_polynomial(x);
p_lower = p_lower - new_bound;
}
add_root_literal((approximate || m_full_dimensional) ? atom::ROOT_GE : atom::ROOT_GT, x, 1, p_lower);
// make sure bounding poly is at the back of the vector
ps_below.push_back(p_lower);
}
if (!upper_inf) {
bool approximate = (m_pm.total_degree(p_upper) > 1);
if (approximate) {
scoped_anum between(m_am);
m_am.select(x_val, upper, between);
rational new_bound;
m_am.to_rational(between, new_bound);
p_upper = m_pm.mk_polynomial(x);
p_upper = p_upper - new_bound;
}
add_root_literal((approximate || m_full_dimensional) ? atom::ROOT_LE : atom::ROOT_LT, x, 1, p_upper);
// make sure bounding poly is at the back of the vector
ps_below.push_back(p_upper);
}
}
/**
* \brief compute the resultants of p with each polynomial in ps w.r.t. x
*/
void psc_resultants_with(polynomial_ref_vector const& ps, polynomial_ref p, var const x) {
polynomial_ref q(m_pm);
unsigned sz = ps.size();
for (unsigned i = 0; i < sz; i++) {
q = ps.get(i);
if (q == p) continue;
psc(p, q, x);
}
}
/**
* Linearized projection based on:
* Valentin Promies, Jasper Nalbach, Erika Abraham and Paul Wagner
* "More is Less: Adding Polynomials for Faster Explanations in NLSAT"
* in CADE30, 2025
*/
void project_linear(polynomial_ref_vector & ps, var max_x) {
if (ps.empty())
return;
m_todo.reset();
for (poly* p : ps) {
m_todo.insert(p);
}
polynomial_ref_vector ps_below_sample(m_pm);
polynomial_ref_vector ps_above_sample(m_pm);
polynomial_ref_vector ps_equal_sample(m_pm);
var x = m_todo.extract_max_polys(ps);
if (x == max_x) {
// top level projection like original
// we could also do a covering-style projection, sparing some resultants
add_lcs(ps, x);
psc_discriminant(ps, x);
psc_resultant(ps, x);
x = m_todo.extract_max_polys(ps);
}
while(!m_todo.empty()) {
add_cell_lits_linear(ps, x, ps_below_sample, ps_above_sample, ps_equal_sample);
if (all_univ(ps, x) && m_todo.empty()) {
m_todo.reset();
break;
}
add_lcs(ps, x);
psc_discriminant(ps, x);
polynomial_ref lb(m_pm);
polynomial_ref ub(m_pm);
if (!ps_equal_sample.empty()) {
// section
lb = ps_equal_sample.back();
psc_resultants_with(ps, lb, x);
} else {
if (!ps_below_sample.empty()) {
lb = ps_below_sample.back();
psc_resultants_with(ps_below_sample, lb, x);
}
if (!ps_above_sample.empty()) {
ub = ps_above_sample.back();
psc_resultants_with(ps_above_sample, ub, x);
if (!ps_below_sample.empty()) {
// also need resultant between bounds
psc(lb, ub, x);
}
}
}
x = m_todo.extract_max_polys(ps);
}
}
void project(polynomial_ref_vector & ps, var max_x) {
if (m_cell_sample) {
if (m_linear_project) {
project_linear(ps, max_x);
}
else if (m_cell_sample) {
project_cdcac(ps, max_x);
}
else {
@ -2126,6 +2332,10 @@ namespace nlsat {
m_imp->m_signed_project = f;
}
void explain::set_linear_project(bool f) {
m_imp->m_linear_project = f;
}
void explain::main_operator(unsigned n, literal const * ls, scoped_literal_vector & result) {
(*m_imp)(n, ls, result);
}

View file

@ -45,6 +45,7 @@ namespace nlsat {
void set_minimize_cores(bool f);
void set_factor(bool f);
void set_signed_project(bool f);
void set_linear_project(bool f);
/**
\brief Given a set of literals ls[0], ... ls[n-1] s.t.

View file

@ -2035,7 +2035,66 @@ namespace nlsat {
}
lbool check(assignment const& rvalues, atom_vector& core) {
return l_undef;
// temporarily set m_assignment to the given one
assignment tmp = m_assignment;
m_assignment.reset();
m_assignment.copy(rvalues);
// check whether the asserted atoms are satisfied by rvalues
literal best_literal = null_literal;
unsigned sz = m_clauses.size();
lbool satisfied = l_true;
for (unsigned i = 0; i < sz; i++) {
bool c_satisfied = false;
clause const & c = *(m_clauses[i]);
for (literal l : c) {
if (const_cast<imp*>(this)->value(l) != l_false) {
c_satisfied = true;
break;
}
}
if (c_satisfied) continue;
// take best literal from c
for (literal l : c) {
if (best_literal == null_literal) {
best_literal = l;
} else {
bool_var b_best = best_literal.var();
bool_var b_l = l.var();
if (degree(m_atoms[b_l]) < degree(m_atoms[b_best])) {
best_literal = l;
}
// TODO: there might be better criteria than just the degree in the main variable.
}
}
}
if (satisfied == l_true) {
// nothing to do
return l_true;
}
if (satisfied == l_undef) {
// nothing to do?
return l_undef;
}
// assignment does not satisfy the constraints -> create lemma
SASSERT(best_literal != null_literal);
m_lazy_clause.reset();
m_explain.set_linear_project(true);
m_explain.main_operator(1, &best_literal, m_lazy_clause);
m_explain.set_linear_project(false); // TODO: there should be a better way to control this.
m_lazy_clause.push_back(~best_literal);
core.clear();
for (literal l : m_lazy_clause) {
core.push_back(m_atoms[l.var()]);
}
m_assignment.reset();
m_assignment.copy(tmp);
return l_false;
}
lbool check(literal_vector& assumptions) {