3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-20 04:43:39 +00:00

Add recognizers for different kinds of enodes

This commit is contained in:
Jakob Rath 2023-07-20 17:06:23 +02:00
parent 6d00d18ee4
commit 4b3cfa8c50
2 changed files with 42 additions and 14 deletions

View file

@ -115,8 +115,23 @@ namespace polysat {
slicing::slice_info const& slicing::info(euf::enode* n) const { slicing::slice_info const& slicing::info(euf::enode* n) const {
SASSERT(!n->is_equality()); SASSERT(!n->is_equality());
SASSERT(m_bv->is_bv_sort(n->get_sort()));
slice_info const& i = m_info[n->get_id()]; slice_info const& i = m_info[n->get_id()];
return i.is_slice() ? i : info(i.slice); return i.slice ? info(i.slice) : i;
}
bool slicing::is_slice(enode* n) const {
if (n->is_equality())
return false;
SASSERT(m_bv->is_bv_sort(n->get_sort()));
slice_info const& i = m_info[n->get_id()];
return !i.slice;
}
bool slicing::is_concat(enode* n) const {
if (n->is_equality())
return false;
return !is_slice(n);
} }
unsigned slicing::width(enode* s) const { unsigned slicing::width(enode* s) const {
@ -247,6 +262,7 @@ namespace polysat {
// split a single slice without updating any equivalences // split a single slice without updating any equivalences
void slicing::split_core(enode* s, unsigned cut) { void slicing::split_core(enode* s, unsigned cut) {
SASSERT(is_slice(s)); // this action only makes sense for slices
SASSERT(!has_sub(s)); SASSERT(!has_sub(s));
SASSERT(info(s).sub_hi == nullptr && info(s).sub_lo == nullptr); SASSERT(info(s).sub_hi == nullptr && info(s).sub_lo == nullptr);
SASSERT(width(s) > cut + 1); SASSERT(width(s) > cut + 1);
@ -254,7 +270,7 @@ namespace polysat {
unsigned const width_lo = cut + 1; unsigned const width_lo = cut + 1;
enode* sub_hi; enode* sub_hi;
enode* sub_lo; enode* sub_lo;
if (has_value(s)) { if (is_value(s)) {
rational const val = get_value(s); rational const val = get_value(s);
sub_hi = mk_value_slice(machine_div2k(val, width_lo), width_hi); sub_hi = mk_value_slice(machine_div2k(val, width_lo), width_hi);
sub_lo = mk_value_slice(mod2k(val, width_lo), width_lo); sub_lo = mk_value_slice(mod2k(val, width_lo), width_lo);
@ -296,12 +312,16 @@ namespace polysat {
} }
void slicing::split(enode* s, unsigned cut) { void slicing::split(enode* s, unsigned cut) {
// this action only makes sense for base slices.
// a base slice is never equivalent to a congruence node.
SASSERT(is_slice(s));
SASSERT(!has_sub(s));
// split all slices in the equivalence class // split all slices in the equivalence class
for (euf::enode* n : euf::enode_class(s)) for (enode* n : euf::enode_class(s))
split_core(n, cut); split_core(n, cut);
// propagate the proper equivalences // propagate the proper equivalences
for (euf::enode* n : euf::enode_class(s)) { for (enode* n : euf::enode_class(s)) {
euf::enode* target = n->get_target(); enode* target = n->get_target();
if (!target) if (!target)
continue; continue;
euf::justification j = n->get_justification(); euf::justification j = n->get_justification();
@ -797,7 +817,7 @@ namespace polysat {
get_root_base(vs, base); get_root_base(vs, base);
for (enode* s : base) for (enode* s : base)
display(out << " ", s); display(out << " ", s);
if (has_value(vs->get_root())) if (is_value(vs->get_root()))
out << " [root_value: " << get_value(vs->get_root()) << "]"; out << " [root_value: " << get_value(vs->get_root()) << "]";
out << "\n"; out << "\n";
} }
@ -820,7 +840,7 @@ namespace polysat {
out << " w=" << width(s); out << " w=" << width(s);
if (!s->is_root()) if (!s->is_root())
out << " root=" << s->get_root_id(); out << " root=" << s->get_root_id();
if (has_value(s->get_root())) if (is_value(s->get_root()))
out << " root_value=" << get_value(s->get_root()); out << " root_value=" << get_value(s->get_root());
out << "\n"; out << "\n";
if (has_sub(s)) { if (has_sub(s)) {
@ -850,13 +870,17 @@ namespace polysat {
VERIFY_EQ(var2slice(v)->get_root(), s->get_root()); VERIFY_EQ(var2slice(v)->get_root(), s->get_root());
} }
// if slice has a value, it should be propagated to its sub-slices // if slice has a value, it should be propagated to its sub-slices
if (has_value(s)) { if (is_value(s)) {
VERIFY(s->is_root()); VERIFY(s->is_root());
if (has_sub(s)) { if (has_sub(s)) {
VERIFY(has_value(sub_hi(s))); VERIFY(is_value(sub_hi(s)));
VERIFY(has_value(sub_lo(s))); VERIFY(is_value(sub_lo(s)));
} }
} }
// a base slice is never equivalent to a congruence node
if (is_slice(s) && !has_sub(s)) {
VERIFY(all_of(euf::enode_class(s), [&](enode* n) { return is_slice(n); }));
}
// properties below only matter for representatives // properties below only matter for representatives
if (!s->is_root()) if (!s->is_root())
continue; continue;

View file

@ -65,7 +65,7 @@ namespace polysat {
// We use the following kinds of enodes: // We use the following kinds of enodes:
// - proper slices (of variables) // - proper slices (of variables)
// - values // - value slices
// - virtual concat(...) expressions // - virtual concat(...) expressions
// - equalities between enodes (to track disequalities; currently not represented in slice_info) // - equalities between enodes (to track disequalities; currently not represented in slice_info)
struct slice_info { struct slice_info {
@ -79,12 +79,18 @@ namespace polysat {
enode* sub_lo = nullptr; // lower subslice s[cut:0] enode* sub_lo = nullptr; // lower subslice s[cut:0]
void reset() { *this = slice_info(); } void reset() { *this = slice_info(); }
bool is_slice() const { return !slice; }
bool has_sub() const { return !!sub_hi; } bool has_sub() const { return !!sub_hi; }
void set_cut(unsigned cut, enode* sub_hi, enode* sub_lo) { this->cut = cut; this->sub_hi = sub_hi; this->sub_lo = sub_lo; } void set_cut(unsigned cut, enode* sub_hi, enode* sub_lo) { this->cut = cut; this->sub_hi = sub_hi; this->sub_lo = sub_lo; }
}; };
using slice_info_vector = svector<slice_info>; using slice_info_vector = svector<slice_info>;
// Return true iff n is either a proper slice or a value slice
bool is_slice(enode* n) const;
bool is_proper_slice(enode* n) const { return !is_value(n) && is_slice(n); }
bool is_value(enode* n) const { return n->interpreted(); }
bool is_concat(enode* n) const;
bool is_equality(enode* n) const { return n->is_equality(); }
solver& m_solver; solver& m_solver;
@ -135,8 +141,6 @@ namespace polysat {
// Retrieve (or create) a slice representing the given value. // Retrieve (or create) a slice representing the given value.
enode* mk_value_slice(rational const& val, unsigned bit_width); enode* mk_value_slice(rational const& val, unsigned bit_width);
bool has_value(enode* s) const { return s->interpreted(); }
rational get_value(enode* s) const; rational get_value(enode* s) const;
bool try_get_value(enode* s, rational& val) const; bool try_get_value(enode* s, rational& val) const;