3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 04:48:45 +00:00

fixes to build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-02-11 10:19:24 -08:00
parent 7bef2f3e6f
commit 4b2c166e8b
3 changed files with 16 additions and 423 deletions

View file

@ -1,396 +0,0 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
arith_local_search.cpp
Abstract:
Local search dispatch for SMT
Author:
Nikolaj Bjorner (nbjorner) 2023-02-07
--*/
#include "sat/sat_solver.h"
#include "sat/smt/arith_solver.h"
namespace arith {
///
/// need access to clauses
/// need access to m_unsat
/// need update of phase
/// need to initialize ineqs (arithmetical atoms)
///
solver::sls::sls(solver& s):
s(s), m(s.m) {}
void solver::sls::operator()(bool_vector& phase) {
// need to init variables/atoms/ineqs
m.limit().push(m_max_arith_steps);
m_best_min_unsat = unsat().size();
unsigned num_steps = 0;
while (m.inc() && m_best_min_unsat > 0 && num_steps < m_max_arith_steps) {
if (!flip())
return;
++m_stats.m_num_flips;
++num_steps;
unsigned num_unsat = unsat().size();
if (num_unsat < m_best_min_unsat) {
m_best_min_unsat = num_unsat;
num_steps = 0;
save_best_values();
}
}
}
void solver::sls::set_bounds_begin() {
m_max_arith_steps = 0;
}
void solver::sls::set_bounds_end(unsigned num_literals) {
// m_max_arith_steps = s.ctx.m_sl_config.L *
}
void solver::sls::set_bounds(enode* n) {
++m_max_arith_steps;
}
bool solver::sls::flip() {
log();
if (flip_unsat())
return true;
if (flip_clauses())
return true;
if (flip_dscore())
return true;
return false;
}
// distance to true
rational solver::sls::dtt(rational const& args, ineq const& ineq) const {
switch (ineq.m_op) {
case ineq_kind::LE:
if (args <= ineq.m_bound)
return rational::zero();
return args - ineq.m_bound;
case ineq_kind::EQ:
if (args == ineq.m_bound)
return rational::zero();
return rational::one();
case ineq_kind::NE:
if (args == ineq.m_bound)
return rational::one();
return rational::zero();
case ineq_kind::LT:
default:
if (args < ineq.m_bound)
return rational::zero();
return args - ineq.m_bound + 1;
}
}
rational solver::sls::dtt(ineq const& ineq, var_t v, rational const& new_value) const {
auto new_args_value = ineq.m_args_value;
for (auto const& [coeff, w] : ineq.m_args) {
if (w == v) {
new_args_value += coeff * (new_value - m_vars[w].m_value);
break;
}
}
return dtt(new_args_value, ineq);
}
// critical move
bool solver::sls::cm(ineq const& ineq, var_t v, rational& new_value) {
SASSERT(!ineq.is_true());
auto delta = ineq.m_args_value - ineq.m_bound;
for (auto const& [coeff, w] : ineq.m_args) {
if (w == v) {
if (coeff > 0)
new_value = value(v) - abs(ceil(delta / coeff));
else
new_value = value(v) + abs(floor(delta / coeff));
switch (ineq.m_op) {
case ineq_kind::LE:
SASSERT(delta + coeff * (new_value - value(v)) <= 0);
return true;
case ineq_kind::EQ:
return delta + coeff * (new_value - value(v)) == 0;
case ineq_kind::NE:
return delta + coeff * (new_value - value(v)) != 0;
case ineq_kind::LT:
return delta + coeff * (new_value - value(v)) < 0;
default:
UNREACHABLE(); break;
}
}
}
return false;
}
bool solver::sls::flip_unsat() {
unsigned start = s.random();
unsigned sz = unsat().size();
for (unsigned i = sz; i-- > 0; ) {
unsigned cl = unsat().elem_at((i + start) % sz);
if (flip(cl))
return true;
}
return false;
}
bool solver::sls::flip(unsigned cl) {
auto const& clause = get_clause(cl);
rational new_value;
for (literal lit : clause) {
auto const* ai = atom(lit);
if (!ai)
continue;
ineq const& ineq = ai->m_ineq;
for (auto const& [coeff, v] : ineq.m_args) {
if (!ineq.is_true() && cm(ineq, v, new_value)) {
int score = cm_score(v, new_value);
if (score <= 0)
continue;
unsigned num_unsat = unsat().size();
update(v, new_value);
IF_VERBOSE(0,
verbose_stream() << "score " << v << " " << score << "\n"
<< num_unsat << " -> " << unsat().size() << "\n");
return true;
}
}
}
return false;
}
bool solver::sls::flip_clauses() {
unsigned start = s.random();
for (unsigned i = num_clauses(); i-- > 0; )
if (flip((i + start) % num_clauses()))
return true;
return false;
}
bool solver::sls::flip_dscore() {
paws();
unsigned start = s.random();
for (unsigned i = unsat().size(); i-- > 0; ) {
unsigned cl = unsat().elem_at((i + start) % unsat().size());
if (flip_dscore(cl))
return true;
}
IF_VERBOSE(2, verbose_stream() << "(sls " << m_stats.m_num_flips << " " << unsat().size() << ")\n");
return false;
}
bool solver::sls::flip_dscore(unsigned cl) {
auto const& clause = get_clause(cl);
rational new_value, min_value, min_score(-1);
var_t min_var = UINT_MAX;
for (auto lit : clause) {
auto const* ai = atom(lit);
if (!ai)
continue;
ineq const& ineq = ai->m_ineq;
for (auto const& [coeff, v] : ineq.m_args) {
if (!ineq.is_true() && cm(ineq, v, new_value)) {
rational score = dscore(v, new_value);
if (UINT_MAX == min_var || score < min_score) {
min_var = v;
min_value = new_value;
min_score = score;
}
}
}
}
if (min_var != UINT_MAX) {
update(min_var, min_value);
return true;
}
return false;
}
void solver::sls::paws() {
for (unsigned cl = num_clauses(); cl-- > 0; ) {
auto& clause = get_clause_info(cl);
bool above = 10000 * m_config.sp <= (s.random() % 10000);
if (!above && clause.is_true() && clause.m_weight > 1)
clause.m_weight -= 1;
if (above && !clause.is_true())
clause.m_weight += 1;
}
}
//
// dscore(op) = sum_c (dts(c,alpha) - dts(c,alpha_after)) * weight(c)
//
rational solver::sls::dscore(var_t v, rational const& new_value) const {
auto const& vi = m_vars[v];
rational score(0);
for (auto const& [coeff, atm] : vi.m_atoms) {
auto const& ai = *m_atoms[atm];
auto const& cl = get_clause_info(ai.m_clause_idx);
// score += (dts(cl) - dts(cl, v, new_value)) * rational(cl.m_weight);
}
return score;
}
int solver::sls::cm_score(var_t v, rational const& new_value) {
int score = 0;
auto& vi = m_vars[v];
for (auto const& [coeff, atm] : vi.m_atoms) {
auto const& ai = *m_atoms[atm];
auto const& clause = get_clause_info(ai.m_clause_idx);
rational dtt_old = dtt(ai.m_ineq);
rational dtt_new = dtt(ai.m_ineq, v, new_value);
if (!clause.is_true()) {
if (dtt_new == 0)
++score;
}
else if (dtt_new == 0 || dtt_old > 0 || clause.m_num_trues > 0)
continue;
else {
bool has_true = false;
for (auto lit : *clause.m_clause) {
if (!atom(lit))
continue;
auto const& ai = *atom(lit);
rational d = dtt(ai.m_ineq, v, new_value);
has_true |= (d == 0);
}
if (!has_true)
--score;
}
}
return score;
}
rational solver::sls::dts(unsigned cl) const {
rational d(1), d2;
bool first = true;
for (auto a : get_clause(cl)) {
auto const* ai = atom(a);
if (!ai)
continue;
d2 = dtt(ai->m_ineq);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
rational solver::sls::dts(unsigned cl, var_t v, rational const& new_value) const {
rational d(1), d2;
bool first = true;
for (auto lit : get_clause(cl)) {
auto const* ai = atom(lit);
if (!ai)
continue;
d2 = dtt(ai->m_ineq, v, new_value);
if (first)
d = d2, first = false;
else
d = std::min(d, d2);
if (d == 0)
break;
}
return d;
}
void solver::sls::update(var_t v, rational const& new_value) {
auto& vi = m_vars[v];
auto const& old_value = vi.m_value;
for (auto const& [coeff, atm] : vi.m_atoms) {
auto& ai = *m_atoms[atm];
SASSERT(!ai.m_is_bool);
auto& clause = get_clause_info(ai.m_clause_idx);
rational dtt_old = dtt(ai.m_ineq);
ai.m_ineq.m_args_value += coeff * (new_value - old_value);
rational dtt_new = dtt(ai.m_ineq);
bool was_true = clause.is_true();
auto& dts_value = dts(ai.m_clause_idx);
if (dtt_new < dts_value) {
if (was_true && dts_value > 0 && dtt_new == 0 && 1 == clause.m_num_trues) {
for (auto lit : *clause.m_clause) {
#if false
TODO
if (is_true(lit)) {
dec_break(lit);
break;
}
#endif
}
}
dts_value = dtt_new;
if (!was_true && clause.is_true())
unsat().remove(ai.m_clause_idx);
}
else if (dts_value == dtt_old && dtt_old < dtt_new) {
dts_value = dts(ai.m_clause_idx);
if (was_true && !clause.is_true())
unsat().insert(ai.m_clause_idx);
if (was_true && clause.is_true() && dts_value > 0 && dtt_old == 0 && 1 == clause.m_num_trues) {
for (auto lit : *clause.m_clause) {
#if false
TODO
if (is_true(lit)) {
inc_break(lit);
break;
}
#endif
}
}
}
SASSERT(dts_value >= 0);
}
vi.m_value = new_value;
}
#if 0
void solver::sls::add_clause(sat::clause* cl) {
unsigned clause_idx = m_clauses.size();
m_clauses.push_back({ cl, 1, rational::zero() });
clause& cls = m_clauses.back();
cls.m_dts = dts(cls);
for (sat::literal lit : *cl) {
if (is_true(lit))
cls.add(lit);
}
for (auto a : arith)
m_atoms[a].m_clause_idx = clause_idx;
if (!cl.is_true()) {
m_best_min_unsat++;
m_unsat.insert(clause_idx);
}
else if (cl.m_dts > 0 && cl.m_num_trues == 1)
inc_break(sat::to_literal(cl.m_trues));
}
#endif
}

View file

@ -31,8 +31,10 @@ namespace arith {
void sls::operator()(bool_vector& phase) {
m_best_min_unsat = unsat().size();
unsigned num_steps = 0;
for (unsigned v = 0; v < s.s().num_vars(); ++v)
init_bool_var_assignment(v);
m_best_min_unsat = unsat().size();
while (m.inc() && m_best_min_unsat > 0 && num_steps < m_max_arith_steps) {
if (!flip())
break;
@ -446,11 +448,11 @@ namespace arith {
bool should_minus = false;
sls::ineq_kind op;
if (!lit.sign()) {
should_minus = b->get_bound_kind() == lp::GE;
should_minus = b->get_bound_kind() == lp_api::bound_kind::upper_t;
op = sls::ineq_kind::LE;
}
else {
should_minus = b->get_bound_kind() == lp::LE;
should_minus = b->get_bound_kind() == lp_api::bound_kind::lower_t;
if (s.is_int(b->get_var())) {
bound -= 1;
op = sls::ineq_kind::LE;
@ -464,7 +466,7 @@ namespace arith {
auto& ineq = new_ineq(op, bound);
add_args(ineq, t, b->get_var(), should_minus ? rational::minus_one() :rational::one());
set_literal(lit, ineq);
m_literals.set(lit.index(), &ineq);
return;
}
@ -478,34 +480,20 @@ namespace arith {
auto& ineq = new_ineq(lit.sign() ? sls::ineq_kind::NE : sls::ineq_kind::EQ, rational::zero());
add_args(ineq, tu, u, rational::one());
add_args(ineq, tv, v, -rational::one());
set_literal(lit, ineq);
m_literals.set(lit.index(), &ineq);
return;
}
}
/**
* Associate literal with inequality and synchronize truth assignment based on arithmetic values.
*/
void sls::set_literal(sat::literal lit, ineq& ineq) {
m_literals.set(lit.index(), &ineq);
if (m_bool_search->get_value(lit.var())) {
if (dtt(ineq) != 0)
m_bool_search->flip(lit.var());
}
else {
if (dtt(ineq) == 0)
m_bool_search->flip(lit.var());
}
void sls::init_bool_var_assignment(sat::bool_var v) {
init_literal_assignment(literal(v, false));
init_literal_assignment(literal(v, true));
}
#if 0
{
void sls::init_literal_assignment(sat::literal lit) {
auto* ineq = m_literals.get(lit.index(), nullptr);
if (ineq && m_bool_search->get_value(lit.var()) != (dtt(*ineq) == 0))
m_bool_search->flip(lit.var());
}
}
#endif
}

View file

@ -132,7 +132,8 @@ namespace arith {
void add_bounds(sat::literal_vector& bounds);
void add_args(ineq& ineq, lp::tv t, euf::theory_var v, rational sign);
void init_literal(sat::literal lit);
void set_literal(sat::literal lit, ineq& ineq);
void init_bool_var_assignment(sat::bool_var v);
void init_literal_assignment(sat::literal lit);
rational value(var_t v) const { return m_vars[v].m_value; }
public: