mirror of
https://github.com/Z3Prover/z3
synced 2025-09-05 17:47:41 +00:00
refactor
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
56adbe3c12
commit
4acdd952c2
6 changed files with 119 additions and 116 deletions
|
@ -21,7 +21,7 @@ Revision History:
|
|||
#include "nlsat/nlsat_assignment.h"
|
||||
#include "nlsat/nlsat_evaluator.h"
|
||||
#include "math/polynomial/algebraic_numbers.h"
|
||||
#include "nlsat/nlsat_pp.h"
|
||||
#include "nlsat/nlsat_common.h"
|
||||
#include "util/ref_buffer.h"
|
||||
|
||||
namespace nlsat {
|
||||
|
@ -31,7 +31,6 @@ namespace nlsat {
|
|||
|
||||
struct explain::imp {
|
||||
solver & m_solver;
|
||||
assignment const & m_assignment;
|
||||
atom_vector const & m_atoms;
|
||||
atom_vector const & m_x2eq;
|
||||
anum_manager & m_am;
|
||||
|
@ -49,6 +48,8 @@ namespace nlsat {
|
|||
bool m_signed_project;
|
||||
bool m_cell_sample;
|
||||
|
||||
assignment const & sample() const { return m_solver.get_assignment(); }
|
||||
assignment & sample() { return m_solver.get_assignment(); }
|
||||
|
||||
struct todo_set {
|
||||
polynomial::cache & m_cache;
|
||||
|
@ -136,7 +137,6 @@ namespace nlsat {
|
|||
imp(solver & s, assignment const & x2v, polynomial::cache & u, atom_vector const & atoms, atom_vector const & x2eq,
|
||||
evaluator & ev, bool is_sample):
|
||||
m_solver(s),
|
||||
m_assignment(x2v),
|
||||
m_atoms(atoms),
|
||||
m_x2eq(x2eq),
|
||||
m_am(x2v.am()),
|
||||
|
@ -159,7 +159,7 @@ namespace nlsat {
|
|||
m_signed_project = false;
|
||||
}
|
||||
|
||||
// display helpers moved to free functions in nlsat_pp.h
|
||||
// display helpers moved to free functions in nlsat_common.h
|
||||
|
||||
/**
|
||||
\brief Add literal to the result vector.
|
||||
|
@ -187,17 +187,6 @@ namespace nlsat {
|
|||
SASSERT(check_already_added());
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief evaluate the given polynomial in the current interpretation.
|
||||
max_var(p) must be assigned in the current interpretation.
|
||||
*/
|
||||
::sign sign(polynomial_ref const & p) {
|
||||
SASSERT(max_var(p) == null_var || m_assignment.is_assigned(max_var(p)));
|
||||
auto s = m_am.eval_sign_at(p, m_assignment);
|
||||
TRACE(nlsat_explain, tout << "p: " << p << " var: " << max_var(p) << " sign: " << s << "\n";);
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Wrapper for factorization
|
||||
|
@ -275,7 +264,7 @@ namespace nlsat {
|
|||
polynomial_ref f(m_pm);
|
||||
for (unsigned i = 0; i < num_factors; i++) {
|
||||
f = m_factors.get(i);
|
||||
if (is_zero(sign(f))) {
|
||||
if (is_zero(sign(f, m_solver.get_assignment(), m_am))) {
|
||||
m_zero_fs.push_back(m_factors.get(i));
|
||||
m_is_even.push_back(false);
|
||||
}
|
||||
|
@ -332,7 +321,7 @@ namespace nlsat {
|
|||
lc = m_pm.coeff(p, x, k, reduct);
|
||||
TRACE(nlsat_explain, tout << "lc: " << lc << " reduct: " << reduct << "\n";);
|
||||
if (!is_zero(lc)) {
|
||||
if (!::is_zero(sign(lc))) {
|
||||
if (!::is_zero(sign(lc, m_solver.get_assignment(), m_am))) {
|
||||
TRACE(nlsat_explain, tout << "lc does no vaninsh\n";);
|
||||
return;
|
||||
}
|
||||
|
@ -420,7 +409,7 @@ namespace nlsat {
|
|||
if (max_var(p) == max)
|
||||
elim_vanishing(p); // eliminate vanishing coefficients of max
|
||||
if (is_const(p) || max_var(p) < max) {
|
||||
int s = sign(p);
|
||||
int s = sign(p, m_solver.get_assignment(), m_am);
|
||||
if (!is_const(p)) {
|
||||
SASSERT(max_var(p) != null_var);
|
||||
SASSERT(max_var(p) < max);
|
||||
|
@ -617,7 +606,7 @@ namespace nlsat {
|
|||
continue;
|
||||
// p depends on x
|
||||
disc_poly = discriminant(p, x); // Use global helper
|
||||
if (sign(disc_poly) == 0) { // Discriminant is zero
|
||||
if (sign(disc_poly, sample(), m_am) == 0) { // Discriminant is zero
|
||||
TRACE(nlsat_explain, tout << "p is not square free:\n ";
|
||||
display(tout, m_solver, p); tout << "\ndiscriminant: "; display(tout, m_solver, disc_poly) << "\n";
|
||||
m_solver.display_assignment(tout) << '\n';
|
||||
|
@ -696,7 +685,7 @@ namespace nlsat {
|
|||
auto c = polynomial_ref(this->m_pm);
|
||||
for (unsigned j = 0; j <= n; j++) {
|
||||
c = m_pm.coeff(s, x, j);
|
||||
SASSERT(sign(c) == 0);
|
||||
SASSERT(sign(c, sample(), m_am) == 0);
|
||||
ensure_sign(c);
|
||||
}
|
||||
return true;
|
||||
|
@ -709,7 +698,7 @@ namespace nlsat {
|
|||
auto c = polynomial_ref(this->m_pm);
|
||||
for (unsigned j = 0; j <= n; j++) {
|
||||
c = m_pm.coeff(s, x, j);
|
||||
if (sign(c) != 0)
|
||||
if (sign(c, sample(), m_am) != 0)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -741,7 +730,7 @@ namespace nlsat {
|
|||
TRACE(nlsat_explain, tout << "done, psc is a constant\n";);
|
||||
return;
|
||||
}
|
||||
if (is_zero(sign(s))) {
|
||||
if (is_zero(sign(s, sample(), m_am))) {
|
||||
TRACE(nlsat_explain, tout << "psc vanished, adding zero assumption\n";);
|
||||
add_zero_assumption(s);
|
||||
continue;
|
||||
|
@ -847,7 +836,7 @@ namespace nlsat {
|
|||
}
|
||||
polynomial_ref c(m_pm);
|
||||
c = m_pm.coeff(p, y, 1);
|
||||
int s = sign(c);
|
||||
int s = sign(c, sample(), m_am);
|
||||
if (s == 0) {
|
||||
return false;
|
||||
}
|
||||
|
@ -880,7 +869,7 @@ namespace nlsat {
|
|||
return false;
|
||||
}
|
||||
|
||||
SASSERT(m_assignment.is_assigned(y));
|
||||
SASSERT(sample().is_assigned(y));
|
||||
polynomial_ref A(m_pm), B(m_pm), C(m_pm), q(m_pm), p_diff(m_pm), yy(m_pm);
|
||||
A = m_pm.coeff(p, y, 2);
|
||||
B = m_pm.coeff(p, y, 1);
|
||||
|
@ -929,7 +918,7 @@ namespace nlsat {
|
|||
}
|
||||
return s;
|
||||
#else
|
||||
int s = sign(p);
|
||||
int s = sign(p, sample(), m_am);
|
||||
if (!is_const(p)) {
|
||||
TRACE(nlsat_explain, tout << p << "\n";);
|
||||
add_simple_assumption(s == 0 ? atom::EQ : (s < 0 ? atom::LT : atom::GT), p);
|
||||
|
@ -969,13 +958,13 @@ namespace nlsat {
|
|||
|
||||
void cac_add_cell_lits(polynomial_ref_vector & ps, var y, polynomial_ref_vector & res) {
|
||||
res.reset();
|
||||
SASSERT(m_assignment.is_assigned(y));
|
||||
SASSERT(sample().is_assigned(y));
|
||||
bool lower_inf = true;
|
||||
bool upper_inf = true;
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
scoped_anum lower(m_am);
|
||||
scoped_anum upper(m_am);
|
||||
anum const & y_val = m_assignment.value(y);
|
||||
anum const & y_val = sample().value(y);
|
||||
TRACE(nlsat_explain, tout << "adding literals for "; display_var(tout, m_solver, y); tout << " -> ";
|
||||
m_am.display_decimal(tout, y_val); tout << "\n";);
|
||||
polynomial_ref p_lower(m_pm);
|
||||
|
@ -989,9 +978,9 @@ namespace nlsat {
|
|||
if (max_var(p) != y)
|
||||
continue;
|
||||
roots.reset();
|
||||
// Variable y is assigned in m_assignment. We must temporarily unassign it.
|
||||
// Variable y is assigned in asgnm. We must temporarily unassign it.
|
||||
// Otherwise, the isolate_roots procedure will assume p is a constant polynomial.
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, y), roots);
|
||||
m_am.isolate_roots(p, undef_var_assignment(sample(), y), roots);
|
||||
unsigned num_roots = roots.size();
|
||||
bool all_lt = true;
|
||||
for (unsigned i = 0; i < num_roots; i++) {
|
||||
|
@ -1072,13 +1061,13 @@ namespace nlsat {
|
|||
! (y > root_i(p1)) or !(y < root_j(p2))
|
||||
*/
|
||||
void add_cell_lits(polynomial_ref_vector & ps, var y) {
|
||||
SASSERT(m_assignment.is_assigned(y));
|
||||
SASSERT(sample().is_assigned(y));
|
||||
bool lower_inf = true;
|
||||
bool upper_inf = true;
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
scoped_anum lower(m_am);
|
||||
scoped_anum upper(m_am);
|
||||
anum const & y_val = m_assignment.value(y);
|
||||
anum const & y_val = sample().value(y);
|
||||
TRACE(nlsat_explain, tout << "adding literals for "; display_var(tout, m_solver, y); tout << " -> ";
|
||||
m_am.display_decimal(tout, y_val); tout << "\n";);
|
||||
polynomial_ref p_lower(m_pm);
|
||||
|
@ -1092,9 +1081,9 @@ namespace nlsat {
|
|||
if (max_var(p) != y)
|
||||
continue;
|
||||
roots.reset();
|
||||
// Variable y is assigned in m_assignment. We must temporarily unassign it.
|
||||
// Variable y is assigned in asgnm. We must temporarily unassign it.
|
||||
// Otherwise, the isolate_roots procedure will assume p is a constant polynomial.
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, y), roots);
|
||||
m_am.isolate_roots(p, undef_var_assignment(sample(), y), roots);
|
||||
unsigned num_roots = roots.size();
|
||||
bool all_lt = true;
|
||||
for (unsigned i = 0; i < num_roots; i++) {
|
||||
|
@ -1228,7 +1217,7 @@ namespace nlsat {
|
|||
// Remark: after vanishing coefficients are eliminated, ps may not contain max_x anymore
|
||||
|
||||
polynomial_ref_vector samples(m_pm);
|
||||
levelwise lws(m_solver, ps, max_x, m_assignment, m_pm, m_am);
|
||||
levelwise lws(m_solver, ps, max_x, sample(), m_pm, m_am);
|
||||
auto cell = lws.single_cell();
|
||||
if (x < max_x)
|
||||
cac_add_cell_lits(ps, x, samples);
|
||||
|
@ -1382,7 +1371,7 @@ namespace nlsat {
|
|||
}
|
||||
if (is_const(new_factor)) {
|
||||
TRACE(nlsat_simplify_core, tout << "new factor is const\n";);
|
||||
auto s = sign(new_factor);
|
||||
auto s = sign(new_factor, sample(), m_am);
|
||||
if (is_zero(s)) {
|
||||
bool atom_val = a->get_kind() == atom::EQ;
|
||||
bool lit_val = l.sign() ? !atom_val : atom_val;
|
||||
|
@ -1465,7 +1454,7 @@ namespace nlsat {
|
|||
polynomial_ref lc_eq(m_pm);
|
||||
lc_eq = m_pm.coeff(eq, info.m_x, info.m_k);
|
||||
info.m_lc = lc_eq.get();
|
||||
info.m_lc_sign = sign(lc_eq);
|
||||
info.m_lc_sign = sign(lc_eq, sample(), m_am);
|
||||
info.m_lc_add = false;
|
||||
info.m_lc_add_ineq = false;
|
||||
info.m_lc_const = m_pm.is_const(lc_eq);
|
||||
|
@ -1852,7 +1841,7 @@ namespace nlsat {
|
|||
unsigned eq_degree = 0;
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
p = ps.get(i);
|
||||
int s = sign(p);
|
||||
int s = sign(p, sample(), m_am);
|
||||
if (max_var(p) != x) {
|
||||
atom::kind k = (s == 0)?(atom::EQ):((s < 0)?(atom::LT):(atom::GT));
|
||||
add_simple_assumption(k, p, false);
|
||||
|
@ -1896,7 +1885,7 @@ namespace nlsat {
|
|||
if (j == eq_index)
|
||||
continue;
|
||||
p = ps.get(j);
|
||||
int s = sign(p);
|
||||
int s = sign(p, sample(), m_am);
|
||||
atom::kind k = (s == 0)?(atom::EQ):((s < 0)?(atom::LT):(atom::GT));
|
||||
add_simple_assumption(k, p, false);
|
||||
}
|
||||
|
@ -1907,13 +1896,13 @@ namespace nlsat {
|
|||
unsigned num_lub = 0, num_glb = 0;
|
||||
unsigned glb_index = 0, lub_index = 0;
|
||||
scoped_anum lub(m_am), glb(m_am), x_val(m_am);
|
||||
x_val = m_assignment.value(x);
|
||||
x_val = sample().value(x);
|
||||
bool glb_valid = false, lub_valid = false;
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
p = ps.get(i);
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
roots.reset();
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
|
||||
m_am.isolate_roots(p, undef_var_assignment(sample(), x), roots);
|
||||
for (auto const& r : roots) {
|
||||
int s = m_am.compare(x_val, r);
|
||||
SASSERT(s != 0);
|
||||
|
@ -1959,7 +1948,7 @@ namespace nlsat {
|
|||
unsigned d = degree(p, x);
|
||||
lc = m_pm.coeff(p, x, d);
|
||||
if (!is_const(lc)) {
|
||||
int s = sign(p);
|
||||
int s = sign(p, sample(), m_am);
|
||||
SASSERT(s != 0);
|
||||
atom::kind k = (s > 0)?(atom::GT):(atom::LT);
|
||||
add_simple_assumption(k, lc);
|
||||
|
@ -1974,7 +1963,7 @@ namespace nlsat {
|
|||
unsigned d = degree(p, x);
|
||||
lc = m_pm.coeff(p, x, d);
|
||||
if (!is_const(lc)) {
|
||||
int s = sign(p);
|
||||
int s = sign(p, sample(), m_am);
|
||||
TRACE(nlsat_explain, tout << "degree: " << d << " " << lc << " sign: " << s << "\n";);
|
||||
SASSERT(s != 0);
|
||||
atom::kind k;
|
||||
|
@ -2063,12 +2052,12 @@ namespace nlsat {
|
|||
collect_polys(lits.size(), lits.data(), m_ps);
|
||||
unbounded = true;
|
||||
scoped_anum x_val(m_am);
|
||||
x_val = m_assignment.value(x);
|
||||
x_val = sample().value(x);
|
||||
for (unsigned i = 0; i < m_ps.size(); ++i) {
|
||||
p = m_ps.get(i);
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
roots.reset();
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
|
||||
m_am.isolate_roots(p, undef_var_assignment(sample(), x), roots);
|
||||
for (unsigned j = 0; j < roots.size(); ++j) {
|
||||
int s = m_am.compare(x_val, roots[j]);
|
||||
if (s <= 0 && (unbounded || m_am.compare(roots[j], val) <= 0)) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue