3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-19 10:52:02 +00:00

Merge branch 'unstable' of https://git01.codeplex.com/z3 into unstable

This commit is contained in:
Leonardo de Moura 2013-02-15 16:32:30 -08:00
commit 4a97e6daea
5 changed files with 382 additions and 81 deletions

View file

@ -21,8 +21,6 @@ Revision History:
#include "heap.h" #include "heap.h"
#include "map.h" #include "map.h"
typedef u_map<unsigned> offset_refs_t;
template<typename Value> template<typename Value>
class rational_map : public map<rational, Value, rational::hash_proc, rational::eq_proc> {}; class rational_map : public map<rational, Value, rational::hash_proc, rational::eq_proc> {};
@ -132,7 +130,6 @@ private:
class hilbert_basis::index { class hilbert_basis::index {
// for each non-positive weight a separate index. // for each non-positive weight a separate index.
// for positive weights a shared value index. // for positive weights a shared value index.
@ -143,6 +140,7 @@ class hilbert_basis::index {
stats() { reset(); } stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); } void reset() { memset(this, 0, sizeof(*this)); }
}; };
typedef rational_map<value_index*> value_map; typedef rational_map<value_index*> value_map;
hilbert_basis& hb; hilbert_basis& hb;
value_map m_neg; value_map m_neg;
@ -249,7 +247,6 @@ class hilbert_basis::passive {
struct lt { struct lt {
passive& p; passive& p;
lt(passive& p): p(p) {} lt(passive& p): p(p) {}
bool operator()(int v1, int v2) const { bool operator()(int v1, int v2) const {
return p(v1, v2); return p(v1, v2);
} }
@ -275,7 +272,8 @@ public:
hb(hb) , hb(hb) ,
m_lt(*this), m_lt(*this),
m_heap(10, m_lt) m_heap(10, m_lt)
{} {
}
void reset() { void reset() {
m_heap.reset(); m_heap.reset();
@ -412,6 +410,7 @@ void hilbert_basis::collect_statistics(statistics& st) const {
st.update("hb.num_subsumptions", m_stats.m_num_subsumptions); st.update("hb.num_subsumptions", m_stats.m_num_subsumptions);
st.update("hb.num_resolves", m_stats.m_num_resolves); st.update("hb.num_resolves", m_stats.m_num_resolves);
st.update("hb.num_saturations", m_stats.m_num_saturations); st.update("hb.num_saturations", m_stats.m_num_saturations);
st.update("hb.basis_size", get_basis_size());
m_index->collect_statistics(st); m_index->collect_statistics(st);
} }
@ -426,6 +425,7 @@ void hilbert_basis::add_ge(num_vector const& v, numeral const& b) {
w.push_back(-b); w.push_back(-b);
w.append(v); w.append(v);
m_ineqs.push_back(w); m_ineqs.push_back(w);
m_iseq.push_back(false);
} }
void hilbert_basis::add_le(num_vector const& v, numeral const& b) { void hilbert_basis::add_le(num_vector const& v, numeral const& b) {
@ -437,8 +437,12 @@ void hilbert_basis::add_le(num_vector const& v, numeral const& b) {
} }
void hilbert_basis::add_eq(num_vector const& v, numeral const& b) { void hilbert_basis::add_eq(num_vector const& v, numeral const& b) {
add_le(v, b); SASSERT(m_ineqs.empty() || v.size() + 1 == get_num_vars());
add_ge(v, b); num_vector w;
w.push_back(-b);
w.append(v);
m_ineqs.push_back(w);
m_iseq.push_back(true);
} }
void hilbert_basis::add_ge(num_vector const& v) { void hilbert_basis::add_ge(num_vector const& v) {
@ -450,8 +454,7 @@ void hilbert_basis::add_le(num_vector const& v) {
} }
void hilbert_basis::add_eq(num_vector const& v) { void hilbert_basis::add_eq(num_vector const& v) {
add_le(v); add_eq(v, numeral(0));
add_ge(v);
} }
void hilbert_basis::set_is_int(unsigned var_index) { void hilbert_basis::set_is_int(unsigned var_index) {
@ -462,6 +465,10 @@ void hilbert_basis::set_is_int(unsigned var_index) {
m_ints.push_back(var_index+1); m_ints.push_back(var_index+1);
} }
bool hilbert_basis::get_is_int(unsigned var_index) const {
return m_ints.contains(var_index+1);
}
unsigned hilbert_basis::get_num_vars() const { unsigned hilbert_basis::get_num_vars() const {
if (m_ineqs.empty()) { if (m_ineqs.empty()) {
return 0; return 0;
@ -502,13 +509,15 @@ void hilbert_basis::add_unit_vector(unsigned i, numeral const& e) {
lbool hilbert_basis::saturate() { lbool hilbert_basis::saturate() {
init_basis(); init_basis();
for (unsigned i = 0; !m_cancel && i < m_ineqs.size(); ++i) { m_current_ineq = 0;
select_inequality(i); while (!m_cancel && m_current_ineq < m_ineqs.size()) {
lbool r = saturate(m_ineqs[i]); select_inequality();
lbool r = saturate(m_ineqs[m_current_ineq], m_iseq[m_current_ineq]);
++m_stats.m_num_saturations; ++m_stats.m_num_saturations;
if (r != l_true) { if (r != l_true) {
return r; return r;
} }
++m_current_ineq;
} }
if (m_cancel) { if (m_cancel) {
return l_undef; return l_undef;
@ -516,17 +525,17 @@ lbool hilbert_basis::saturate() {
return l_true; return l_true;
} }
lbool hilbert_basis::saturate(num_vector const& ineq) { lbool hilbert_basis::saturate(num_vector const& ineq, bool is_eq) {
m_active.reset(); m_active.reset();
m_passive->reset(); m_passive->reset();
m_zero.reset(); m_zero.reset();
m_index->reset(); m_index->reset();
TRACE("hilbert_basis", display_ineq(tout, ineq);); TRACE("hilbert_basis", display_ineq(tout, ineq, is_eq););
bool has_non_negative = false; bool has_non_negative = false;
iterator it = begin(); iterator it = begin();
for (; it != end(); ++it) { for (; it != end(); ++it) {
values v = vec(*it); values v = vec(*it);
set_eval(v, ineq); v.weight() = get_weight(v, ineq);
add_goal(*it); add_goal(*it);
if (v.weight().is_nonneg()) { if (v.weight().is_nonneg()) {
has_non_negative = true; has_non_negative = true;
@ -559,7 +568,7 @@ lbool hilbert_basis::saturate(num_vector const& ineq) {
// Move positive from active and zeros to new basis. // Move positive from active and zeros to new basis.
m_basis.reset(); m_basis.reset();
m_basis.append(m_zero); m_basis.append(m_zero);
for (unsigned i = 0; i < m_active.size(); ++i) { for (unsigned i = 0; !is_eq && i < m_active.size(); ++i) {
offset_t idx = m_active[i]; offset_t idx = m_active[i];
if (vec(idx).weight().is_pos()) { if (vec(idx).weight().is_pos()) {
m_basis.push_back(idx); m_basis.push_back(idx);
@ -575,12 +584,29 @@ lbool hilbert_basis::saturate(num_vector const& ineq) {
return l_true; return l_true;
} }
void hilbert_basis::select_inequality(unsigned i) { void hilbert_basis::get_basis_solution(unsigned i, num_vector& v, bool& is_initial) {
SASSERT(i < m_ineqs.size()); offset_t offs = m_basis[i];
unsigned best = i; v.reset();
unsigned non_zeros = get_num_nonzeros(m_ineqs[i]); for (unsigned i = 1; i < get_num_vars(); ++i) {
unsigned prod = get_ineq_product(m_ineqs[i]); v.push_back(vec(offs)[i]);
for (unsigned j = i+1; prod != 0 && j < m_ineqs.size(); ++j) { }
is_initial = !vec(offs)[0].is_zero();
}
void hilbert_basis::get_ge(unsigned i, num_vector& v, numeral& b, bool& is_eq) {
v.reset();
v.append(get_num_vars()-1, m_ineqs[i].c_ptr() + 1);
b = -m_ineqs[i][0];
is_eq = m_iseq[i];
}
void hilbert_basis::select_inequality() {
SASSERT(m_current_ineq < m_ineqs.size());
unsigned best = m_current_ineq;
unsigned non_zeros = get_num_nonzeros(m_ineqs[best]);
unsigned prod = get_ineq_product(m_ineqs[best]);
for (unsigned j = best+1; prod != 0 && j < m_ineqs.size(); ++j) {
unsigned non_zeros2 = get_num_nonzeros(m_ineqs[j]); unsigned non_zeros2 = get_num_nonzeros(m_ineqs[j]);
unsigned prod2 = get_ineq_product(m_ineqs[j]); unsigned prod2 = get_ineq_product(m_ineqs[j]);
if (prod2 < prod || (prod2 == prod && non_zeros2 < non_zeros)) { if (prod2 < prod || (prod2 == prod && non_zeros2 < non_zeros)) {
@ -589,8 +615,9 @@ void hilbert_basis::select_inequality(unsigned i) {
best = j; best = j;
} }
} }
if (best != i) { if (best != m_current_ineq) {
std::swap(m_ineqs[i], m_ineqs[best]); std::swap(m_ineqs[m_current_ineq], m_ineqs[best]);
std::swap(m_iseq[m_current_ineq], m_iseq[best]);
} }
} }
@ -609,11 +636,11 @@ unsigned hilbert_basis::get_ineq_product(num_vector const& ineq) {
iterator it = begin(); iterator it = begin();
for (; it != end(); ++it) { for (; it != end(); ++it) {
values v = vec(*it); values v = vec(*it);
set_eval(v, ineq); numeral w = get_weight(v, ineq);
if (v.weight().is_pos()) { if (w.is_pos()) {
++num_pos; ++num_pos;
} }
else if (v.weight().is_neg()) { else if (w.is_neg()) {
++num_neg; ++num_neg;
} }
} }
@ -716,20 +743,20 @@ hilbert_basis::sign_t hilbert_basis::get_sign(offset_t idx) const {
return zero; return zero;
} }
void hilbert_basis::set_eval(values& val, num_vector const& ineq) const { hilbert_basis::numeral hilbert_basis::get_weight(values& val, num_vector const& ineq) const {
numeral result(0); numeral result(0);
unsigned num_vars = get_num_vars(); unsigned num_vars = get_num_vars();
for (unsigned i = 0; i < num_vars; ++i) { for (unsigned i = 0; i < num_vars; ++i) {
result += val[i]*ineq[i]; result += val[i]*ineq[i];
} }
val.weight() = result; return result;
} }
void hilbert_basis::display(std::ostream& out) const { void hilbert_basis::display(std::ostream& out) const {
unsigned nv = get_num_vars(); unsigned nv = get_num_vars();
out << "inequalities:\n"; out << "inequalities:\n";
for (unsigned i = 0; i < m_ineqs.size(); ++i) { for (unsigned i = 0; i < m_ineqs.size(); ++i) {
display_ineq(out, m_ineqs[i]); display_ineq(out, m_ineqs[i], m_iseq[i]);
} }
if (!m_basis.empty()) { if (!m_basis.empty()) {
out << "basis:\n"; out << "basis:\n";
@ -757,7 +784,6 @@ void hilbert_basis::display(std::ostream& out) const {
display(out, m_zero[i]); display(out, m_zero[i]);
} }
} }
} }
void hilbert_basis::display(std::ostream& out, offset_t o) const { void hilbert_basis::display(std::ostream& out, offset_t o) const {
@ -772,7 +798,7 @@ void hilbert_basis::display(std::ostream& out, values const& v) const {
} }
} }
void hilbert_basis::display_ineq(std::ostream& out, num_vector const& v) const { void hilbert_basis::display_ineq(std::ostream& out, num_vector const& v, bool is_eq) const {
unsigned nv = get_num_vars(); unsigned nv = get_num_vars();
for (unsigned j = 0; j < nv; ++j) { for (unsigned j = 0; j < nv; ++j) {
if (!v[j].is_zero()) { if (!v[j].is_zero()) {
@ -793,20 +819,12 @@ void hilbert_basis::display_ineq(std::ostream& out, num_vector const& v) const {
out << "x" << j; out << "x" << j;
} }
} }
out << " >= 0\n"; if (is_eq) {
} out << " = 0\n";
}
else {
void hilbert_isl_basis::add_le(num_vector const& v, numeral bound) { out << " >= 0\n";
unsigned sz = v.size();
num_vector w;
w.push_back(-bound);
w.push_back(bound);
for (unsigned i = 0; i < sz; ++i) {
w.push_back(v[i]);
w.push_back(-v[i]);
} }
m_basis.add_le(w);
} }
@ -847,6 +865,9 @@ bool hilbert_basis::is_subsumed(offset_t i, offset_t j) const {
i.m_offset != j.m_offset && i.m_offset != j.m_offset &&
n >= m && (!m.is_nonpos() || n == m) && n >= m && (!m.is_nonpos() || n == m) &&
is_geq(v, w); is_geq(v, w);
for (unsigned k = 0; r && k < m_current_ineq; ++k) {
r = get_weight(vec(i), m_ineqs[k]) >= get_weight(vec(j), m_ineqs[k]);
}
CTRACE("hilbert_basis", r, CTRACE("hilbert_basis", r,
display(tout, i); display(tout, i);
tout << " <= \n"; tout << " <= \n";

View file

@ -11,8 +11,6 @@ Abstract:
hilbert_basis computes a Hilbert basis for linear hilbert_basis computes a Hilbert basis for linear
homogeneous inequalities over naturals. homogeneous inequalities over naturals.
hilbert_sl_basis computes a semi-linear set over naturals.
hilbert_isl_basis computes semi-linear sets over integers.
Author: Author:
@ -64,6 +62,7 @@ private:
}; };
vector<num_vector> m_ineqs; // set of asserted inequalities vector<num_vector> m_ineqs; // set of asserted inequalities
svector<bool> m_iseq; // inequalities that are equalities
num_vector m_store; // store of vectors num_vector m_store; // store of vectors
svector<offset_t> m_basis; // vector of current basis svector<offset_t> m_basis; // vector of current basis
svector<offset_t> m_free_list; // free list of unused storage svector<offset_t> m_free_list; // free list of unused storage
@ -74,6 +73,7 @@ private:
stats m_stats; stats m_stats;
index* m_index; // index of generated vectors index* m_index; // index of generated vectors
unsigned_vector m_ints; // indices that can be both positive and negative unsigned_vector m_ints; // indices that can be both positive and negative
unsigned m_current_ineq;
class iterator { class iterator {
hilbert_basis const& hb; hilbert_basis const& hb;
unsigned m_idx; unsigned m_idx;
@ -88,15 +88,15 @@ private:
static offset_t mk_invalid_offset(); static offset_t mk_invalid_offset();
static bool is_invalid_offset(offset_t offs); static bool is_invalid_offset(offset_t offs);
lbool saturate(num_vector const& ineq); lbool saturate(num_vector const& ineq, bool is_eq);
void init_basis(); void init_basis();
void select_inequality(unsigned i); void select_inequality();
unsigned get_num_nonzeros(num_vector const& ineq); unsigned get_num_nonzeros(num_vector const& ineq);
unsigned get_ineq_product(num_vector const& ineq); unsigned get_ineq_product(num_vector const& ineq);
void add_unit_vector(unsigned i, numeral const& e); void add_unit_vector(unsigned i, numeral const& e);
unsigned get_num_vars() const; unsigned get_num_vars() const;
void set_eval(values& val, num_vector const& ineq) const; numeral get_weight(values& val, num_vector const& ineq) const;
bool is_geq(values const& v, values const& w) const; bool is_geq(values const& v, values const& w) const;
bool is_abs_geq(numeral const& v, numeral const& w) const; bool is_abs_geq(numeral const& v, numeral const& w) const;
bool is_subsumed(offset_t idx); bool is_subsumed(offset_t idx);
@ -114,7 +114,7 @@ private:
void display(std::ostream& out, offset_t o) const; void display(std::ostream& out, offset_t o) const;
void display(std::ostream& out, values const & v) const; void display(std::ostream& out, values const & v) const;
void display_ineq(std::ostream& out, num_vector const& v) const; void display_ineq(std::ostream& out, num_vector const& v, bool is_eq) const;
public: public:
@ -138,33 +138,24 @@ public:
void add_eq(num_vector const& v, numeral const& b); void add_eq(num_vector const& v, numeral const& b);
void set_is_int(unsigned var_index); void set_is_int(unsigned var_index);
bool get_is_int(unsigned var_index) const;
lbool saturate(); lbool saturate();
unsigned get_basis_size() const { return m_basis.size(); }
void get_basis_solution(unsigned i, num_vector& v, bool& is_initial);
unsigned get_num_ineqs() const { return m_ineqs.size(); }
void get_ge(unsigned i, num_vector& v, numeral& b, bool& is_eq);
void set_cancel(bool f) { m_cancel = f; } void set_cancel(bool f) { m_cancel = f; }
void display(std::ostream& out) const; void display(std::ostream& out) const;
void collect_statistics(statistics& st) const; void collect_statistics(statistics& st) const;
void reset_statistics(); void reset_statistics();
}; };
class hilbert_isl_basis {
public:
typedef rational numeral;
typedef vector<numeral> num_vector;
private:
hilbert_basis m_basis;
public:
hilbert_isl_basis() {}
void reset() { m_basis.reset(); }
// add inequality v*x >= bound, x ranges over integers
void add_le(num_vector const& v, numeral bound);
lbool saturate() { return m_basis.saturate(); }
void set_cancel(bool f) { m_basis.set_cancel(f); }
void display(std::ostream& out) const { m_basis.display(out); }
};
#endif #endif

View file

@ -0,0 +1,178 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hilbert_basis_validate.cpp
Abstract:
Basic Hilbert Basis validation.
hilbert_basis computes a Hilbert basis for linear
homogeneous inequalities over naturals.
Author:
Nikolaj Bjorner (nbjorner) 2013-02-15.
Revision History:
--*/
#include "hilbert_basis_validate.h"
#include "arith_decl_plugin.h"
#include "ast_pp.h"
#include <sstream>
hilbert_basis_validate::hilbert_basis_validate(ast_manager& m):
m(m) {
}
void hilbert_basis_validate::validate_solution(hilbert_basis& hb, vector<rational> const& v, bool is_initial) {
unsigned sz = hb.get_num_ineqs();
rational bound;
for (unsigned i = 0; i < sz; ++i) {
bool is_eq;
vector<rational> w;
hb.get_ge(i, w, bound, is_eq);
rational sum(0);
for (unsigned j = 0; j < v.size(); ++j) {
sum += w[j]*v[j];
}
if (bound > sum ||
(is_eq && bound != sum)) {
// validation failed.
std::cout << "validation failed for inequality\n";
for (unsigned j = 0; j < v.size(); ++j) {
std::cout << v[j] << " ";
}
std::cout << "\n";
for (unsigned j = 0; j < w.size(); ++j) {
std::cout << w[j] << " ";
}
std::cout << (is_eq?" = ":" >= ") << bound << "\n";
std::cout << "is initial: " << (is_initial?"true":"false") << "\n";
std::cout << "sum: " << sum << "\n";
}
}
}
expr_ref hilbert_basis_validate::mk_validate(hilbert_basis& hb) {
arith_util a(m);
unsigned sz = hb.get_basis_size();
vector<rational> v;
bool is_initial;
// check that claimed solution really satisfies inequalities:
for (unsigned i = 0; i < sz; ++i) {
hb.get_basis_solution(i, v, is_initial);
validate_solution(hb, v, is_initial);
}
// check that solutions satisfying inequalities are in solution.
// build a formula that says solutions to linear inequalities
// coincide with linear combinations of basis.
vector<expr_ref_vector> offsets, increments;
expr_ref_vector xs(m), vars(m);
expr_ref var(m);
svector<symbol> names;
sort_ref_vector sorts(m);
#define mk_mul(_r,_x) (_r.is_one()?((expr*)_x):((expr*)a.mk_mul(a.mk_numeral(_r,true),_x)))
for (unsigned i = 0; i < sz; ++i) {
hb.get_basis_solution(i, v, is_initial);
for (unsigned j = 0; xs.size() < v.size(); ++j) {
xs.push_back(m.mk_fresh_const("x", a.mk_int()));
}
if (is_initial) {
expr_ref_vector tmp(m);
for (unsigned j = 0; j < v.size(); ++j) {
tmp.push_back(a.mk_numeral(v[j], true));
}
offsets.push_back(tmp);
}
else {
var = m.mk_var(vars.size(), a.mk_int());
expr_ref_vector tmp(m);
for (unsigned j = 0; j < v.size(); ++j) {
tmp.push_back(mk_mul(v[j], var));
}
std::stringstream name;
name << "u" << i;
increments.push_back(tmp);
vars.push_back(var);
names.push_back(symbol(name.str().c_str()));
sorts.push_back(a.mk_int());
}
}
expr_ref_vector bounds(m);
for (unsigned i = 0; i < vars.size(); ++i) {
bounds.push_back(a.mk_ge(vars[i].get(), a.mk_numeral(rational(0), true)));
}
expr_ref_vector fmls(m);
expr_ref fml(m), fml1(m), fml2(m);
for (unsigned i = 0; i < offsets.size(); ++i) {
expr_ref_vector eqs(m);
eqs.append(bounds);
for (unsigned j = 0; j < xs.size(); ++j) {
expr_ref_vector sum(m);
sum.push_back(offsets[i][j].get());
for (unsigned k = 0; k < increments.size(); ++k) {
sum.push_back(increments[k][j].get());
}
eqs.push_back(m.mk_eq(xs[j].get(), a.mk_add(sum.size(), sum.c_ptr())));
}
fml = m.mk_and(eqs.size(), eqs.c_ptr());
if (!names.empty()) {
fml = m.mk_exists(names.size(), sorts.c_ptr(), names.c_ptr(), fml);
}
fmls.push_back(fml);
}
fml1 = m.mk_or(fmls.size(), fmls.c_ptr());
fmls.reset();
sz = hb.get_num_ineqs();
for (unsigned i = 0; i < sz; ++i) {
bool is_eq;
vector<rational> w;
rational bound;
hb.get_ge(i, w, bound, is_eq);
expr_ref_vector sum(m);
for (unsigned j = 0; j < w.size(); ++j) {
if (!w[j].is_zero()) {
sum.push_back(mk_mul(w[j], xs[j].get()));
}
}
expr_ref lhs(m), rhs(m);
lhs = a.mk_add(sum.size(), sum.c_ptr());
rhs = a.mk_numeral(bound, true);
if (is_eq) {
fmls.push_back(a.mk_eq(lhs, rhs));
}
else {
fmls.push_back(a.mk_ge(lhs, rhs));
}
}
fml2 = m.mk_and(fmls.size(), fmls.c_ptr());
fml = m.mk_eq(fml1, fml2);
bounds.reset();
for (unsigned i = 0; i < xs.size(); ++i) {
if (!hb.get_is_int(i)) {
bounds.push_back(a.mk_ge(xs[i].get(), a.mk_numeral(rational(0), true)));
}
}
if (!bounds.empty()) {
fml = m.mk_implies(m.mk_and(bounds.size(), bounds.c_ptr()), fml);
}
return fml;
}

View file

@ -0,0 +1,43 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hilbert_basis_validate.h
Abstract:
Basic Hilbert Basis validation.
hilbert_basis computes a Hilbert basis for linear
homogeneous inequalities over naturals.
Author:
Nikolaj Bjorner (nbjorner) 2013-02-15.
Revision History:
--*/
#ifndef _HILBERT_BASIS_VALIDATE_H_
#define _HILBERT_BASIS_VALIDATE_H_
#include "hilbert_basis.h"
#include "ast.h"
class hilbert_basis_validate {
ast_manager& m;
void validate_solution(hilbert_basis& hb, vector<rational> const& v, bool is_initial);
public:
hilbert_basis_validate(ast_manager& m);
expr_ref mk_validate(hilbert_basis& hb);
};
#endif

View file

@ -1,4 +1,12 @@
#include "hilbert_basis.h" #include "hilbert_basis.h"
#include "hilbert_basis_validate.h"
#include "ast_pp.h"
#include "reg_decl_plugins.h"
#include "quant_tactics.h"
#include "tactic.h"
#include "tactic2solver.h"
#include "solver.h"
#include<signal.h> #include<signal.h>
#include<time.h> #include<time.h>
@ -19,6 +27,24 @@ static void on_ctrl_c(int) {
raise(SIGINT); raise(SIGINT);
} }
static void validate_sat(hilbert_basis& hb) {
ast_manager m;
reg_decl_plugins(m);
hilbert_basis_validate val(m);
expr_ref fml = val.mk_validate(hb);
std::cout << mk_pp(fml, m) << "\n";
fml = m.mk_not(fml);
params_ref p;
tactic_ref tac = mk_lra_tactic(m, p);
ref<solver> sol = mk_tactic2solver(m, tac.get(), p);
sol->assert_expr(fml);
lbool r = sol->check_sat(0,0);
std::cout << r << "\n";
}
static void saturate_basis(hilbert_basis& hb) { static void saturate_basis(hilbert_basis& hb) {
signal(SIGINT, on_ctrl_c); signal(SIGINT, on_ctrl_c);
g_hb = &hb; g_hb = &hb;
@ -29,6 +55,7 @@ static void saturate_basis(hilbert_basis& hb) {
case l_true: case l_true:
std::cout << "sat\n"; std::cout << "sat\n";
hb.display(std::cout); hb.display(std::cout);
// validate_sat(hb);
break; break;
case l_false: case l_false:
std::cout << "unsat\n"; std::cout << "unsat\n";
@ -40,6 +67,7 @@ static void saturate_basis(hilbert_basis& hb) {
display_statistics(hb); display_statistics(hb);
} }
/** /**
n - number of variables. n - number of variables.
k - subset of variables to be non-zero k - subset of variables to be non-zero
@ -74,6 +102,14 @@ static void gorrila_test(unsigned seed, unsigned n, unsigned k, unsigned bound,
saturate_basis(hb); saturate_basis(hb);
} }
static vector<rational> vec(int i, int j) {
vector<rational> nv;
nv.resize(2);
nv[0] = rational(i);
nv[1] = rational(j);
return nv;
}
static vector<rational> vec(int i, int j, int k) { static vector<rational> vec(int i, int j, int k) {
vector<rational> nv; vector<rational> nv;
nv.resize(3); nv.resize(3);
@ -243,16 +279,44 @@ static void tst11() {
saturate_basis(hb); saturate_basis(hb);
} }
static void tst12() {
hilbert_basis hb;
hb.add_le(vec(1, 0), R(1));
hb.add_le(vec(0, 1), R(1));
saturate_basis(hb);
}
// Sigma_9 table 1, Ajili, Contejean
static void tst13() {
hilbert_basis hb;
hb.add_eq(vec( 1,-2,-4,4), R(0));
hb.add_le(vec(100,45,-78,-67), R(0));
saturate_basis(hb);
}
// Sigma_10 table 1, Ajili, Contejean
static void tst14() {
hilbert_basis hb;
hb.add_le(vec( 23, -56, -34, 12, 11), R(0));
saturate_basis(hb);
}
// Sigma_11 table 1, Ajili, Contejean
static void tst15() {
// hilbert_basis hb;
// hb.add_le(vec( 23, -56, -34, 12, 11), R(0));
// saturate_basis(hb);
}
void tst_hilbert_basis() { void tst_hilbert_basis() {
std::cout << "hilbert basis test\n"; std::cout << "hilbert basis test\n";
tst4();
return;
if (true) { if (true) {
tst1(); tst1();
tst2(); tst2();
tst3(); tst3();
tst4(); // tst4();
tst5(); tst5();
tst6(); tst6();
tst7(); tst7();
@ -260,11 +324,15 @@ void tst_hilbert_basis() {
tst9(); tst9();
tst10(); tst10();
tst11(); tst11();
tst12();
tst13();
tst14();
tst15();
gorrila_test(0, 4, 3, 20, 5); gorrila_test(0, 4, 3, 20, 5);
gorrila_test(1, 4, 3, 20, 5); gorrila_test(1, 4, 3, 20, 5);
gorrila_test(2, 4, 3, 20, 5); //gorrila_test(2, 4, 3, 20, 5);
gorrila_test(0, 4, 2, 20, 5); //gorrila_test(0, 4, 2, 20, 5);
gorrila_test(0, 4, 2, 20, 5); //gorrila_test(0, 4, 2, 20, 5);
} }
else { else {
gorrila_test(0, 10, 7, 20, 11); gorrila_test(0, 10, 7, 20, 11);