3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-13 22:41:15 +00:00

call it data instead of c_ptr for approaching C++11 std::vector convention.

This commit is contained in:
Nikolaj Bjorner 2021-04-13 18:17:10 -07:00
parent 524dcd35f9
commit 4a6083836a
456 changed files with 2802 additions and 2802 deletions

View file

@ -917,7 +917,7 @@ namespace polynomial {
else
m_powers_tmp.push_back(power(x, 1));
}
return mk_monomial(m_powers_tmp.size(), m_powers_tmp.c_ptr());
return mk_monomial(m_powers_tmp.size(), m_powers_tmp.data());
}
monomial * mul(unsigned sz1, power const * pws1, unsigned sz2, power const * pws2) {
@ -1335,8 +1335,8 @@ namespace polynomial {
buckets[i].reset();
}
SASSERT(p.size() == end - start);
apply_permutation(p.size(), m_as + start, p.c_ptr());
apply_permutation_core(p.size(), m_ms + start, p.c_ptr()); // p is not needed anymore after this command
apply_permutation(p.size(), m_as + start, p.data());
apply_permutation_core(p.size(), m_ms + start, p.data()); // p is not needed anymore after this command
i = start;
while (i < end) {
monomial * m = m_ms[i];
@ -1878,7 +1878,7 @@ namespace polynomial {
if (sz == 0)
return false;
scoped_numeral g(m);
m.gcd(as.size(), as.c_ptr(), g);
m.gcd(as.size(), as.data(), g);
if (m.is_one(g))
return false;
SASSERT(m.is_pos(g));
@ -2152,7 +2152,7 @@ namespace polynomial {
polynomial * mk(bool normalize = false) {
remove_zeros(normalize);
polynomial * p = m_owner->mk_polynomial_core(m_tmp_as.size(), m_tmp_as.c_ptr(), m_tmp_ms.c_ptr());
polynomial * p = m_owner->mk_polynomial_core(m_tmp_as.size(), m_tmp_as.data(), m_tmp_ms.data());
m_tmp_as.reset();
m_tmp_ms.reset();
return p;
@ -2312,7 +2312,7 @@ namespace polynomial {
}
polynomial * mk() {
polynomial * new_p = m_owner->mk_polynomial_core(m_tmp_as.size(), m_tmp_as.c_ptr(), m_tmp_ms.c_ptr());
polynomial * new_p = m_owner->mk_polynomial_core(m_tmp_as.size(), m_tmp_as.data(), m_tmp_ms.data());
m_tmp_as.reset();
m_tmp_ms.reset();
return new_p;
@ -2614,7 +2614,7 @@ namespace polynomial {
polynomial * mk_polynomial(unsigned sz, rational const * as, monomial * const * ms) {
rational2numeral(sz, as);
polynomial * p = mk_polynomial(sz, m_rat2numeral.c_ptr(), ms);
polynomial * p = mk_polynomial(sz, m_rat2numeral.data(), ms);
reset_tmp_as2();
return p;
}
@ -2636,7 +2636,7 @@ namespace polynomial {
polynomial * mk_univariate(var x, unsigned n, rational const * as) {
SASSERT(is_valid(x));
rational2numeral(n+1, as);
polynomial * p = mk_univariate(x, n, m_rat2numeral.c_ptr());
polynomial * p = mk_univariate(x, n, m_rat2numeral.data());
reset_tmp_as2();
return p;
}
@ -2656,7 +2656,7 @@ namespace polynomial {
swap(m_tmp_linear_as.back(), c);
m_tmp_linear_ms.push_back(mk_unit());
}
polynomial * p = mk_polynomial(m_tmp_linear_as.size(), m_tmp_linear_as.c_ptr(), m_tmp_linear_ms.c_ptr());
polynomial * p = mk_polynomial(m_tmp_linear_as.size(), m_tmp_linear_as.data(), m_tmp_linear_ms.data());
for (auto& a : m_tmp_linear_as) {
m_manager.del(a);
}
@ -2670,7 +2670,7 @@ namespace polynomial {
rational2numeral(sz, as);
numeral tmp_c;
m_manager.set(tmp_c, c.to_mpq().numerator());
polynomial * p = mk_linear(sz, m_rat2numeral.c_ptr(), xs, tmp_c);
polynomial * p = mk_linear(sz, m_rat2numeral.data(), xs, tmp_c);
SASSERT(m_manager.is_zero(tmp_c));
reset_tmp_as2();
return p;
@ -3202,7 +3202,7 @@ namespace polynomial {
tout << m.to_string(cs[i]) << " ";
}
tout << "\n";);
solver.add(i, cs.c_ptr(), m_outputs[output_idx]);
solver.add(i, cs.data(), m_outputs[output_idx]);
}
TRACE("sparse_interpolator",
tout << "find coefficients of:\n";
@ -3211,7 +3211,7 @@ namespace polynomial {
}
tout << "system of equations:\n";
solver.display(tout););
if (!solver.solve(new_as.c_ptr()))
if (!solver.solve(new_as.data()))
return false;
for (unsigned i = 0; i < num_pws; i++) {
if (!m.is_zero(new_as[i])) {
@ -3220,7 +3220,7 @@ namespace polynomial {
}
}
}
r = m_skeleton->pm.mk_polynomial(as.size(), as.c_ptr(), mons.c_ptr());
r = m_skeleton->pm.mk_polynomial(as.size(), as.data(), mons.data());
return true;
}
};
@ -4737,7 +4737,7 @@ namespace polynomial {
push_power(pws, y, n - k);
push_power(pws, x, k);
}
monomial * new_m = mk_monomial(pws.size(), pws.c_ptr());
monomial * new_m = mk_monomial(pws.size(), pws.data());
m_cheap_som_buffer.add(p->a(i), new_m);
}
return m_cheap_som_buffer.mk();
@ -5668,7 +5668,7 @@ namespace polynomial {
h1 = exact_div(h1, hs0);
S.push_back(h1);
if (is_zero(G2)) {
std::reverse(S.c_ptr(), S.c_ptr() + S.size());
std::reverse(S.data(), S.data() + S.size());
return;
}
}
@ -5855,7 +5855,7 @@ namespace polynomial {
psc_chain_optimized_core(Q, P, x, S);
if (S.empty())
S.push_back(mk_zero());
std::reverse(S.c_ptr(), S.c_ptr() + S.size());
std::reverse(S.data(), S.data() + S.size());
}
void psc_chain_classic_core(polynomial const * P, polynomial const * Q, var x, polynomial_ref_vector & S) {
@ -5935,7 +5935,7 @@ namespace polynomial {
psc_chain_classic_core(Q, P, x, S);
if (S.empty())
S.push_back(mk_zero());
std::reverse(S.c_ptr(), S.c_ptr() + S.size());
std::reverse(S.data(), S.data() + S.size());
}
void psc_chain(polynomial const * A, polynomial const * B, var x, polynomial_ref_vector & S) {
@ -6253,7 +6253,7 @@ namespace polynomial {
unsigned num_vars() const { return m_xs.size(); }
var const * vars() const { return m_xs.c_ptr(); }
var const * vars() const { return m_xs.data(); }
};
struct scoped_var_max_degree {
@ -6752,7 +6752,7 @@ namespace polynomial {
for (unsigned i = 0; i < num_factors; i++) {
numeral_vector const & f1 = fs[i];
unsigned k1 = fs.get_degree(i);
f = to_polynomial(f1.size(), f1.c_ptr(), x);
f = to_polynomial(f1.size(), f1.data(), x);
TRACE("factor_bug",
tout << "uni-factor:\n"; upm().display(tout, f1); tout << "\n";
tout << "factor:\n" << f << "\n";);
@ -6878,7 +6878,7 @@ namespace polynomial {
coeffs.push_back(numeral());
m_manager.set(coeffs.back(), p[i]);
}
return mk_univariate(x, sz-1, coeffs.c_ptr());
return mk_univariate(x, sz-1, coeffs.data());
}
polynomial * mk_glex_monic(polynomial const * p) {
@ -7510,7 +7510,7 @@ polynomial::polynomial * convert(polynomial::manager & sm, polynomial::polynomia
}
}
}
return tm.mk_polynomial(as.size(), as.c_ptr(), ms.c_ptr());
return tm.mk_polynomial(as.size(), as.data(), ms.data());
}
std::ostream & operator<<(std::ostream & out, polynomial_ref_vector const & seq) {