3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

uint64_t -> uint64 for cross platform

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-02-29 22:16:03 -08:00
parent b90bc4e685
commit 4a15d756d7
3 changed files with 178 additions and 11 deletions

View file

@ -96,6 +96,8 @@ public:
automaton_t* remove_epsilons(automaton_t& a);
automaton_t* mk_total(automaton_t& a);
automaton_t* mk_minimize(automaton_t& a);
automaton_t* mk_minimize_total(automaton_t& a);
automaton_t* mk_difference(automaton_t& a, automaton_t& b);
automaton_t* mk_product(automaton_t& a, automaton_t& b);
};

View file

@ -74,7 +74,12 @@ typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minim
if (!fa) {
return 0;
}
return mk_minimize_total(*fa.get());
}
template<class T, class M>
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minimize_total(automaton_t& a) {
vector<block> pblocks;
unsigned_vector blocks;
pblocks.push_back(block(fa->final_states())); // 0 |-> final states
@ -101,7 +106,7 @@ typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minim
u_map<T*> gamma;
moves_t mvs;
while (!W.empty()) {
block R(W.back());
block R(pblocks[W.back()]);
W.pop_back();
block Rcopy(R);
gamma.reset();
@ -123,13 +128,173 @@ typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minim
}
}
uint_set relevant;
u_map<T*>::iterator end = gamma.end();
for (u_map<T*>::iterator it = gamma.begin(); it != end; ++it) {
relevant.insert(it->m_key);
u_map<T*>::iterator gend = gamma.end();
for (u_map<T*>::iterator it = gamma.begin(); it != gend; ++it) {
relevant.insert(blocks[it->m_key]);
}
uint_set::iterator uit = relevant.begin(), uend = relevant.end();
for (; uit != uend; ++uit) {
unsigned p0_index = *uit;
block& p0 = pblocks[p0_index];
block p1;
for (u_map<T*>::iterator it = gamma.begin(); it != gend; ++it) {
if (p0.contains(*it)) p1.push_back(*it);
}
if (p1.size() < p0.size()) {
unsigned p1_index = pblocks.size();
pblocks.push_back(p1);
for (uint_set::iterator it = p1.begin(), end = p1.end(); it != end; ++it) {
p0.remove(*it);
blocks[*it] = p1_index;
}
if (W.contains(p0_index)) {
W.push_back(p1_index);
}
else if (p0.size() <= p1.size()) {
W.push_back(p0_index);
}
else {
W.push_back(p1_index);
}
}
bool iterate = true;
while (iterate) {
iterate = false;
uint_set relevant;
for (u_map<T*>::iterator it = gamma.begin(); it != gend; ++it) {
if (pblocks[blocks[it->m_key]].size() > 1) {
relevant.insert(blocks[it->m_key]);
}
}
uint_set::iterator it = relevant.begin(), end = relevant.end();
for (; it != end; ++it) {
block const& p = pblocks[*it];
uint_set::iterator bi = p.begin(), be = p.end();
block p1;
p1.insert(*bi);
// psi = gamma[*bi]; // name of key or block?
++bi;
for (; bi != be; ++bi) {
}
}
}
}
}
#endif
#if 0
Func<T, T, T> MkDiff = (x, y) => solver.MkAnd(x, solver.MkNot(y));
while (!W.IsEmpty)
{
//keep using Bcopy until no more changes occur
//effectively, this replaces the loop over characters
bool iterate = true;
//in each relevant block all states lead to B due to the initial splitting
//only relevant blocks are potentially split
foreach (var P in relevant2)
{
var PE = P.GetEnumerator();
PE.MoveNext();
var P1 = new Block();
bool splitFound = false;
var psi = Gamma[PE.Current];
P1.Add(PE.Current); //C has at least 2 elements
#region compute C1 as the new sub-block of C
while (PE.MoveNext())
{
var q = PE.Current;
var phi = Gamma[q];
if (splitFound)
{
var psi_and_phi = solver.MkAnd(psi, phi);
if (solver.IsSatisfiable(psi_and_phi))
P1.Add(q);
}
else
{
var psi_min_phi = MkDiff(psi, phi);
if (solver.IsSatisfiable(psi_min_phi))
{
psi = psi_min_phi;
splitFound = true;
}
else // [[psi]] is subset of [[phi]]
{
var phi_min_psi = MkDiff(phi, psi);
if (!solver.IsSatisfiable(phi_min_psi))
P1.Add(q); //psi and phi are equivalent
else
{
//there is some a: q --a--> B and p --a--> compl(B) for all p in C1
P1.Clear();
P1.Add(q);
psi = phi_min_psi;
splitFound = true;
}
}
}
}
#endregion
#region split P
if (P1.Count < P.Count)
{
iterate = (iterate || (P.Count > 2)); //otherwise C was split into singletons
foreach (var p in P1)
{
P.Remove(p);
Blocks[p] = P1;
}
if (W.Contains(P))
W.Push(P1);
else if (P.Count <= P1.Count)
W.Push(P);
else
W.Push(P1);
}
#endregion
}
}
}
Dictionary<Pair<int, int>, HashSet<T>> condMap = new Dictionary<Pair<int, int>, HashSet<T>>();
foreach (var move in GetMoves())
{
int s = Blocks[move.SourceState].GetRepresentative();
int t = Blocks[move.TargetState].GetRepresentative();
var st = new Pair<int, int>(s, t);
HashSet<T> condSet;
if (!condMap.TryGetValue(st, out condSet))
{
condSet = new HashSet<T>();
condSet.Add(move.Label);
condMap[st] = condSet;
}
else
condSet.Add(move.Label);
}
int newInitState = Blocks[fa.InitialState].GetRepresentative();
var newMoves = new List<Move<T>>();
var newFinals = new HashSet<int>();
foreach (var entry in condMap)
newMoves.Add(Move<T>.Create(entry.Key.First, entry.Key.Second, solver.MkOr(entry.Value)));
foreach (var f in GetFinalStates())
newFinals.Add(Blocks[f].GetRepresentative());
var res = Create(newInitState, newFinals, newMoves);
res.isDeterministic = true;
res.isEpsilonFree = true;
//res.EliminateDeadStates();
return res;
#endif
return 0;

View file

@ -22,7 +22,7 @@ Author:
#include "ast_pp.h"
#include <climits>
static uint64_t uMaxInt(unsigned sz) {
static uint64 uMaxInt(unsigned sz) {
SASSERT(sz <= 64);
return ULLONG_MAX >> (64u - sz);
}
@ -32,12 +32,12 @@ namespace {
struct interval {
// l < h: [l, h]
// l > h: [0, h] U [l, UMAX_INT]
uint64_t l, h;
uint64 l, h;
unsigned sz;
bool tight;
interval() {}
interval(uint64_t l, uint64_t h, unsigned sz, bool tight = false) : l(l), h(h), sz(sz), tight(tight) {
interval(uint64 l, uint64 h, unsigned sz, bool tight = false) : l(l), h(h), sz(sz), tight(tight) {
// canonicalize full set
if (is_wrapped() && l == h + 1) {
this->l = 0;
@ -175,7 +175,7 @@ class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier {
expr_list_map m_expr_vars;
expr_set m_bound_exprs;
bool is_number(expr *e, uint64_t& n, unsigned& sz) const {
bool is_number(expr *e, uint64& n, unsigned& sz) const {
rational r;
if (m_bv.is_numeral(e, r, sz) && sz <= 64) {
n = r.get_uint64();
@ -185,7 +185,7 @@ class bv_bounds_simplifier : public ctx_simplify_tactic::simplifier {
}
bool is_bound(expr *e, expr*& v, interval& b) const {
uint64_t n;
uint64 n;
expr *lhs, *rhs;
unsigned sz;