mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 17:45:32 +00:00
Merge branch 'master' into regex-develop
This commit is contained in:
commit
49b810e00f
108 changed files with 899 additions and 1457 deletions
|
@ -919,7 +919,6 @@ extern "C" {
|
|||
case PR_REWRITE: return Z3_OP_PR_REWRITE;
|
||||
case PR_REWRITE_STAR: return Z3_OP_PR_REWRITE_STAR;
|
||||
case PR_PULL_QUANT: return Z3_OP_PR_PULL_QUANT;
|
||||
case PR_PULL_QUANT_STAR: return Z3_OP_PR_PULL_QUANT_STAR;
|
||||
case PR_PUSH_QUANT: return Z3_OP_PR_PUSH_QUANT;
|
||||
case PR_ELIM_UNUSED_VARS: return Z3_OP_PR_ELIM_UNUSED_VARS;
|
||||
case PR_DER: return Z3_OP_PR_DER;
|
||||
|
@ -936,9 +935,7 @@ extern "C" {
|
|||
case PR_IFF_OEQ: return Z3_OP_PR_IFF_OEQ;
|
||||
case PR_NNF_POS: return Z3_OP_PR_NNF_POS;
|
||||
case PR_NNF_NEG: return Z3_OP_PR_NNF_NEG;
|
||||
case PR_NNF_STAR: return Z3_OP_PR_NNF_STAR;
|
||||
case PR_SKOLEMIZE: return Z3_OP_PR_SKOLEMIZE;
|
||||
case PR_CNF_STAR: return Z3_OP_PR_CNF_STAR;
|
||||
case PR_MODUS_PONENS_OEQ: return Z3_OP_PR_MODUS_PONENS_OEQ;
|
||||
case PR_TH_LEMMA: return Z3_OP_PR_TH_LEMMA;
|
||||
case PR_HYPER_RESOLVE: return Z3_OP_PR_HYPER_RESOLVE;
|
||||
|
@ -1059,6 +1056,7 @@ extern "C" {
|
|||
switch(_d->get_decl_kind()) {
|
||||
case OP_DT_CONSTRUCTOR: return Z3_OP_DT_CONSTRUCTOR;
|
||||
case OP_DT_RECOGNISER: return Z3_OP_DT_RECOGNISER;
|
||||
case OP_DT_IS: return Z3_OP_DT_IS;
|
||||
case OP_DT_ACCESSOR: return Z3_OP_DT_ACCESSOR;
|
||||
case OP_DT_UPDATE_FIELD: return Z3_OP_DT_UPDATE_FIELD;
|
||||
default:
|
||||
|
|
|
@ -137,7 +137,7 @@ extern "C" {
|
|||
func_decl* decl = (decls)[i];
|
||||
mk_c(c)->save_multiple_ast_trail(decl);
|
||||
enum_consts[i] = of_func_decl(decl);
|
||||
decl = dt_util.get_constructor_recognizer(decl);
|
||||
decl = dt_util.get_constructor_is(decl);
|
||||
mk_c(c)->save_multiple_ast_trail(decl);
|
||||
enum_testers[i] = of_func_decl(decl);
|
||||
}
|
||||
|
@ -196,7 +196,7 @@ extern "C" {
|
|||
*nil_decl = of_func_decl(f);
|
||||
}
|
||||
if (is_nil_decl) {
|
||||
f = data_util.get_constructor_recognizer(cnstrs[0]);
|
||||
f = data_util.get_constructor_is(cnstrs[0]);
|
||||
mk_c(c)->save_multiple_ast_trail(f);
|
||||
*is_nil_decl = of_func_decl(f);
|
||||
}
|
||||
|
@ -206,7 +206,7 @@ extern "C" {
|
|||
*cons_decl = of_func_decl(f);
|
||||
}
|
||||
if (is_cons_decl) {
|
||||
f = data_util.get_constructor_recognizer(cnstrs[1]);
|
||||
f = data_util.get_constructor_is(cnstrs[1]);
|
||||
mk_c(c)->save_multiple_ast_trail(f);
|
||||
*is_cons_decl = of_func_decl(f);
|
||||
}
|
||||
|
@ -290,7 +290,7 @@ extern "C" {
|
|||
*constructor_decl = of_func_decl(f);
|
||||
}
|
||||
if (tester) {
|
||||
func_decl* f2 = data_util.get_constructor_recognizer(f);
|
||||
func_decl* f2 = data_util.get_constructor_is(f);
|
||||
mk_c(c)->save_multiple_ast_trail(f2);
|
||||
*tester = of_func_decl(f2);
|
||||
}
|
||||
|
@ -497,7 +497,7 @@ extern "C" {
|
|||
RETURN_Z3(nullptr);
|
||||
}
|
||||
func_decl* decl = (decls)[idx];
|
||||
decl = dt_util.get_constructor_recognizer(decl);
|
||||
decl = dt_util.get_constructor_is(decl);
|
||||
mk_c(c)->save_ast_trail(decl);
|
||||
RETURN_Z3(of_func_decl(decl));
|
||||
Z3_CATCH_RETURN(nullptr);
|
||||
|
|
|
@ -17,6 +17,11 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include<iostream>
|
||||
#include "util/scoped_ctrl_c.h"
|
||||
#include "util/cancel_eh.h"
|
||||
#include "util/file_path.h"
|
||||
#include "util/scoped_timer.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "api/z3.h"
|
||||
#include "api/api_log_macros.h"
|
||||
#include "api/api_context.h"
|
||||
|
@ -26,14 +31,10 @@ Revision History:
|
|||
#include "api/api_stats.h"
|
||||
#include "api/api_ast_vector.h"
|
||||
#include "solver/tactic2solver.h"
|
||||
#include "util/scoped_ctrl_c.h"
|
||||
#include "util/cancel_eh.h"
|
||||
#include "util/file_path.h"
|
||||
#include "util/scoped_timer.h"
|
||||
#include "solver/smt_logics.h"
|
||||
#include "tactic/portfolio/smt_strategic_solver.h"
|
||||
#include "smt/smt_solver.h"
|
||||
#include "smt/smt_implied_equalities.h"
|
||||
#include "solver/smt_logics.h"
|
||||
#include "cmd_context/cmd_context.h"
|
||||
#include "parsers/smt2/smt2parser.h"
|
||||
#include "sat/dimacs.h"
|
||||
|
|
|
@ -989,7 +989,7 @@ namespace z3 {
|
|||
|
||||
/**
|
||||
\brief sequence and regular expression operations.
|
||||
+ is overloaeded as sequence concatenation and regular expression union.
|
||||
+ is overloaded as sequence concatenation and regular expression union.
|
||||
concat is overloaded to handle sequences and regular expressions
|
||||
*/
|
||||
expr extract(expr const& offset, expr const& length) const {
|
||||
|
|
|
@ -2515,7 +2515,7 @@ namespace Microsoft.Z3
|
|||
|
||||
|
||||
/// <summary>
|
||||
/// Concatentate sequences.
|
||||
/// Concatenate sequences.
|
||||
/// </summary>
|
||||
public SeqExpr MkConcat(params SeqExpr[] t)
|
||||
{
|
||||
|
@ -3597,7 +3597,7 @@ namespace Microsoft.Z3
|
|||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a tactic that fails if the goal is not triviall satisfiable (i.e., empty)
|
||||
/// Create a tactic that fails if the goal is not trivially satisfiable (i.e., empty)
|
||||
/// or trivially unsatisfiable (i.e., contains `false').
|
||||
/// </summary>
|
||||
public Tactic FailIfNotDecided()
|
||||
|
@ -4656,7 +4656,7 @@ namespace Microsoft.Z3
|
|||
/// Conversion of a floating-point term into a bit-vector.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
/// Produces a term that represents the conversion of the floating-point term t into a
|
||||
/// bit-vector term of size sz in 2's complement format (signed when signed==true). If necessary,
|
||||
/// the result will be rounded according to rounding mode rm.
|
||||
/// </remarks>
|
||||
|
@ -4677,7 +4677,7 @@ namespace Microsoft.Z3
|
|||
/// Conversion of a floating-point term into a real-numbered term.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
/// Produces a term that represents the conversion of the floating-point term t into a
|
||||
/// real number. Note that this type of conversion will often result in non-linear
|
||||
/// constraints over real terms.
|
||||
/// </remarks>
|
||||
|
@ -4696,7 +4696,7 @@ namespace Microsoft.Z3
|
|||
/// <remarks>
|
||||
/// The size of the resulting bit-vector is automatically determined. Note that
|
||||
/// IEEE 754-2008 allows multiple different representations of NaN. This conversion
|
||||
/// knows only one NaN and it will always produce the same bit-vector represenatation of
|
||||
/// knows only one NaN and it will always produce the same bit-vector representation of
|
||||
/// that NaN.
|
||||
/// </remarks>
|
||||
/// <param name="t">FloatingPoint term.</param>
|
||||
|
|
|
@ -932,7 +932,7 @@ namespace Microsoft.Z3
|
|||
/// Indicates whether the term is a proof by condensed transitivity of a relation
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
/// Condensed transitivity proof.
|
||||
/// It combines several symmetry and transitivity proofs.
|
||||
/// Example:
|
||||
/// T1: (R a b)
|
||||
|
@ -1035,14 +1035,11 @@ namespace Microsoft.Z3
|
|||
/// </summary>
|
||||
/// <remarks>
|
||||
/// A proof for rewriting an expression t into an expression s.
|
||||
/// This proof object is used if the parameter PROOF_MODE is 1.
|
||||
/// This proof object can have n antecedents.
|
||||
/// The antecedents are proofs for equalities used as substitution rules.
|
||||
/// The object is also used in a few cases if the parameter PROOF_MODE is 2.
|
||||
/// The cases are:
|
||||
/// The object is used in a few cases:
|
||||
/// - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
|
||||
/// - When converting bit-vectors to Booleans (BIT2BOOL=true)
|
||||
/// - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
|
||||
/// </remarks>
|
||||
public bool IsProofRewriteStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }
|
||||
|
||||
|
@ -1054,15 +1051,6 @@ namespace Microsoft.Z3
|
|||
/// </remarks>
|
||||
public bool IsProofPullQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for pulling quantifiers out.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// A proof for (iff P Q) where Q is in prenex normal form.
|
||||
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
/// This proof object has no antecedents
|
||||
/// </remarks>
|
||||
public bool IsProofPullQuantStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for pushing quantifiers in.
|
||||
|
@ -1304,28 +1292,6 @@ namespace Microsoft.Z3
|
|||
/// </remarks>
|
||||
public bool IsProofNNFNeg { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// A proof for (~ P Q) where Q is in negation normal form.
|
||||
///
|
||||
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
///
|
||||
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
/// </remarks>
|
||||
public bool IsProofNNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// A proof for (~ P Q) where Q is in conjunctive normal form.
|
||||
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
/// </remarks>
|
||||
public bool IsProofCNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_CNF_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a Skolemization step
|
||||
/// </summary>
|
||||
|
|
|
@ -1978,7 +1978,7 @@ public class Context implements AutoCloseable {
|
|||
}
|
||||
|
||||
/**
|
||||
* Concatentate sequences.
|
||||
* Concatenate sequences.
|
||||
*/
|
||||
public SeqExpr mkConcat(SeqExpr... t)
|
||||
{
|
||||
|
@ -2781,7 +2781,7 @@ public class Context implements AutoCloseable {
|
|||
}
|
||||
|
||||
/**
|
||||
* Create a tactic that fails if the goal is not triviall satisfiable (i.e.,
|
||||
* Create a tactic that fails if the goal is not trivially satisfiable (i.e.,
|
||||
* empty) or trivially unsatisfiable (i.e., contains `false').
|
||||
**/
|
||||
public Tactic failIfNotDecided()
|
||||
|
@ -3769,7 +3769,7 @@ public class Context implements AutoCloseable {
|
|||
* @param sz Size of the resulting bit-vector.
|
||||
* @param signed Indicates whether the result is a signed or unsigned bit-vector.
|
||||
* Remarks:
|
||||
* Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
* Produces a term that represents the conversion of the floating-point term t into a
|
||||
* bit-vector term of size sz in 2's complement format (signed when signed==true). If necessary,
|
||||
* the result will be rounded according to rounding mode rm.
|
||||
* @throws Z3Exception
|
||||
|
@ -3786,7 +3786,7 @@ public class Context implements AutoCloseable {
|
|||
* Conversion of a floating-point term into a real-numbered term.
|
||||
* @param t FloatingPoint term
|
||||
* Remarks:
|
||||
* Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
* Produces a term that represents the conversion of the floating-point term t into a
|
||||
* real number. Note that this type of conversion will often result in non-linear
|
||||
* constraints over real terms.
|
||||
* @throws Z3Exception
|
||||
|
@ -3802,7 +3802,7 @@ public class Context implements AutoCloseable {
|
|||
* Remarks:
|
||||
* The size of the resulting bit-vector is automatically determined. Note that
|
||||
* IEEE 754-2008 allows multiple different representations of NaN. This conversion
|
||||
* knows only one NaN and it will always produce the same bit-vector represenatation of
|
||||
* knows only one NaN and it will always produce the same bit-vector representation of
|
||||
* that NaN.
|
||||
* @throws Z3Exception
|
||||
**/
|
||||
|
|
|
@ -1398,8 +1398,7 @@ public class Expr extends AST
|
|||
/**
|
||||
* Indicates whether the term is a proof by condensed transitivity of a
|
||||
* relation
|
||||
* Remarks: Condensed transitivity proof. This proof object is
|
||||
* only used if the parameter PROOF_MODE is 1. It combines several symmetry
|
||||
* Remarks: Condensed transitivity proof. It combines several symmetry
|
||||
* and transitivity proofs. Example: T1: (R a b) T2: (R c b) T3: (R c d)
|
||||
* [trans* T1 T2 T3]: (R a d) R must be a symmetric and transitive relation.
|
||||
*
|
||||
|
@ -1506,14 +1505,11 @@ public class Expr extends AST
|
|||
/**
|
||||
* Indicates whether the term is a proof by rewriting
|
||||
* Remarks: A proof for
|
||||
* rewriting an expression t into an expression s. This proof object is used
|
||||
* if the parameter PROOF_MODE is 1. This proof object can have n
|
||||
* rewriting an expression t into an expression s. This proof object can have n
|
||||
* antecedents. The antecedents are proofs for equalities used as
|
||||
* substitution rules. The object is also used in a few cases if the
|
||||
* parameter PROOF_MODE is 2. The cases are: - When applying contextual
|
||||
* substitution rules. The object is used in a few cases . The cases are: - When applying contextual
|
||||
* simplification (CONTEXT_SIMPLIFIER=true) - When converting bit-vectors to
|
||||
* Booleans (BIT2BOOL=true) - When pulling ite expression up
|
||||
* (PULL_CHEAP_ITE_TREES=true)
|
||||
* Booleans (BIT2BOOL=true)
|
||||
* @throws Z3Exception on error
|
||||
* @return a boolean
|
||||
**/
|
||||
|
@ -1534,17 +1530,6 @@ public class Expr extends AST
|
|||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT;
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a proof for pulling quantifiers out.
|
||||
*
|
||||
* Remarks: A proof for (iff P Q) where Q is in prenex normal form. This * proof object is only used if the parameter PROOF_MODE is 1. This proof * object has no antecedents
|
||||
* @throws Z3Exception on error
|
||||
* @return a boolean
|
||||
**/
|
||||
public boolean isProofPullQuantStar()
|
||||
{
|
||||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR;
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a proof for pushing quantifiers in.
|
||||
|
@ -1804,38 +1789,6 @@ public class Expr extends AST
|
|||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_NEG;
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a proof for (~ P Q) here Q is in negation
|
||||
* normal form.
|
||||
* Remarks: A proof for (~ P Q) where Q is in negation normal
|
||||
* form.
|
||||
*
|
||||
* This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
*
|
||||
* This proof object may have n antecedents. Each antecedent is a
|
||||
* PR_DEF_INTRO.
|
||||
* @throws Z3Exception on error
|
||||
* @return a boolean
|
||||
**/
|
||||
public boolean isProofNNFStar()
|
||||
{
|
||||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_NNF_STAR;
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a proof for (~ P Q) where Q is in
|
||||
* conjunctive normal form.
|
||||
* Remarks: A proof for (~ P Q) where Q is in
|
||||
* conjunctive normal form. This proof object is only used if the parameter
|
||||
* PROOF_MODE is 1. This proof object may have n antecedents. Each
|
||||
* antecedent is a PR_DEF_INTRO.
|
||||
* @throws Z3Exception on error
|
||||
* @return a boolean
|
||||
**/
|
||||
public boolean isProofCNFStar()
|
||||
{
|
||||
return isApp() && getFuncDecl().getDeclKind() == Z3_decl_kind.Z3_OP_PR_CNF_STAR;
|
||||
}
|
||||
|
||||
/**
|
||||
* Indicates whether the term is a proof for a Skolemization step
|
||||
|
|
|
@ -2428,7 +2428,7 @@ def is_rational_value(a):
|
|||
return is_arith(a) and a.is_real() and _is_numeral(a.ctx, a.as_ast())
|
||||
|
||||
def is_algebraic_value(a):
|
||||
"""Return `True` if `a` is an algerbraic value of sort Real.
|
||||
"""Return `True` if `a` is an algebraic value of sort Real.
|
||||
|
||||
>>> is_algebraic_value(RealVal("3/5"))
|
||||
False
|
||||
|
@ -4437,7 +4437,7 @@ class Datatype:
|
|||
"""Declare constructor named `name` with the given accessors `args`.
|
||||
Each accessor is a pair `(name, sort)`, where `name` is a string and `sort` a Z3 sort or a reference to the datatypes being declared.
|
||||
|
||||
In the followin example `List.declare('cons', ('car', IntSort()), ('cdr', List))`
|
||||
In the following example `List.declare('cons', ('car', IntSort()), ('cdr', List))`
|
||||
declares the constructor named `cons` that builds a new List using an integer and a List.
|
||||
It also declares the accessors `car` and `cdr`. The accessor `car` extracts the integer of a `cons` cell,
|
||||
and `cdr` the list of a `cons` cell. After all constructors were declared, we use the method create() to create
|
||||
|
@ -4451,13 +4451,13 @@ class Datatype:
|
|||
if __debug__:
|
||||
_z3_assert(isinstance(name, str), "String expected")
|
||||
_z3_assert(name != "", "Constructor name cannot be empty")
|
||||
return self.declare_core(name, "is_" + name, *args)
|
||||
return self.declare_core(name, "is-" + name, *args)
|
||||
|
||||
def __repr__(self):
|
||||
return "Datatype(%s, %s)" % (self.name, self.constructors)
|
||||
|
||||
def create(self):
|
||||
"""Create a Z3 datatype based on the constructors declared using the mehtod `declare()`.
|
||||
"""Create a Z3 datatype based on the constructors declared using the method `declare()`.
|
||||
|
||||
The function `CreateDatatypes()` must be used to define mutually recursive datatypes.
|
||||
|
||||
|
@ -4575,7 +4575,7 @@ def CreateDatatypes(*ds):
|
|||
cref = cref()
|
||||
setattr(dref, cref_name, cref)
|
||||
rref = dref.recognizer(j)
|
||||
setattr(dref, rref.name(), rref)
|
||||
setattr(dref, "is_" + cref_name, rref)
|
||||
for k in range(cref_arity):
|
||||
aref = dref.accessor(j, k)
|
||||
setattr(dref, aref.name(), aref)
|
||||
|
@ -4629,16 +4629,16 @@ class DatatypeSortRef(SortRef):
|
|||
>>> List.num_constructors()
|
||||
2
|
||||
>>> List.recognizer(0)
|
||||
is_cons
|
||||
is(cons)
|
||||
>>> List.recognizer(1)
|
||||
is_nil
|
||||
is(nil)
|
||||
>>> simplify(List.is_nil(List.cons(10, List.nil)))
|
||||
False
|
||||
>>> simplify(List.is_cons(List.cons(10, List.nil)))
|
||||
True
|
||||
>>> l = Const('l', List)
|
||||
>>> simplify(List.is_cons(l))
|
||||
is_cons(l)
|
||||
is(cons, l)
|
||||
"""
|
||||
if __debug__:
|
||||
_z3_assert(idx < self.num_constructors(), "Invalid recognizer index")
|
||||
|
@ -6818,8 +6818,8 @@ class FiniteDomainSortRef(SortRef):
|
|||
|
||||
def size(self):
|
||||
"""Return the size of the finite domain sort"""
|
||||
r = (ctype.c_ulonglong * 1)()
|
||||
if Z3_get_finite_domain_sort_size(self.ctx_ref(), self.ast(), r):
|
||||
r = (ctypes.c_ulonglong * 1)()
|
||||
if Z3_get_finite_domain_sort_size(self.ctx_ref(), self.ast, r):
|
||||
return r[0]
|
||||
else:
|
||||
raise Z3Exception("Failed to retrieve finite domain sort size")
|
||||
|
@ -7447,6 +7447,19 @@ def With(t, *args, **keys):
|
|||
p = args2params(args, keys, t.ctx)
|
||||
return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
|
||||
|
||||
def WithParams(t, p):
|
||||
"""Return a tactic that applies tactic `t` using the given configuration options.
|
||||
|
||||
>>> x, y = Ints('x y')
|
||||
>>> p = ParamsRef()
|
||||
>>> p.set("som", True)
|
||||
>>> t = WithParams(Tactic('simplify'), p)
|
||||
>>> t((x + 1)*(y + 2) == 0)
|
||||
[[2*x + y + x*y == -2]]
|
||||
"""
|
||||
t = _to_tactic(t, None)
|
||||
return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
|
||||
|
||||
def Repeat(t, max=4294967295, ctx=None):
|
||||
"""Return a tactic that keeps applying `t` until the goal is not modified anymore or the maximum number of iterations `max` is reached.
|
||||
|
||||
|
@ -8253,7 +8266,7 @@ def tree_interpolant(pat,p=None,ctx=None):
|
|||
solver that determines satisfiability.
|
||||
|
||||
>>> x = Int('x')
|
||||
>>> y = Int('y')
|
||||
>>> y = Int('y')
|
||||
>>> print(tree_interpolant(And(Interpolant(x < 0), Interpolant(y > 2), x == y)))
|
||||
[Not(x >= 0), Not(y <= 2)]
|
||||
|
||||
|
@ -8861,7 +8874,7 @@ class FPNumRef(FPRef):
|
|||
def isSubnormal(self):
|
||||
return Z3_fpa_is_numeral_subnormal(self.ctx.ref(), self.as_ast())
|
||||
|
||||
"""Indicates whether the numeral is postitive."""
|
||||
"""Indicates whether the numeral is positive."""
|
||||
def isPositive(self):
|
||||
return Z3_fpa_is_numeral_positive(self.ctx.ref(), self.as_ast())
|
||||
|
||||
|
@ -9657,7 +9670,7 @@ def fpToIEEEBV(x, ctx=None):
|
|||
The size of the resulting bit-vector is automatically determined.
|
||||
|
||||
Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
|
||||
knows only one NaN and it will always produce the same bit-vector represenatation of
|
||||
knows only one NaN and it will always produce the same bit-vector representation of
|
||||
that NaN.
|
||||
|
||||
>>> x = FP('x', FPSort(8, 24))
|
||||
|
@ -9832,7 +9845,7 @@ def Empty(s):
|
|||
raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
|
||||
|
||||
def Full(s):
|
||||
"""Create the regular expression that accepts the universal langauge
|
||||
"""Create the regular expression that accepts the universal language
|
||||
>>> e = Full(ReSort(SeqSort(IntSort())))
|
||||
>>> print(e)
|
||||
re.all
|
||||
|
|
|
@ -485,7 +485,9 @@ class PP:
|
|||
raise StopPPException()
|
||||
|
||||
def pp(self, f, indent):
|
||||
if f.is_string():
|
||||
if isinstance(f, str):
|
||||
sef.pp_string(f, indent)
|
||||
elif f.is_string():
|
||||
self.pp_string(f, indent)
|
||||
elif f.is_indent():
|
||||
self.pp(f.child, min(indent + f.indent, self.max_indent))
|
||||
|
@ -846,10 +848,17 @@ class Formatter:
|
|||
else:
|
||||
return seq1('MultiPattern', [ self.pp_expr(arg, d+1, xs) for arg in a.children() ])
|
||||
|
||||
def pp_is(self, a, d, xs):
|
||||
f = a.params()[0]
|
||||
return self.pp_fdecl(f, a, d, xs)
|
||||
|
||||
def pp_map(self, a, d, xs):
|
||||
f = z3.get_map_func(a)
|
||||
return self.pp_fdecl(f, a, d, xs)
|
||||
|
||||
def pp_fdecl(self, f, a, d, xs):
|
||||
r = []
|
||||
sz = 0
|
||||
f = z3.get_map_func(a)
|
||||
r.append(to_format(f.name()))
|
||||
for child in a.children():
|
||||
r.append(self.pp_expr(child, d+1, xs))
|
||||
|
@ -909,6 +918,8 @@ class Formatter:
|
|||
return self.pp_unary_param(a, d, xs)
|
||||
elif k == Z3_OP_EXTRACT:
|
||||
return self.pp_extract(a, d, xs)
|
||||
elif k == Z3_OP_DT_IS:
|
||||
return self.pp_is(a, d, xs)
|
||||
elif k == Z3_OP_ARRAY_MAP:
|
||||
return self.pp_map(a, d, xs)
|
||||
elif k == Z3_OP_CONST_ARRAY:
|
||||
|
@ -963,6 +974,14 @@ class Formatter:
|
|||
else:
|
||||
return to_format(self.pp_unknown())
|
||||
|
||||
def pp_decl(self, f):
|
||||
k = f.kind()
|
||||
if k == Z3_OP_DT_IS or k == Z3_OP_ARRAY_MAP:
|
||||
g = f.params()[0]
|
||||
r = [ to_format(g.name()) ]
|
||||
return seq1(self.pp_name(f), r)
|
||||
return self.pp_name(f)
|
||||
|
||||
def pp_seq_core(self, f, a, d, xs):
|
||||
self.visited = self.visited + 1
|
||||
if d > self.max_depth or self.visited > self.max_visited:
|
||||
|
@ -1054,7 +1073,7 @@ class Formatter:
|
|||
elif z3.is_sort(a):
|
||||
return self.pp_sort(a)
|
||||
elif z3.is_func_decl(a):
|
||||
return self.pp_name(a)
|
||||
return self.pp_decl(a)
|
||||
elif isinstance(a, z3.Goal) or isinstance(a, z3.AstVector):
|
||||
return self.pp_seq(a, 0, [])
|
||||
elif isinstance(a, z3.Solver):
|
||||
|
|
|
@ -21,7 +21,8 @@ Notes:
|
|||
#ifndef Z3_H_
|
||||
#define Z3_H_
|
||||
|
||||
#include<stdio.h>
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
#include "z3_macros.h"
|
||||
#include "z3_api.h"
|
||||
#include "z3_ast_containers.h"
|
||||
|
|
|
@ -459,7 +459,7 @@ typedef enum
|
|||
[trans T1 T2]: (R t u)
|
||||
}
|
||||
|
||||
- Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
- Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof.
|
||||
It combines several symmetry and transitivity proofs.
|
||||
|
||||
Example:
|
||||
|
@ -539,21 +539,14 @@ typedef enum
|
|||
}
|
||||
|
||||
- Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s.
|
||||
This proof object is used if the parameter PROOF_MODE is 1.
|
||||
This proof object can have n antecedents.
|
||||
The antecedents are proofs for equalities used as substitution rules.
|
||||
The object is also used in a few cases if the parameter PROOF_MODE is 2.
|
||||
The cases are:
|
||||
The proof rule is used in a few cases. The cases are:
|
||||
- When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
|
||||
- When converting bit-vectors to Booleans (BIT2BOOL=true)
|
||||
- When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
|
||||
|
||||
- Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
|
||||
|
||||
- Z3_OP_PR_PULL_QUANT_STAR: A proof for (iff P Q) where Q is in prenex normal form.
|
||||
This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
This proof object has no antecedents.
|
||||
|
||||
- Z3_OP_PR_PUSH_QUANT: A proof for:
|
||||
|
||||
\nicebox{
|
||||
|
@ -726,15 +719,6 @@ typedef enum
|
|||
[nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
|
||||
(and (or r_1 r_2) (or r_1' r_2')))
|
||||
}
|
||||
- Z3_OP_PR_NNF_STAR: A proof for (~ P Q) where Q is in negation normal form.
|
||||
|
||||
This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
|
||||
This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
|
||||
- Z3_OP_PR_CNF_STAR: A proof for (~ P Q) where Q is in conjunctive normal form.
|
||||
This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
|
||||
- Z3_OP_PR_SKOLEMIZE: Proof for:
|
||||
|
||||
|
@ -876,6 +860,8 @@ typedef enum
|
|||
|
||||
- Z3_OP_DT_RECOGNISER: datatype recognizer.
|
||||
|
||||
- Z3_OP_DT_IS: datatype recognizer.
|
||||
|
||||
- Z3_OP_DT_ACCESSOR: datatype accessor.
|
||||
|
||||
- Z3_OP_DT_UPDATE_FIELD: datatype field update.
|
||||
|
@ -1140,7 +1126,6 @@ typedef enum {
|
|||
Z3_OP_PR_REWRITE,
|
||||
Z3_OP_PR_REWRITE_STAR,
|
||||
Z3_OP_PR_PULL_QUANT,
|
||||
Z3_OP_PR_PULL_QUANT_STAR,
|
||||
Z3_OP_PR_PUSH_QUANT,
|
||||
Z3_OP_PR_ELIM_UNUSED_VARS,
|
||||
Z3_OP_PR_DER,
|
||||
|
@ -1157,8 +1142,6 @@ typedef enum {
|
|||
Z3_OP_PR_IFF_OEQ,
|
||||
Z3_OP_PR_NNF_POS,
|
||||
Z3_OP_PR_NNF_NEG,
|
||||
Z3_OP_PR_NNF_STAR,
|
||||
Z3_OP_PR_CNF_STAR,
|
||||
Z3_OP_PR_SKOLEMIZE,
|
||||
Z3_OP_PR_MODUS_PONENS_OEQ,
|
||||
Z3_OP_PR_TH_LEMMA,
|
||||
|
@ -1220,6 +1203,7 @@ typedef enum {
|
|||
// Datatypes
|
||||
Z3_OP_DT_CONSTRUCTOR=0x800,
|
||||
Z3_OP_DT_RECOGNISER,
|
||||
Z3_OP_DT_IS,
|
||||
Z3_OP_DT_ACCESSOR,
|
||||
Z3_OP_DT_UPDATE_FIELD,
|
||||
|
||||
|
@ -1474,7 +1458,6 @@ extern "C" {
|
|||
/*@{*/
|
||||
|
||||
/**
|
||||
\deprecated
|
||||
\brief Create a configuration object for the Z3 context object.
|
||||
|
||||
Configurations are created in order to assign parameters prior to creating
|
||||
|
@ -1507,7 +1490,6 @@ extern "C" {
|
|||
Z3_config Z3_API Z3_mk_config(void);
|
||||
|
||||
/**
|
||||
\deprecated
|
||||
\brief Delete the given configuration object.
|
||||
|
||||
\sa Z3_mk_config
|
||||
|
@ -1517,7 +1499,6 @@ extern "C" {
|
|||
void Z3_API Z3_del_config(Z3_config c);
|
||||
|
||||
/**
|
||||
\deprecated
|
||||
\brief Set a configuration parameter.
|
||||
|
||||
The following parameters can be set for
|
||||
|
@ -1534,7 +1515,6 @@ extern "C" {
|
|||
/*@{*/
|
||||
|
||||
/**
|
||||
\deprecated
|
||||
\brief Create a context using the given configuration.
|
||||
|
||||
After a context is created, the configuration cannot be changed,
|
||||
|
@ -1614,7 +1594,6 @@ extern "C" {
|
|||
void Z3_API Z3_dec_ref(Z3_context c, Z3_ast a);
|
||||
|
||||
/**
|
||||
\deprecated
|
||||
\brief Set a value of a context parameter.
|
||||
|
||||
\sa Z3_global_param_set
|
||||
|
|
|
@ -756,7 +756,7 @@ extern "C" {
|
|||
/**
|
||||
\brief Conversion of a floating-point term into an unsigned bit-vector.
|
||||
|
||||
Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
Produces a term that represents the conversion of the floating-point term t into a
|
||||
bit-vector term of size sz in unsigned 2's complement format. If necessary, the result
|
||||
will be rounded according to rounding mode rm.
|
||||
|
||||
|
@ -772,7 +772,7 @@ extern "C" {
|
|||
/**
|
||||
\brief Conversion of a floating-point term into a signed bit-vector.
|
||||
|
||||
Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
Produces a term that represents the conversion of the floating-point term t into a
|
||||
bit-vector term of size sz in signed 2's complement format. If necessary, the result
|
||||
will be rounded according to rounding mode rm.
|
||||
|
||||
|
@ -788,7 +788,7 @@ extern "C" {
|
|||
/**
|
||||
\brief Conversion of a floating-point term into a real-numbered term.
|
||||
|
||||
Produces a term that represents the conversion of the floating-poiunt term t into a
|
||||
Produces a term that represents the conversion of the floating-point term t into a
|
||||
real number. Note that this type of conversion will often result in non-linear
|
||||
constraints over real terms.
|
||||
|
||||
|
@ -1011,7 +1011,7 @@ extern "C" {
|
|||
determined.
|
||||
|
||||
Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
|
||||
knows only one NaN and it will always produce the same bit-vector represenatation of
|
||||
knows only one NaN and it will always produce the same bit-vector representation of
|
||||
that NaN.
|
||||
|
||||
def_API('Z3_mk_fpa_to_ieee_bv', AST, (_in(CONTEXT),_in(AST)))
|
||||
|
|
|
@ -98,7 +98,7 @@ extern "C" {
|
|||
|
||||
Interpolant may not necessarily be computable from all
|
||||
proofs. To be sure an interpolant can be computed, the proof
|
||||
must be generated by an SMT solver for which interpoaltion is
|
||||
must be generated by an SMT solver for which interpolation is
|
||||
supported, and the premises must be expressed using only
|
||||
theories and operators for which interpolation is supported.
|
||||
|
||||
|
@ -199,7 +199,7 @@ extern "C" {
|
|||
(implies (and c1 ... cn f) v)
|
||||
|
||||
where c1 .. cn are the children of v (which must precede v in the file)
|
||||
and f is the formula assiciated to node v. The last formula in the
|
||||
and f is the formula associated to node v. The last formula in the
|
||||
file is the root vertex, and is represented by the predicate "false".
|
||||
|
||||
A solution to a tree interpolation problem can be thought of as a
|
||||
|
|
|
@ -663,7 +663,6 @@ basic_decl_plugin::basic_decl_plugin():
|
|||
m_not_or_elim_decl(nullptr),
|
||||
m_rewrite_decl(nullptr),
|
||||
m_pull_quant_decl(nullptr),
|
||||
m_pull_quant_star_decl(nullptr),
|
||||
m_push_quant_decl(nullptr),
|
||||
m_elim_unused_vars_decl(nullptr),
|
||||
m_der_decl(nullptr),
|
||||
|
@ -827,7 +826,6 @@ func_decl * basic_decl_plugin::mk_proof_decl(basic_op_kind k, unsigned num_paren
|
|||
case PR_REWRITE: return mk_proof_decl("rewrite", k, 0, m_rewrite_decl);
|
||||
case PR_REWRITE_STAR: return mk_proof_decl("rewrite*", k, num_parents, m_rewrite_star_decls);
|
||||
case PR_PULL_QUANT: return mk_proof_decl("pull-quant", k, 0, m_pull_quant_decl);
|
||||
case PR_PULL_QUANT_STAR: return mk_proof_decl("pull-quant*", k, 0, m_pull_quant_star_decl);
|
||||
case PR_PUSH_QUANT: return mk_proof_decl("push-quant", k, 0, m_push_quant_decl);
|
||||
case PR_ELIM_UNUSED_VARS: return mk_proof_decl("elim-unused", k, 0, m_elim_unused_vars_decl);
|
||||
case PR_DER: return mk_proof_decl("der", k, 0, m_der_decl);
|
||||
|
@ -844,8 +842,6 @@ func_decl * basic_decl_plugin::mk_proof_decl(basic_op_kind k, unsigned num_paren
|
|||
case PR_IFF_OEQ: return mk_proof_decl("iff~", k, 1, m_iff_oeq_decl);
|
||||
case PR_NNF_POS: return mk_proof_decl("nnf-pos", k, num_parents, m_nnf_pos_decls);
|
||||
case PR_NNF_NEG: return mk_proof_decl("nnf-neg", k, num_parents, m_nnf_neg_decls);
|
||||
case PR_NNF_STAR: return mk_proof_decl("nnf*", k, num_parents, m_nnf_star_decls);
|
||||
case PR_CNF_STAR: return mk_proof_decl("cnf*", k, num_parents, m_cnf_star_decls);
|
||||
case PR_SKOLEMIZE: return mk_proof_decl("sk", k, 0, m_skolemize_decl);
|
||||
case PR_MODUS_PONENS_OEQ: return mk_proof_decl("mp~", k, 2, m_mp_oeq_decl);
|
||||
case PR_TH_LEMMA: return mk_proof_decl("th-lemma", k, num_parents, m_th_lemma_decls);
|
||||
|
@ -949,7 +945,6 @@ void basic_decl_plugin::finalize() {
|
|||
DEC_REF(m_not_or_elim_decl);
|
||||
DEC_REF(m_rewrite_decl);
|
||||
DEC_REF(m_pull_quant_decl);
|
||||
DEC_REF(m_pull_quant_star_decl);
|
||||
DEC_REF(m_push_quant_decl);
|
||||
DEC_REF(m_elim_unused_vars_decl);
|
||||
DEC_REF(m_der_decl);
|
||||
|
@ -975,8 +970,6 @@ void basic_decl_plugin::finalize() {
|
|||
DEC_ARRAY_REF(m_apply_def_decls);
|
||||
DEC_ARRAY_REF(m_nnf_pos_decls);
|
||||
DEC_ARRAY_REF(m_nnf_neg_decls);
|
||||
DEC_ARRAY_REF(m_nnf_star_decls);
|
||||
DEC_ARRAY_REF(m_cnf_star_decls);
|
||||
|
||||
DEC_ARRAY_REF(m_th_lemma_decls);
|
||||
DEC_REF(m_hyper_res_decl0);
|
||||
|
@ -1532,32 +1525,39 @@ void ast_manager::copy_families_plugins(ast_manager const & from) {
|
|||
tout << "fid: " << fid << " fidname: " << get_family_name(fid) << "\n";
|
||||
});
|
||||
ast_translation trans(const_cast<ast_manager&>(from), *this, false);
|
||||
// Inheriting plugins can create new family ids. Since new family ids are
|
||||
// assigned in the order that they are created, this can result in differing
|
||||
// family ids. To avoid this, we first assign all family ids and only then inherit plugins.
|
||||
for (family_id fid = 0; from.m_family_manager.has_family(fid); fid++) {
|
||||
SASSERT(from.is_builtin_family_id(fid) == is_builtin_family_id(fid));
|
||||
SASSERT(!from.is_builtin_family_id(fid) || m_family_manager.has_family(fid));
|
||||
symbol fid_name = from.get_family_name(fid);
|
||||
TRACE("copy_families_plugins", tout << "copying: " << fid_name << ", src fid: " << fid
|
||||
<< ", target has_family: " << m_family_manager.has_family(fid) << "\n";
|
||||
if (m_family_manager.has_family(fid)) tout << get_family_id(fid_name) << "\n";);
|
||||
if (!m_family_manager.has_family(fid)) {
|
||||
family_id new_fid = mk_family_id(fid_name);
|
||||
(void)new_fid;
|
||||
TRACE("copy_families_plugins", tout << "new target fid created: " << new_fid << " fid_name: " << fid_name << "\n";);
|
||||
}
|
||||
TRACE("copy_families_plugins", tout << "target fid: " << get_family_id(fid_name) << "\n";);
|
||||
SASSERT(fid == get_family_id(fid_name));
|
||||
if (from.has_plugin(fid) && !has_plugin(fid)) {
|
||||
decl_plugin * new_p = from.get_plugin(fid)->mk_fresh();
|
||||
register_plugin(fid, new_p);
|
||||
SASSERT(new_p->get_family_id() == fid);
|
||||
SASSERT(has_plugin(fid));
|
||||
}
|
||||
if (from.has_plugin(fid)) {
|
||||
get_plugin(fid)->inherit(from.get_plugin(fid), trans);
|
||||
}
|
||||
SASSERT(from.m_family_manager.has_family(fid) == m_family_manager.has_family(fid));
|
||||
SASSERT(from.get_family_id(fid_name) == get_family_id(fid_name));
|
||||
SASSERT(!from.has_plugin(fid) || has_plugin(fid));
|
||||
symbol fid_name = from.get_family_name(fid);
|
||||
if (!m_family_manager.has_family(fid)) {
|
||||
family_id new_fid = mk_family_id(fid_name);
|
||||
(void)new_fid;
|
||||
TRACE("copy_families_plugins", tout << "new target fid created: " << new_fid << " fid_name: " << fid_name << "\n";);
|
||||
}
|
||||
}
|
||||
for (family_id fid = 0; from.m_family_manager.has_family(fid); fid++) {
|
||||
SASSERT(from.is_builtin_family_id(fid) == is_builtin_family_id(fid));
|
||||
SASSERT(!from.is_builtin_family_id(fid) || m_family_manager.has_family(fid));
|
||||
symbol fid_name = from.get_family_name(fid);
|
||||
(void)fid_name;
|
||||
TRACE("copy_families_plugins", tout << "copying: " << fid_name << ", src fid: " << fid
|
||||
<< ", target has_family: " << m_family_manager.has_family(fid) << "\n";
|
||||
if (m_family_manager.has_family(fid)) tout << get_family_id(fid_name) << "\n";);
|
||||
TRACE("copy_families_plugins", tout << "target fid: " << get_family_id(fid_name) << "\n";);
|
||||
SASSERT(fid == get_family_id(fid_name));
|
||||
if (from.has_plugin(fid) && !has_plugin(fid)) {
|
||||
decl_plugin * new_p = from.get_plugin(fid)->mk_fresh();
|
||||
register_plugin(fid, new_p);
|
||||
SASSERT(new_p->get_family_id() == fid);
|
||||
SASSERT(has_plugin(fid));
|
||||
}
|
||||
if (from.has_plugin(fid)) {
|
||||
get_plugin(fid)->inherit(from.get_plugin(fid), trans);
|
||||
}
|
||||
SASSERT(from.m_family_manager.has_family(fid) == m_family_manager.has_family(fid));
|
||||
SASSERT(from.get_family_id(fid_name) == get_family_id(fid_name));
|
||||
SASSERT(!from.has_plugin(fid) || has_plugin(fid));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2837,12 +2837,6 @@ proof * ast_manager::mk_pull_quant(expr * e, quantifier * q) {
|
|||
return mk_app(m_basic_family_id, PR_PULL_QUANT, mk_iff(e, q));
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_pull_quant_star(expr * e, quantifier * q) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
return mk_app(m_basic_family_id, PR_PULL_QUANT_STAR, mk_iff(e, q));
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_push_quant(quantifier * q, expr * e) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
|
@ -3087,15 +3081,6 @@ proof * ast_manager::mk_nnf_neg(expr * s, expr * t, unsigned num_proofs, proof *
|
|||
return mk_app(m_basic_family_id, PR_NNF_NEG, args.size(), args.c_ptr());
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_nnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
ptr_buffer<expr> args;
|
||||
args.append(num_proofs, (expr**) proofs);
|
||||
args.push_back(mk_oeq(s, t));
|
||||
return mk_app(m_basic_family_id, PR_NNF_STAR, args.size(), args.c_ptr());
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_skolemization(expr * q, expr * e) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
|
@ -3104,15 +3089,6 @@ proof * ast_manager::mk_skolemization(expr * q, expr * e) {
|
|||
return mk_app(m_basic_family_id, PR_SKOLEMIZE, mk_oeq(q, e));
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_cnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
ptr_buffer<expr> args;
|
||||
args.append(num_proofs, (expr**) proofs);
|
||||
args.push_back(mk_oeq(s, t));
|
||||
return mk_app(m_basic_family_id, PR_CNF_STAR, args.size(), args.c_ptr());
|
||||
}
|
||||
|
||||
proof * ast_manager::mk_and_elim(proof * p, unsigned i) {
|
||||
if (proofs_disabled())
|
||||
return nullptr;
|
||||
|
|
|
@ -1042,11 +1042,11 @@ enum basic_op_kind {
|
|||
|
||||
PR_UNDEF, PR_TRUE, PR_ASSERTED, PR_GOAL, PR_MODUS_PONENS, PR_REFLEXIVITY, PR_SYMMETRY, PR_TRANSITIVITY, PR_TRANSITIVITY_STAR, PR_MONOTONICITY, PR_QUANT_INTRO,
|
||||
PR_DISTRIBUTIVITY, PR_AND_ELIM, PR_NOT_OR_ELIM, PR_REWRITE, PR_REWRITE_STAR, PR_PULL_QUANT,
|
||||
PR_PULL_QUANT_STAR, PR_PUSH_QUANT, PR_ELIM_UNUSED_VARS, PR_DER, PR_QUANT_INST,
|
||||
PR_PUSH_QUANT, PR_ELIM_UNUSED_VARS, PR_DER, PR_QUANT_INST,
|
||||
|
||||
PR_HYPOTHESIS, PR_LEMMA, PR_UNIT_RESOLUTION, PR_IFF_TRUE, PR_IFF_FALSE, PR_COMMUTATIVITY, PR_DEF_AXIOM,
|
||||
|
||||
PR_DEF_INTRO, PR_APPLY_DEF, PR_IFF_OEQ, PR_NNF_POS, PR_NNF_NEG, PR_NNF_STAR, PR_SKOLEMIZE, PR_CNF_STAR,
|
||||
PR_DEF_INTRO, PR_APPLY_DEF, PR_IFF_OEQ, PR_NNF_POS, PR_NNF_NEG, PR_SKOLEMIZE,
|
||||
PR_MODUS_PONENS_OEQ, PR_TH_LEMMA, PR_HYPER_RESOLVE, LAST_BASIC_PR
|
||||
};
|
||||
|
||||
|
@ -1080,7 +1080,6 @@ protected:
|
|||
func_decl * m_not_or_elim_decl;
|
||||
func_decl * m_rewrite_decl;
|
||||
func_decl * m_pull_quant_decl;
|
||||
func_decl * m_pull_quant_star_decl;
|
||||
func_decl * m_push_quant_decl;
|
||||
func_decl * m_elim_unused_vars_decl;
|
||||
func_decl * m_der_decl;
|
||||
|
@ -1106,8 +1105,6 @@ protected:
|
|||
ptr_vector<func_decl> m_apply_def_decls;
|
||||
ptr_vector<func_decl> m_nnf_pos_decls;
|
||||
ptr_vector<func_decl> m_nnf_neg_decls;
|
||||
ptr_vector<func_decl> m_nnf_star_decls;
|
||||
ptr_vector<func_decl> m_cnf_star_decls;
|
||||
|
||||
ptr_vector<func_decl> m_th_lemma_decls;
|
||||
func_decl * m_hyper_res_decl0;
|
||||
|
@ -2182,7 +2179,6 @@ public:
|
|||
proof * mk_oeq_rewrite(expr * s, expr * t);
|
||||
proof * mk_rewrite_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
|
||||
proof * mk_pull_quant(expr * e, quantifier * q);
|
||||
proof * mk_pull_quant_star(expr * e, quantifier * q);
|
||||
proof * mk_push_quant(quantifier * q, expr * e);
|
||||
proof * mk_elim_unused_vars(quantifier * q, expr * r);
|
||||
proof * mk_der(quantifier * q, expr * r);
|
||||
|
@ -2201,9 +2197,8 @@ public:
|
|||
|
||||
proof * mk_nnf_pos(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
|
||||
proof * mk_nnf_neg(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
|
||||
proof * mk_nnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
|
||||
proof * mk_skolemization(expr * q, expr * e);
|
||||
proof * mk_cnf_star(expr * s, expr * t, unsigned num_proofs, proof * const * proofs);
|
||||
|
||||
|
||||
proof * mk_and_elim(proof * p, unsigned i);
|
||||
proof * mk_not_or_elim(proof * p, unsigned i);
|
||||
|
|
|
@ -38,6 +38,7 @@ void ast_pp_util::collect(expr_ref_vector const& es) {
|
|||
void ast_pp_util::display_decls(std::ostream& out) {
|
||||
smt2_pp_environment_dbg env(m);
|
||||
ast_smt_pp pp(m);
|
||||
coll.order_deps();
|
||||
unsigned n = coll.get_num_sorts();
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
pp.display_ast_smt2(out, coll.get_sorts()[i], 0, 0, nullptr);
|
||||
|
@ -45,13 +46,18 @@ void ast_pp_util::display_decls(std::ostream& out) {
|
|||
n = coll.get_num_decls();
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
func_decl* f = coll.get_func_decls()[i];
|
||||
if (f->get_family_id() == null_family_id) {
|
||||
if (f->get_family_id() == null_family_id && !m_removed.contains(f)) {
|
||||
ast_smt2_pp(out, f, env);
|
||||
out << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ast_pp_util::remove_decl(func_decl* f) {
|
||||
m_removed.insert(f);
|
||||
}
|
||||
|
||||
|
||||
void ast_pp_util::display_asserts(std::ostream& out, expr_ref_vector const& fmls, bool neat) {
|
||||
if (neat) {
|
||||
smt2_pp_environment_dbg env(m);
|
||||
|
|
|
@ -20,9 +20,11 @@ Revision History:
|
|||
#define AST_PP_UTIL_H_
|
||||
|
||||
#include "ast/decl_collector.h"
|
||||
#include "util/obj_hashtable.h"
|
||||
|
||||
class ast_pp_util {
|
||||
ast_manager& m;
|
||||
obj_hashtable<func_decl> m_removed;
|
||||
public:
|
||||
|
||||
decl_collector coll;
|
||||
|
@ -35,6 +37,8 @@ class ast_pp_util {
|
|||
|
||||
void collect(expr_ref_vector const& es);
|
||||
|
||||
void remove_decl(func_decl* f);
|
||||
|
||||
void display_decls(std::ostream& out);
|
||||
|
||||
void display_asserts(std::ostream& out, expr_ref_vector const& fmls, bool neat = true);
|
||||
|
|
|
@ -952,6 +952,10 @@ void ast_smt_pp::display_smt2(std::ostream& strm, expr* n) {
|
|||
strm << "; " << m_attributes.c_str();
|
||||
}
|
||||
|
||||
#if 0
|
||||
decls.display_decls(strm);
|
||||
#else
|
||||
decls.order_deps();
|
||||
ast_mark sort_mark;
|
||||
for (unsigned i = 0; i < decls.get_num_sorts(); ++i) {
|
||||
sort* s = decls.get_sorts()[i];
|
||||
|
@ -978,18 +982,19 @@ void ast_smt_pp::display_smt2(std::ostream& strm, expr* n) {
|
|||
strm << "\n";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (unsigned i = 0; i < m_assumptions.size(); ++i) {
|
||||
for (expr* a : m_assumptions) {
|
||||
smt_printer p(strm, m, ql, rn, m_logic, false, true, m_simplify_implies, 1);
|
||||
strm << "(assert\n ";
|
||||
p(m_assumptions[i].get());
|
||||
p(a);
|
||||
strm << ")\n";
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_assumptions_star.size(); ++i) {
|
||||
for (expr* a : m_assumptions_star) {
|
||||
smt_printer p(strm, m, ql, rn, m_logic, false, true, m_simplify_implies, 1);
|
||||
strm << "(assert\n ";
|
||||
p(m_assumptions_star[i].get());
|
||||
p(a);
|
||||
strm << ")\n";
|
||||
}
|
||||
|
||||
|
|
|
@ -791,6 +791,14 @@ namespace datatype {
|
|||
return res;
|
||||
}
|
||||
|
||||
|
||||
func_decl * util::get_constructor_is(func_decl * con) {
|
||||
SASSERT(is_constructor(con));
|
||||
sort * datatype = con->get_range();
|
||||
parameter ps[1] = { parameter(con)};
|
||||
return m.mk_func_decl(m_family_id, OP_DT_IS, 1, ps, 1, &datatype);
|
||||
}
|
||||
|
||||
func_decl * util::get_constructor_recognizer(func_decl * con) {
|
||||
SASSERT(is_constructor(con));
|
||||
func_decl * d = nullptr;
|
||||
|
@ -1040,15 +1048,11 @@ namespace datatype {
|
|||
sort* s = todo.back();
|
||||
todo.pop_back();
|
||||
out << s->get_name() << " =\n";
|
||||
|
||||
ptr_vector<func_decl> const& cnstrs = *get_datatype_constructors(s);
|
||||
for (unsigned i = 0; i < cnstrs.size(); ++i) {
|
||||
func_decl* cns = cnstrs[i];
|
||||
func_decl* rec = get_constructor_recognizer(cns);
|
||||
out << " " << cns->get_name() << " :: " << rec->get_name() << " :: ";
|
||||
for (func_decl * cns : cnstrs) {
|
||||
out << " " << cns->get_name() << " :: ";
|
||||
ptr_vector<func_decl> const & accs = *get_constructor_accessors(cns);
|
||||
for (unsigned j = 0; j < accs.size(); ++j) {
|
||||
func_decl* acc = accs[j];
|
||||
for (func_decl* acc : accs) {
|
||||
sort* s1 = acc->get_range();
|
||||
out << "(" << acc->get_name() << ": " << s1->get_name() << ") ";
|
||||
if (is_datatype(s1) && are_siblings(s1, s0) && !mark.is_marked(s1)) {
|
||||
|
|
|
@ -368,6 +368,7 @@ namespace datatype {
|
|||
sort* get_datatype_parameter_sort(sort * ty, unsigned idx);
|
||||
func_decl * get_non_rec_constructor(sort * ty);
|
||||
func_decl * get_constructor_recognizer(func_decl * constructor);
|
||||
func_decl * get_constructor_is(func_decl * constructor);
|
||||
ptr_vector<func_decl> const * get_constructor_accessors(func_decl * constructor);
|
||||
func_decl * get_accessor_constructor(func_decl * accessor);
|
||||
func_decl * get_recognizer_constructor(func_decl * recognizer) const;
|
||||
|
|
|
@ -18,6 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include "ast/decl_collector.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
||||
void decl_collector::visit_sort(sort * n) {
|
||||
family_id fid = n->get_family_id();
|
||||
|
@ -25,19 +26,21 @@ void decl_collector::visit_sort(sort * n) {
|
|||
m_sorts.push_back(n);
|
||||
if (fid == m_dt_fid) {
|
||||
m_sorts.push_back(n);
|
||||
|
||||
unsigned num_cnstr = m_dt_util.get_datatype_num_constructors(n);
|
||||
for (unsigned i = 0; i < num_cnstr; i++) {
|
||||
func_decl * cnstr = m_dt_util.get_datatype_constructors(n)->get(i);
|
||||
m_decls.push_back(cnstr);
|
||||
m_todo.push_back(cnstr);
|
||||
ptr_vector<func_decl> const & cnstr_acc = *m_dt_util.get_constructor_accessors(cnstr);
|
||||
unsigned num_cas = cnstr_acc.size();
|
||||
for (unsigned j = 0; j < num_cas; j++) {
|
||||
func_decl * accsr = cnstr_acc.get(j);
|
||||
m_decls.push_back(accsr);
|
||||
m_todo.push_back(cnstr_acc.get(j));
|
||||
}
|
||||
}
|
||||
}
|
||||
for (unsigned i = n->get_num_parameters(); i-- > 0; ) {
|
||||
parameter const& p = n->get_parameter(i);
|
||||
if (p.is_ast()) m_todo.push_back(p.get_ast());
|
||||
}
|
||||
}
|
||||
|
||||
bool decl_collector::is_bool(sort * s) {
|
||||
|
@ -63,43 +66,43 @@ decl_collector::decl_collector(ast_manager & m, bool preds):
|
|||
}
|
||||
|
||||
void decl_collector::visit(ast* n) {
|
||||
ptr_vector<ast> todo;
|
||||
todo.push_back(n);
|
||||
while (!todo.empty()) {
|
||||
n = todo.back();
|
||||
todo.pop_back();
|
||||
datatype_util util(m());
|
||||
m_todo.push_back(n);
|
||||
while (!m_todo.empty()) {
|
||||
n = m_todo.back();
|
||||
m_todo.pop_back();
|
||||
if (!m_visited.is_marked(n)) {
|
||||
m_visited.mark(n, true);
|
||||
switch(n->get_kind()) {
|
||||
case AST_APP: {
|
||||
app * a = to_app(n);
|
||||
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
||||
todo.push_back(a->get_arg(i));
|
||||
for (expr* arg : *a) {
|
||||
m_todo.push_back(arg);
|
||||
}
|
||||
todo.push_back(a->get_decl());
|
||||
m_todo.push_back(a->get_decl());
|
||||
break;
|
||||
}
|
||||
case AST_QUANTIFIER: {
|
||||
quantifier * q = to_quantifier(n);
|
||||
unsigned num_decls = q->get_num_decls();
|
||||
for (unsigned i = 0; i < num_decls; ++i) {
|
||||
todo.push_back(q->get_decl_sort(i));
|
||||
m_todo.push_back(q->get_decl_sort(i));
|
||||
}
|
||||
todo.push_back(q->get_expr());
|
||||
m_todo.push_back(q->get_expr());
|
||||
for (unsigned i = 0; i < q->get_num_patterns(); ++i) {
|
||||
todo.push_back(q->get_pattern(i));
|
||||
m_todo.push_back(q->get_pattern(i));
|
||||
}
|
||||
break;
|
||||
}
|
||||
case AST_SORT:
|
||||
case AST_SORT:
|
||||
visit_sort(to_sort(n));
|
||||
break;
|
||||
case AST_FUNC_DECL: {
|
||||
func_decl * d = to_func_decl(n);
|
||||
for (unsigned i = 0; i < d->get_arity(); ++i) {
|
||||
todo.push_back(d->get_domain(i));
|
||||
m_todo.push_back(d->get_domain(i));
|
||||
}
|
||||
todo.push_back(d->get_range());
|
||||
m_todo.push_back(d->get_range());
|
||||
visit_func(d);
|
||||
break;
|
||||
}
|
||||
|
@ -112,5 +115,44 @@ void decl_collector::visit(ast* n) {
|
|||
}
|
||||
}
|
||||
|
||||
void decl_collector::order_deps() {
|
||||
top_sort<sort> st;
|
||||
for (sort * s : m_sorts) st.insert(s, collect_deps(s));
|
||||
st.topological_sort();
|
||||
m_sorts.reset();
|
||||
for (sort* s : st.top_sorted()) m_sorts.push_back(s);
|
||||
}
|
||||
|
||||
decl_collector::sort_set* decl_collector::collect_deps(sort* s) {
|
||||
sort_set* set = alloc(sort_set);
|
||||
collect_deps(s, *set);
|
||||
set->remove(s);
|
||||
return set;
|
||||
}
|
||||
|
||||
void decl_collector::collect_deps(sort* s, sort_set& set) {
|
||||
if (set.contains(s)) return;
|
||||
set.insert(s);
|
||||
if (s->is_sort_of(m_dt_util.get_family_id(), DATATYPE_SORT)) {
|
||||
unsigned num_sorts = m_dt_util.get_datatype_num_parameter_sorts(s);
|
||||
for (unsigned i = 0; i < num_sorts; ++i) {
|
||||
set.insert(m_dt_util.get_datatype_parameter_sort(s, i));
|
||||
}
|
||||
unsigned num_cnstr = m_dt_util.get_datatype_num_constructors(s);
|
||||
for (unsigned i = 0; i < num_cnstr; i++) {
|
||||
func_decl * cnstr = m_dt_util.get_datatype_constructors(s)->get(i);
|
||||
set.insert(cnstr->get_range());
|
||||
for (unsigned j = 0; j < cnstr->get_arity(); ++j)
|
||||
set.insert(cnstr->get_domain(j));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = s->get_num_parameters(); i-- > 0; ) {
|
||||
parameter const& p = s->get_parameter(i);
|
||||
if (p.is_ast() && is_sort(p.get_ast())) {
|
||||
set.insert(to_sort(p.get_ast()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -20,6 +20,7 @@ Revision History:
|
|||
#ifndef SMT_DECL_COLLECTOR_H_
|
||||
#define SMT_DECL_COLLECTOR_H_
|
||||
|
||||
#include "util/top_sort.h"
|
||||
#include "ast/ast.h"
|
||||
#include "ast/datatype_decl_plugin.h"
|
||||
|
||||
|
@ -33,11 +34,17 @@ class decl_collector {
|
|||
family_id m_basic_fid;
|
||||
family_id m_dt_fid;
|
||||
datatype_util m_dt_util;
|
||||
ptr_vector<ast> m_todo;
|
||||
|
||||
void visit_sort(sort* n);
|
||||
bool is_bool(sort* s);
|
||||
void visit_func(func_decl* n);
|
||||
|
||||
typedef obj_hashtable<sort> sort_set;
|
||||
sort_set* collect_deps(sort* s);
|
||||
void collect_deps(top_sort<sort>& st);
|
||||
void collect_deps(sort* s, sort_set& set);
|
||||
|
||||
|
||||
public:
|
||||
// if preds == true, then predicates are stored in a separate collection.
|
||||
|
@ -48,9 +55,12 @@ public:
|
|||
void visit(unsigned n, expr* const* es);
|
||||
void visit(expr_ref_vector const& es);
|
||||
|
||||
void order_deps();
|
||||
|
||||
unsigned get_num_sorts() const { return m_sorts.size(); }
|
||||
unsigned get_num_decls() const { return m_decls.size(); }
|
||||
unsigned get_num_preds() const { return m_preds.size(); }
|
||||
|
||||
sort * const * get_sorts() const { return m_sorts.c_ptr(); }
|
||||
func_decl * const * get_func_decls() const { return m_decls.c_ptr(); }
|
||||
func_decl * const * get_pred_decls() const { return m_preds.c_ptr(); }
|
||||
|
|
|
@ -25,7 +25,7 @@ Notes:
|
|||
#include "ast/fpa/fpa2bv_converter.h"
|
||||
#include "ast/rewriter/fpa_rewriter.h"
|
||||
|
||||
#define BVULT(X,Y,R) { expr_ref bvult_eq(m), bvult_not(m); m_simp.mk_eq(X, Y, bvult_eq); m_simp.mk_not(bvult_eq, bvult_not); expr_ref t(m); t = m_bv_util.mk_ule(X,Y); m_simp.mk_and(t, bvult_not, R); }
|
||||
#define BVULT(X,Y,R) { expr_ref t(m); t = m_bv_util.mk_ule(Y,X); m_simp.mk_not(t, R); }
|
||||
|
||||
fpa2bv_converter::fpa2bv_converter(ast_manager & m) :
|
||||
m(m),
|
||||
|
@ -4085,7 +4085,7 @@ void fpa2bv_converter::round(sort * s, expr_ref & rm, expr_ref & sgn, expr_ref &
|
|||
TRACE("fpa2bv_round", tout << "ROUND = " << mk_ismt2_pp(result, m) << std::endl; );
|
||||
}
|
||||
|
||||
void fpa2bv_converter::reset(void) {
|
||||
void fpa2bv_converter::reset() {
|
||||
dec_ref_map_key_values(m, m_const2bv);
|
||||
dec_ref_map_key_values(m, m_rm_const2bv);
|
||||
dec_ref_map_key_values(m, m_uf2bvuf);
|
||||
|
|
|
@ -150,7 +150,7 @@ public:
|
|||
void mk_max(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
|
||||
expr_ref mk_min_max_unspecified(func_decl * f, expr * x, expr * y);
|
||||
|
||||
void reset(void);
|
||||
void reset();
|
||||
|
||||
void dbg_decouple(const char * prefix, expr_ref & e);
|
||||
expr_ref_vector m_extra_assertions;
|
||||
|
|
|
@ -160,7 +160,7 @@ bool fpa_decl_plugin::is_rm_numeral(expr * n, mpf_rounding_mode & val) {
|
|||
return true;
|
||||
}
|
||||
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool fpa_decl_plugin::is_rm_numeral(expr * n) {
|
||||
|
|
|
@ -91,7 +91,7 @@ public:
|
|||
void operator()(var * n) { m_bitset.set(n->get_idx(), true); }
|
||||
void operator()(quantifier * n) {}
|
||||
void operator()(app * n) {}
|
||||
bool all_used(void) {
|
||||
bool all_used() {
|
||||
for (unsigned i = 0; i < m_bitset.size() ; i++)
|
||||
if (!m_bitset.get(i))
|
||||
return false;
|
||||
|
|
|
@ -440,16 +440,6 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
|
|||
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence with a quantifier:\n" << mk_bounded_pp(p, m););
|
||||
return false;
|
||||
}
|
||||
case PR_PULL_QUANT_STAR: {
|
||||
if (match_proof(p) &&
|
||||
match_fact(p, fact) &&
|
||||
match_iff(fact.get(), t1, t2)) {
|
||||
// TBD: check the enchilada.
|
||||
return true;
|
||||
}
|
||||
IF_VERBOSE(0, verbose_stream() << "Expected proof of equivalence:\n" << mk_bounded_pp(p, m););
|
||||
return false;
|
||||
}
|
||||
case PR_PUSH_QUANT: {
|
||||
if (match_proof(p) &&
|
||||
match_fact(p, fact) &&
|
||||
|
@ -730,10 +720,6 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
|
|||
// TBD:
|
||||
return true;
|
||||
}
|
||||
case PR_NNF_STAR: {
|
||||
// TBD:
|
||||
return true;
|
||||
}
|
||||
case PR_SKOLEMIZE: {
|
||||
// (exists ?x (p ?x y)) -> (p (sk y) y)
|
||||
// (not (forall ?x (p ?x y))) -> (not (p (sk y) y))
|
||||
|
@ -755,19 +741,6 @@ bool proof_checker::check1_basic(proof* p, expr_ref_vector& side_conditions) {
|
|||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
case PR_CNF_STAR: {
|
||||
for (unsigned i = 0; i < proofs.size(); ++i) {
|
||||
if (match_op(proofs[i].get(), PR_DEF_INTRO, terms)) {
|
||||
// ok
|
||||
}
|
||||
else {
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// coarse grain CNF conversion.
|
||||
return true;
|
||||
}
|
||||
case PR_MODUS_PONENS_OEQ: {
|
||||
if (match_fact(p, fact) &&
|
||||
match_proof(p, p0, p1) &&
|
||||
|
@ -922,7 +895,7 @@ void proof_checker::set_false(expr_ref& e, unsigned position, expr_ref& lit) {
|
|||
}
|
||||
}
|
||||
|
||||
bool proof_checker::match_fact(proof* p, expr_ref& fact) {
|
||||
bool proof_checker::match_fact(proof const* p, expr_ref& fact) const {
|
||||
if (m.is_proof(p) &&
|
||||
m.has_fact(p)) {
|
||||
fact = m.get_fact(p);
|
||||
|
@ -938,13 +911,13 @@ void proof_checker::add_premise(proof* p) {
|
|||
}
|
||||
}
|
||||
|
||||
bool proof_checker::match_proof(proof* p) {
|
||||
bool proof_checker::match_proof(proof const* p) const {
|
||||
return
|
||||
m.is_proof(p) &&
|
||||
m.get_num_parents(p) == 0;
|
||||
}
|
||||
|
||||
bool proof_checker::match_proof(proof* p, proof_ref& p0) {
|
||||
bool proof_checker::match_proof(proof const* p, proof_ref& p0) const {
|
||||
if (m.is_proof(p) &&
|
||||
m.get_num_parents(p) == 1) {
|
||||
p0 = m.get_parent(p, 0);
|
||||
|
@ -953,7 +926,7 @@ bool proof_checker::match_proof(proof* p, proof_ref& p0) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_proof(proof* p, proof_ref& p0, proof_ref& p1) {
|
||||
bool proof_checker::match_proof(proof const* p, proof_ref& p0, proof_ref& p1) const {
|
||||
if (m.is_proof(p) &&
|
||||
m.get_num_parents(p) == 2) {
|
||||
p0 = m.get_parent(p, 0);
|
||||
|
@ -963,7 +936,7 @@ bool proof_checker::match_proof(proof* p, proof_ref& p0, proof_ref& p1) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_proof(proof* p, proof_ref_vector& parents) {
|
||||
bool proof_checker::match_proof(proof const* p, proof_ref_vector& parents) const {
|
||||
if (m.is_proof(p)) {
|
||||
for (unsigned i = 0; i < m.get_num_parents(p); ++i) {
|
||||
parents.push_back(m.get_parent(p, i));
|
||||
|
@ -974,7 +947,7 @@ bool proof_checker::match_proof(proof* p, proof_ref_vector& parents) {
|
|||
}
|
||||
|
||||
|
||||
bool proof_checker::match_binary(expr* e, func_decl_ref& d, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_binary(expr const* e, func_decl_ref& d, expr_ref& t1, expr_ref& t2) const {
|
||||
if (e->get_kind() == AST_APP &&
|
||||
to_app(e)->get_num_args() == 2) {
|
||||
d = to_app(e)->get_decl();
|
||||
|
@ -986,7 +959,7 @@ bool proof_checker::match_binary(expr* e, func_decl_ref& d, expr_ref& t1, expr_r
|
|||
}
|
||||
|
||||
|
||||
bool proof_checker::match_app(expr* e, func_decl_ref& d, expr_ref_vector& terms) {
|
||||
bool proof_checker::match_app(expr const* e, func_decl_ref& d, expr_ref_vector& terms) const {
|
||||
if (e->get_kind() == AST_APP) {
|
||||
d = to_app(e)->get_decl();
|
||||
for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) {
|
||||
|
@ -997,9 +970,9 @@ bool proof_checker::match_app(expr* e, func_decl_ref& d, expr_ref_vector& terms)
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_quantifier(expr* e, bool& is_univ, sort_ref_vector& sorts, expr_ref& body) {
|
||||
bool proof_checker::match_quantifier(expr const* e, bool& is_univ, sort_ref_vector& sorts, expr_ref& body) const {
|
||||
if (is_quantifier(e)) {
|
||||
quantifier* q = to_quantifier(e);
|
||||
quantifier const* q = to_quantifier(e);
|
||||
is_univ = q->is_forall();
|
||||
body = q->get_expr();
|
||||
for (unsigned i = 0; i < q->get_num_decls(); ++i) {
|
||||
|
@ -1010,7 +983,7 @@ bool proof_checker::match_quantifier(expr* e, bool& is_univ, sort_ref_vector& so
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_op(expr const* e, decl_kind k, expr_ref& t1, expr_ref& t2) const {
|
||||
if (e->get_kind() == AST_APP &&
|
||||
to_app(e)->get_family_id() == m.get_basic_family_id() &&
|
||||
to_app(e)->get_decl_kind() == k &&
|
||||
|
@ -1022,7 +995,7 @@ bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref_vector& terms) {
|
||||
bool proof_checker::match_op(expr const* e, decl_kind k, expr_ref_vector& terms) const {
|
||||
if (e->get_kind() == AST_APP &&
|
||||
to_app(e)->get_family_id() == m.get_basic_family_id() &&
|
||||
to_app(e)->get_decl_kind() == k) {
|
||||
|
@ -1035,7 +1008,7 @@ bool proof_checker::match_op(expr* e, decl_kind k, expr_ref_vector& terms) {
|
|||
}
|
||||
|
||||
|
||||
bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t) {
|
||||
bool proof_checker::match_op(expr const* e, decl_kind k, expr_ref& t) const {
|
||||
if (e->get_kind() == AST_APP &&
|
||||
to_app(e)->get_family_id() == m.get_basic_family_id() &&
|
||||
to_app(e)->get_decl_kind() == k &&
|
||||
|
@ -1046,39 +1019,39 @@ bool proof_checker::match_op(expr* e, decl_kind k, expr_ref& t) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool proof_checker::match_not(expr* e, expr_ref& t) {
|
||||
bool proof_checker::match_not(expr const* e, expr_ref& t) const {
|
||||
return match_op(e, OP_NOT, t);
|
||||
}
|
||||
|
||||
bool proof_checker::match_or(expr* e, expr_ref_vector& terms) {
|
||||
bool proof_checker::match_or(expr const* e, expr_ref_vector& terms) const {
|
||||
return match_op(e, OP_OR, terms);
|
||||
}
|
||||
|
||||
bool proof_checker::match_and(expr* e, expr_ref_vector& terms) {
|
||||
bool proof_checker::match_and(expr const* e, expr_ref_vector& terms) const {
|
||||
return match_op(e, OP_AND, terms);
|
||||
}
|
||||
|
||||
bool proof_checker::match_iff(expr* e, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_iff(expr const* e, expr_ref& t1, expr_ref& t2) const {
|
||||
return match_op(e, OP_IFF, t1, t2);
|
||||
}
|
||||
|
||||
bool proof_checker::match_equiv(expr* e, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_equiv(expr const* e, expr_ref& t1, expr_ref& t2) const {
|
||||
return match_oeq(e, t1, t2) || match_eq(e, t1, t2);
|
||||
}
|
||||
|
||||
bool proof_checker::match_implies(expr* e, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_implies(expr const* e, expr_ref& t1, expr_ref& t2) const {
|
||||
return match_op(e, OP_IMPLIES, t1, t2);
|
||||
}
|
||||
|
||||
bool proof_checker::match_eq(expr* e, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_eq(expr const* e, expr_ref& t1, expr_ref& t2) const {
|
||||
return match_op(e, OP_EQ, t1, t2) || match_iff(e, t1, t2);
|
||||
}
|
||||
|
||||
bool proof_checker::match_oeq(expr* e, expr_ref& t1, expr_ref& t2) {
|
||||
bool proof_checker::match_oeq(expr const* e, expr_ref& t1, expr_ref& t2) const {
|
||||
return match_op(e, OP_OEQ, t1, t2);
|
||||
}
|
||||
|
||||
bool proof_checker::match_negated(expr* a, expr* b) {
|
||||
bool proof_checker::match_negated(expr const* a, expr* b) const {
|
||||
expr_ref t(m);
|
||||
return
|
||||
(match_not(a, t) && t.get() == b) ||
|
||||
|
@ -1186,14 +1159,14 @@ void proof_checker::get_hypotheses(proof* p, expr_ref_vector& ante) {
|
|||
|
||||
}
|
||||
|
||||
bool proof_checker::match_nil(expr* e) const {
|
||||
bool proof_checker::match_nil(expr const* e) const {
|
||||
return
|
||||
is_app(e) &&
|
||||
to_app(e)->get_family_id() == m_hyp_fid &&
|
||||
to_app(e)->get_decl_kind() == OP_NIL;
|
||||
}
|
||||
|
||||
bool proof_checker::match_cons(expr* e, expr_ref& a, expr_ref& b) const {
|
||||
bool proof_checker::match_cons(expr const* e, expr_ref& a, expr_ref& b) const {
|
||||
if (is_app(e) &&
|
||||
to_app(e)->get_family_id() == m_hyp_fid &&
|
||||
to_app(e)->get_decl_kind() == OP_CONS) {
|
||||
|
@ -1205,7 +1178,7 @@ bool proof_checker::match_cons(expr* e, expr_ref& a, expr_ref& b) const {
|
|||
}
|
||||
|
||||
|
||||
bool proof_checker::match_atom(expr* e, expr_ref& a) const {
|
||||
bool proof_checker::match_atom(expr const* e, expr_ref& a) const {
|
||||
if (is_app(e) &&
|
||||
to_app(e)->get_family_id() == m_hyp_fid &&
|
||||
to_app(e)->get_decl_kind() == OP_ATOM) {
|
||||
|
@ -1227,7 +1200,7 @@ expr* proof_checker::mk_nil() {
|
|||
return m_nil.get();
|
||||
}
|
||||
|
||||
bool proof_checker::is_hypothesis(proof* p) const {
|
||||
bool proof_checker::is_hypothesis(proof const* p) const {
|
||||
return
|
||||
m.is_proof(p) &&
|
||||
p->get_decl_kind() == PR_HYPOTHESIS;
|
||||
|
@ -1253,7 +1226,7 @@ expr* proof_checker::mk_hyp(unsigned num_hyps, expr * const * hyps) {
|
|||
}
|
||||
}
|
||||
|
||||
void proof_checker::dump_proof(proof * pr) {
|
||||
void proof_checker::dump_proof(proof const* pr) {
|
||||
if (!m_dump_lemmas)
|
||||
return;
|
||||
SASSERT(m.has_fact(pr));
|
||||
|
|
|
@ -77,39 +77,39 @@ private:
|
|||
bool check1_spc(proof* p, expr_ref_vector& side_conditions);
|
||||
bool check_arith_proof(proof* p);
|
||||
bool check_arith_literal(bool is_pos, app* lit, rational const& coeff, expr_ref& sum, bool& is_strict);
|
||||
bool match_fact(proof* p, expr_ref& fact);
|
||||
bool match_fact(proof const* p, expr_ref& fact) const;
|
||||
void add_premise(proof* p);
|
||||
bool match_proof(proof* p);
|
||||
bool match_proof(proof* p, proof_ref& p0);
|
||||
bool match_proof(proof* p, proof_ref& p0, proof_ref& p1);
|
||||
bool match_proof(proof* p, proof_ref_vector& parents);
|
||||
bool match_binary(expr* e, func_decl_ref& d, expr_ref& t1, expr_ref& t2);
|
||||
bool match_op(expr* e, decl_kind k, expr_ref& t1, expr_ref& t2);
|
||||
bool match_op(expr* e, decl_kind k, expr_ref& t);
|
||||
bool match_op(expr* e, decl_kind k, expr_ref_vector& terms);
|
||||
bool match_iff(expr* e, expr_ref& t1, expr_ref& t2);
|
||||
bool match_implies(expr* e, expr_ref& t1, expr_ref& t2);
|
||||
bool match_eq(expr* e, expr_ref& t1, expr_ref& t2);
|
||||
bool match_oeq(expr* e, expr_ref& t1, expr_ref& t2);
|
||||
bool match_not(expr* e, expr_ref& t);
|
||||
bool match_or(expr* e, expr_ref_vector& terms);
|
||||
bool match_and(expr* e, expr_ref_vector& terms);
|
||||
bool match_app(expr* e, func_decl_ref& d, expr_ref_vector& terms);
|
||||
bool match_quantifier(expr*, bool& is_univ, sort_ref_vector&, expr_ref& body);
|
||||
bool match_negated(expr* a, expr* b);
|
||||
bool match_equiv(expr* a, expr_ref& t1, expr_ref& t2);
|
||||
bool match_proof(proof const* p) const;
|
||||
bool match_proof(proof const* p, proof_ref& p0) const;
|
||||
bool match_proof(proof const* p, proof_ref& p0, proof_ref& p1) const;
|
||||
bool match_proof(proof const* p, proof_ref_vector& parents) const;
|
||||
bool match_binary(expr const* e, func_decl_ref& d, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_op(expr const* e, decl_kind k, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_op(expr const* e, decl_kind k, expr_ref& t) const;
|
||||
bool match_op(expr const* e, decl_kind k, expr_ref_vector& terms) const;
|
||||
bool match_iff(expr const* e, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_implies(expr const* e, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_eq(expr const* e, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_oeq(expr const* e, expr_ref& t1, expr_ref& t2) const;
|
||||
bool match_not(expr const* e, expr_ref& t) const;
|
||||
bool match_or(expr const* e, expr_ref_vector& terms) const;
|
||||
bool match_and(expr const* e, expr_ref_vector& terms) const;
|
||||
bool match_app(expr const* e, func_decl_ref& d, expr_ref_vector& terms) const;
|
||||
bool match_quantifier(expr const*, bool& is_univ, sort_ref_vector&, expr_ref& body) const;
|
||||
bool match_negated(expr const* a, expr* b) const;
|
||||
bool match_equiv(expr const* a, expr_ref& t1, expr_ref& t2) const;
|
||||
void get_ors(expr* e, expr_ref_vector& ors);
|
||||
void get_hypotheses(proof* p, expr_ref_vector& ante);
|
||||
|
||||
bool match_nil(expr* e) const;
|
||||
bool match_cons(expr* e, expr_ref& a, expr_ref& b) const;
|
||||
bool match_atom(expr* e, expr_ref& a) const;
|
||||
bool match_nil(expr const* e) const;
|
||||
bool match_cons(expr const* e, expr_ref& a, expr_ref& b) const;
|
||||
bool match_atom(expr const* e, expr_ref& a) const;
|
||||
expr* mk_nil();
|
||||
expr* mk_cons(expr* a, expr* b);
|
||||
expr* mk_atom(expr* e);
|
||||
bool is_hypothesis(proof* p) const;
|
||||
bool is_hypothesis(proof const* p) const;
|
||||
expr* mk_hyp(unsigned num_hyps, expr * const * hyps);
|
||||
void dump_proof(proof * pr);
|
||||
void dump_proof(proof const* pr);
|
||||
void dump_proof(unsigned num_antecedents, expr * const * antecedents, expr * consequent);
|
||||
|
||||
void set_false(expr_ref& e, unsigned idx, expr_ref& lit);
|
||||
|
|
|
@ -25,7 +25,6 @@ z3_add_component(rewriter
|
|||
pb_rewriter.cpp
|
||||
pb2bv_rewriter.cpp
|
||||
push_app_ite.cpp
|
||||
pull_ite_tree.cpp
|
||||
quant_hoist.cpp
|
||||
rewriter.cpp
|
||||
seq_rewriter.cpp
|
||||
|
|
|
@ -1,221 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2006 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pull_ite_tree.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2008-06-22.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#include "ast/rewriter/pull_ite_tree.h"
|
||||
#include "ast/recurse_expr_def.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
||||
pull_ite_tree::pull_ite_tree(ast_manager & m):
|
||||
m_manager(m),
|
||||
m_rewriter(m),
|
||||
m_cache(m) {
|
||||
}
|
||||
|
||||
void pull_ite_tree::cache_result(expr * n, expr * r, proof * pr) {
|
||||
m_cache.insert(n, r, pr);
|
||||
}
|
||||
|
||||
void pull_ite_tree::visit(expr * n, bool & visited) {
|
||||
if (!is_cached(n)) {
|
||||
m_todo.push_back(n);
|
||||
visited = false;
|
||||
}
|
||||
}
|
||||
|
||||
bool pull_ite_tree::visit_children(expr * n) {
|
||||
if (m_manager.is_ite(n)) {
|
||||
bool visited = true;
|
||||
visit(to_app(n)->get_arg(1), visited);
|
||||
visit(to_app(n)->get_arg(2), visited);
|
||||
return visited;
|
||||
}
|
||||
else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void pull_ite_tree::reduce(expr * n) {
|
||||
// Remark: invoking the simplifier to build the new expression saves a lot of memory.
|
||||
if (m_manager.is_ite(n)) {
|
||||
expr * c = to_app(n)->get_arg(0);
|
||||
expr * t_old = to_app(n)->get_arg(1);
|
||||
expr * e_old = to_app(n)->get_arg(2);
|
||||
expr * t = nullptr;
|
||||
proof * t_pr = nullptr;
|
||||
expr * e = nullptr;
|
||||
proof * e_pr = nullptr;
|
||||
get_cached(t_old, t, t_pr);
|
||||
get_cached(e_old, e, e_pr);
|
||||
expr_ref r(m_manager);
|
||||
expr * args[3] = {c, t, e};
|
||||
r = m_rewriter.mk_app(to_app(n)->get_decl(), 3, args);
|
||||
if (!m_manager.proofs_enabled()) {
|
||||
// expr * r = m_manager.mk_ite(c, t, e);
|
||||
cache_result(n, r, nullptr);
|
||||
}
|
||||
else {
|
||||
// t_pr is a proof for (m_p ... t_old ...) == t
|
||||
// e_pr is a proof for (m_p ... e_old ...) == e
|
||||
expr_ref old(m_manager);
|
||||
expr_ref p_t_old(m_manager);
|
||||
expr_ref p_e_old(m_manager);
|
||||
old = mk_p_arg(n); // (m_p ... n ...) where n is (ite c t_old e_old)
|
||||
p_t_old = mk_p_arg(t_old); // (m_p ... t_old ...)
|
||||
p_e_old = mk_p_arg(e_old); // (m_p ... e_old ...)
|
||||
expr_ref tmp1(m_manager);
|
||||
tmp1 = m_manager.mk_ite(c, p_t_old, p_e_old); // (ite c (m_p ... t_old ...) (m_p ... e_old ...))
|
||||
proof * pr1 = m_manager.mk_rewrite(old, tmp1); // proof for (m_p ... (ite c t_old e_old) ...) = (ite c (m_p ... t_old ...) (m_p ... e_old ...))
|
||||
expr_ref tmp2(m_manager);
|
||||
tmp2 = m_manager.mk_ite(c, t, e); // (ite c t e)
|
||||
proof * pr2 = nullptr; // it will contain a proof for (ite c (m_p ... t_old ...) (m_p ... e_old ...)) = (ite c t e)
|
||||
proof * pr3 = nullptr; // it will contain a proof for (m_p ... (ite c t_old e_old) ...) = (ite c t e)
|
||||
proof * proofs[2];
|
||||
unsigned num_proofs = 0;
|
||||
if (t_pr != nullptr) {
|
||||
proofs[num_proofs] = t_pr;
|
||||
num_proofs++;
|
||||
}
|
||||
if (e_pr != nullptr) {
|
||||
proofs[num_proofs] = e_pr;
|
||||
num_proofs++;
|
||||
}
|
||||
if (num_proofs > 0) {
|
||||
pr2 = m_manager.mk_congruence(to_app(tmp1), to_app(tmp2), num_proofs, proofs);
|
||||
pr3 = m_manager.mk_transitivity(pr1, pr2);
|
||||
}
|
||||
else {
|
||||
pr3 = pr1;
|
||||
}
|
||||
proof * pr4 = nullptr; // it will contain a proof for (ite c t e) = r
|
||||
proof * pr5 = nullptr; // it will contain a proof for (m_p ... (ite c t_old e_old) ...) = r
|
||||
if (tmp2 != r) {
|
||||
pr4 = m_manager.mk_rewrite(tmp2, r);
|
||||
pr5 = m_manager.mk_transitivity(pr3, pr4);
|
||||
}
|
||||
else {
|
||||
pr5 = pr3;
|
||||
}
|
||||
cache_result(n, r, pr5);
|
||||
}
|
||||
}
|
||||
else {
|
||||
expr_ref r(m_manager);
|
||||
m_args[m_arg_idx] = n;
|
||||
r = m_rewriter.mk_app(m_p, m_args.size(), m_args.c_ptr());
|
||||
if (!m_manager.proofs_enabled()) {
|
||||
// expr * r = m_manager.mk_app(m_p, m_args.size(), m_args.c_ptr());
|
||||
cache_result(n, r, nullptr);
|
||||
}
|
||||
else {
|
||||
expr_ref old(m_manager);
|
||||
proof * p;
|
||||
old = mk_p_arg(n);
|
||||
if (old == r)
|
||||
p = nullptr;
|
||||
else
|
||||
p = m_manager.mk_rewrite(old, r);
|
||||
cache_result(n, r, p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pull_ite_tree::operator()(app * n, app_ref & r, proof_ref & pr) {
|
||||
unsigned num_args = n->get_num_args();
|
||||
m_args.resize(num_args);
|
||||
m_p = n->get_decl();
|
||||
expr * ite = nullptr;
|
||||
for (unsigned i = 0; i < num_args; i++) {
|
||||
expr * arg = n->get_arg(i);
|
||||
if (ite) {
|
||||
m_args[i] = arg;
|
||||
}
|
||||
else if (m_manager.is_ite(arg)) {
|
||||
m_arg_idx = i;
|
||||
m_args[i] = 0;
|
||||
ite = arg;
|
||||
}
|
||||
else {
|
||||
m_args[i] = arg;
|
||||
}
|
||||
}
|
||||
if (!ite) {
|
||||
r = n;
|
||||
pr = nullptr;
|
||||
return;
|
||||
}
|
||||
m_todo.push_back(ite);
|
||||
while (!m_todo.empty()) {
|
||||
expr * n = m_todo.back();
|
||||
if (is_cached(n))
|
||||
m_todo.pop_back();
|
||||
else if (visit_children(n)) {
|
||||
m_todo.pop_back();
|
||||
reduce(n);
|
||||
}
|
||||
}
|
||||
SASSERT(is_cached(ite));
|
||||
expr * _r = nullptr;
|
||||
proof * _pr = nullptr;
|
||||
get_cached(ite, _r, _pr);
|
||||
r = to_app(_r);
|
||||
pr = _pr;
|
||||
m_cache.reset();
|
||||
m_todo.reset();
|
||||
}
|
||||
|
||||
|
||||
|
||||
pull_ite_tree_cfg::pull_ite_tree_cfg(ast_manager & m):
|
||||
m(m),
|
||||
m_trail(m),
|
||||
m_proc(m) {
|
||||
}
|
||||
|
||||
bool pull_ite_tree_cfg::get_subst(expr * n, expr* & r, proof* & p) {
|
||||
if (is_app(n) && is_target(to_app(n))) {
|
||||
app_ref tmp(m);
|
||||
proof_ref pr(m);
|
||||
m_proc(to_app(n), tmp, pr);
|
||||
if (tmp != n) {
|
||||
r = tmp;
|
||||
p = pr;
|
||||
m_trail.push_back(r);
|
||||
m_trail.push_back(p);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool pull_cheap_ite_tree_cfg::is_target(app * n) const {
|
||||
bool r =
|
||||
n->get_num_args() == 2 &&
|
||||
n->get_family_id() != null_family_id &&
|
||||
m.is_bool(n) &&
|
||||
(m.is_value(n->get_arg(0)) || m.is_value(n->get_arg(1))) &&
|
||||
(m.is_term_ite(n->get_arg(0)) || m.is_term_ite(n->get_arg(1)));
|
||||
TRACE("pull_ite_target", tout << mk_pp(n, m) << "\nresult: " << r << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,113 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2006 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pull_ite_tree.h
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2008-06-22.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef PULL_ITE_TREE_H_
|
||||
#define PULL_ITE_TREE_H_
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/rewriter/rewriter.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/expr_map.h"
|
||||
#include "ast/recurse_expr.h"
|
||||
#include "util/obj_hashtable.h"
|
||||
|
||||
/**
|
||||
\brief Functor for applying the following transformation
|
||||
F[(p (ite c t1 t2) args)] = F'[(ite c t1 t2), p, args]
|
||||
|
||||
F'[(ite c t1 t2), p, args] = (ite c F'[t1, p, args] F'[t2, p, args])
|
||||
F'[t, p, args] = (p t args)
|
||||
*/
|
||||
class pull_ite_tree {
|
||||
ast_manager & m_manager;
|
||||
th_rewriter m_rewriter;
|
||||
func_decl * m_p;
|
||||
ptr_vector<expr> m_args;
|
||||
unsigned m_arg_idx; //!< position of the ite argument
|
||||
expr_map m_cache;
|
||||
ptr_vector<expr> m_todo;
|
||||
|
||||
bool is_cached(expr * n) const { return m_cache.contains(n); }
|
||||
void get_cached(expr * n, expr * & r, proof * & p) const { m_cache.get(n, r, p); }
|
||||
void cache_result(expr * n, expr * r, proof * pr);
|
||||
void visit(expr * n, bool & visited);
|
||||
bool visit_children(expr * n);
|
||||
void reduce(expr * n);
|
||||
/**
|
||||
\brief Creante an application (m_p ... n ...) where n is the argument m_arg_idx and the other arguments
|
||||
are in m_args.
|
||||
*/
|
||||
expr * mk_p_arg(expr * n) {
|
||||
m_args[m_arg_idx] = n;
|
||||
return m_manager.mk_app(m_p, m_args.size(), m_args.c_ptr());
|
||||
}
|
||||
public:
|
||||
pull_ite_tree(ast_manager & m);
|
||||
/**
|
||||
\brief Apply the transformation above if n contains an ite-expression.
|
||||
Store the result in r. If n does not contain an ite-expression, then
|
||||
store n in r.
|
||||
|
||||
When proof generation is enabled, pr is a proof for n = r.
|
||||
*/
|
||||
void operator()(app * n, app_ref & r, proof_ref & pr);
|
||||
};
|
||||
|
||||
/**
|
||||
\brief Functor for applying the pull_ite_tree on subexpressions n that
|
||||
satisfy the is_target virtual predicate.
|
||||
*/
|
||||
class pull_ite_tree_cfg : public default_rewriter_cfg {
|
||||
protected:
|
||||
ast_manager& m;
|
||||
expr_ref_vector m_trail;
|
||||
pull_ite_tree m_proc;
|
||||
public:
|
||||
pull_ite_tree_cfg(ast_manager & m);
|
||||
virtual ~pull_ite_tree_cfg() {}
|
||||
virtual bool is_target(app * n) const = 0;
|
||||
bool get_subst(expr * n, expr* & r, proof* & p);
|
||||
};
|
||||
|
||||
/**
|
||||
\brief Apply pull_ite_tree on predicates of the form
|
||||
(p ite v) and (p v ite)
|
||||
|
||||
where:
|
||||
- p is an interpreted predicate
|
||||
- ite is an ite-term expression
|
||||
- v is a value
|
||||
*/
|
||||
class pull_cheap_ite_tree_cfg : public pull_ite_tree_cfg {
|
||||
public:
|
||||
pull_cheap_ite_tree_cfg(ast_manager & m):pull_ite_tree_cfg(m) {}
|
||||
~pull_cheap_ite_tree_cfg() override {}
|
||||
bool is_target(app * n) const override;
|
||||
};
|
||||
|
||||
class pull_cheap_ite_tree_rw : public rewriter_tpl<pull_cheap_ite_tree_cfg> {
|
||||
pull_cheap_ite_tree_cfg m_cfg;
|
||||
public:
|
||||
pull_cheap_ite_tree_rw(ast_manager& m):
|
||||
rewriter_tpl<pull_cheap_ite_tree_cfg>(m, m.proofs_enabled(), m_cfg),
|
||||
m_cfg(m)
|
||||
{}
|
||||
};
|
||||
|
||||
#endif /* PULL_ITE_TREE_H_ */
|
||||
|
|
@ -358,7 +358,7 @@ void rewriter_tpl<Config>::process_app(app * t, frame & fr) {
|
|||
if (ProofGen) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
// We do not support the use of bindings in proof generation mode.
|
||||
// Thus we have to apply the subsitution here, and
|
||||
// Thus we have to apply the substitution here, and
|
||||
// beta_reducer subst(m());
|
||||
// subst.set_bindings(new_num_args, new_args);
|
||||
// expr_ref r2(m());
|
||||
|
|
|
@ -1478,9 +1478,7 @@ br_status seq_rewriter::mk_re_star(expr* a, expr_ref& result) {
|
|||
return BR_DONE;
|
||||
}
|
||||
if (m_util.re.is_full_char(a)) {
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(m_util.is_re(a, seq_sort));
|
||||
result = m_util.re.mk_full_seq(seq_sort);
|
||||
result = m_util.re.mk_full_seq(m().get_sort(a));
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.re.is_empty(a)) {
|
||||
|
|
|
@ -671,9 +671,7 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
|
|||
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
|
||||
|
||||
case _OP_REGEXP_FULL_CHAR:
|
||||
if (!range) {
|
||||
range = m_re;
|
||||
}
|
||||
if (!range) range = m_re;
|
||||
match(*m_sigs[k], arity, domain, range, rng);
|
||||
return m.mk_func_decl(symbol("re.allchar"), arity, domain, rng, func_decl_info(m_family_id, OP_RE_FULL_CHAR_SET));
|
||||
|
||||
|
@ -690,9 +688,7 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
|
|||
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, range, func_decl_info(m_family_id, k));
|
||||
|
||||
case _OP_REGEXP_EMPTY:
|
||||
if (!range) {
|
||||
range = m_re;
|
||||
}
|
||||
if (!range) range = m_re;
|
||||
match(*m_sigs[k], arity, domain, range, rng);
|
||||
return m.mk_func_decl(symbol("re.nostr"), arity, domain, rng, func_decl_info(m_family_id, OP_RE_EMPTY_SET));
|
||||
|
||||
|
|
|
@ -320,7 +320,7 @@ bool cmd_context::macros_find(symbol const& s, unsigned n, expr*const* args, exp
|
|||
if (d.m_domain.size() != n) continue;
|
||||
bool eq = true;
|
||||
for (unsigned i = 0; eq && i < n; ++i) {
|
||||
eq = d.m_domain[i] == m().get_sort(args[i]);
|
||||
eq = m().compatible_sorts(d.m_domain[i], m().get_sort(args[i]));
|
||||
}
|
||||
if (eq) {
|
||||
t = d.m_body;
|
||||
|
@ -719,6 +719,7 @@ void cmd_context::init_manager_core(bool new_manager) {
|
|||
m_dt_eh = alloc(dt_eh, *this);
|
||||
m_pmanager->set_new_datatype_eh(m_dt_eh.get());
|
||||
if (!has_logic()) {
|
||||
TRACE("cmd_context", tout << "init manager\n";);
|
||||
// add list type only if the logic is not specified.
|
||||
// it prevents clashes with builtin types.
|
||||
insert(pm().mk_plist_decl());
|
||||
|
@ -1408,7 +1409,8 @@ void cmd_context::restore_assertions(unsigned old_sz) {
|
|||
SASSERT(m_assertions.empty());
|
||||
return;
|
||||
}
|
||||
SASSERT(old_sz <= m_assertions.size());
|
||||
if (old_sz == m_assertions.size()) return;
|
||||
SASSERT(old_sz < m_assertions.size());
|
||||
SASSERT(!m_interactive_mode || m_assertions.size() == m_assertion_strings.size());
|
||||
restore(m(), m_assertions, old_sz);
|
||||
if (produce_unsat_cores())
|
||||
|
@ -2015,7 +2017,7 @@ void cmd_context::dt_eh::operator()(sort * dt, pdecl* pd) {
|
|||
m_owner.insert(c);
|
||||
func_decl * r = m_dt_util.get_constructor_recognizer(c);
|
||||
m_owner.insert(r);
|
||||
TRACE("new_dt_eh", tout << "new recognizer: " << r->get_name() << "\n";);
|
||||
// TRACE("new_dt_eh", tout << "new recognizer: " << r->get_name() << "\n";);
|
||||
for (func_decl * a : *m_dt_util.get_constructor_accessors(c)) {
|
||||
TRACE("new_dt_eh", tout << "new accessor: " << a->get_name() << "\n";);
|
||||
m_owner.insert(a);
|
||||
|
|
|
@ -852,7 +852,7 @@ pdecl_manager::pdecl_manager(ast_manager & m):
|
|||
pdecl_manager::~pdecl_manager() {
|
||||
dec_ref(m_list);
|
||||
reset_sort_info();
|
||||
SASSERT(m_sort2psort.empty());
|
||||
SASSERT(m_sort2psort.empty());
|
||||
SASSERT(m_table.empty());
|
||||
}
|
||||
|
||||
|
@ -946,6 +946,7 @@ void pdecl_manager::del_decl_core(pdecl * p) {
|
|||
}
|
||||
|
||||
void pdecl_manager::del_decl(pdecl * p) {
|
||||
TRACE("pdecl_manager", p->display(tout); tout << "\n";);
|
||||
if (p->is_psort()) {
|
||||
psort * _p = static_cast<psort*>(p);
|
||||
if (_p->is_sort_wrapper())
|
||||
|
|
|
@ -43,7 +43,7 @@ struct iz3checker : iz3base {
|
|||
/* HACK: for tree interpolants, we assume that uninterpreted functions
|
||||
are global. This is because in the current state of the tree interpolation
|
||||
code, symbols that appear in sibling sub-trees have to be global, and
|
||||
we have no way to eliminate such function symbols. When tree interpoaltion is
|
||||
we have no way to eliminate such function symbols. When tree interpolation is
|
||||
fixed, we can tree function symbols the same as constant symbols. */
|
||||
|
||||
bool is_tree;
|
||||
|
|
|
@ -112,7 +112,8 @@ bool func_interp::is_fi_entry_expr(expr * e, ptr_vector<expr> & args) {
|
|||
return false;
|
||||
}
|
||||
|
||||
if ((m_arity == 0) ||
|
||||
if (!is_ground(t) ||
|
||||
(m_arity == 0) ||
|
||||
(m_arity == 1 && !m().is_eq(c, a0, a1)) ||
|
||||
(m_arity > 1 && (!m().is_and(c) || to_app(c)->get_num_args() != m_arity)))
|
||||
return false;
|
||||
|
|
|
@ -1106,6 +1106,16 @@ namespace datalog {
|
|||
names.push_back(m_rule_names[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static std::ostream& display_symbol(std::ostream& out, symbol const& nm) {
|
||||
if (is_smt2_quoted_symbol(nm)) {
|
||||
out << mk_smt2_quoted_symbol(nm);
|
||||
}
|
||||
else {
|
||||
out << nm;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void context::display_smt2(unsigned num_queries, expr* const* qs, std::ostream& out) {
|
||||
ast_manager& m = get_manager();
|
||||
|
@ -1148,13 +1158,13 @@ namespace datalog {
|
|||
if (!use_fixedpoint_extensions) {
|
||||
out << "(set-logic HORN)\n";
|
||||
}
|
||||
for (func_decl * f : rels)
|
||||
visitor.remove_decl(f);
|
||||
|
||||
visitor.display_decls(out);
|
||||
func_decl_set::iterator it = rels.begin(), end = rels.end();
|
||||
for (; it != end; ++it) {
|
||||
func_decl* f = *it;
|
||||
|
||||
for (func_decl * f : rels)
|
||||
display_rel_decl(out, f);
|
||||
}
|
||||
|
||||
if (use_fixedpoint_extensions && do_declare_vars) {
|
||||
declare_vars(rules, fresh_names, out);
|
||||
|
@ -1185,13 +1195,7 @@ namespace datalog {
|
|||
nm = symbol(s.str().c_str());
|
||||
}
|
||||
fresh_names.add(nm);
|
||||
if (is_smt2_quoted_symbol(nm)) {
|
||||
out << mk_smt2_quoted_symbol(nm);
|
||||
}
|
||||
else {
|
||||
out << nm;
|
||||
}
|
||||
out << ")";
|
||||
display_symbol(out, nm) << ")";
|
||||
}
|
||||
out << ")\n";
|
||||
}
|
||||
|
@ -1219,7 +1223,8 @@ namespace datalog {
|
|||
PP(qfn);
|
||||
out << ")\n";
|
||||
}
|
||||
out << "(query " << fn->get_name() << ")\n";
|
||||
out << "(query ";
|
||||
display_symbol(out, fn->get_name()) << ")\n";
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
@ -1238,7 +1243,8 @@ namespace datalog {
|
|||
|
||||
void context::display_rel_decl(std::ostream& out, func_decl* f) {
|
||||
smt2_pp_environment_dbg env(m);
|
||||
out << "(declare-rel " << f->get_name() << " (";
|
||||
out << "(declare-rel ";
|
||||
display_symbol(out, f->get_name()) << " (";
|
||||
for (unsigned i = 0; i < f->get_arity(); ++i) {
|
||||
ast_smt2_pp(out, f->get_domain(i), env);
|
||||
if (i + 1 < f->get_arity()) {
|
||||
|
|
|
@ -33,7 +33,7 @@ def_module_params('fixedpoint',
|
|||
"updated relation was modified or not"),
|
||||
('datalog.compile_with_widening', BOOL, False,
|
||||
"widening will be used to compile recursive rules"),
|
||||
('datalog.default_table_checked', BOOL, False, "if true, the detault " +
|
||||
('datalog.default_table_checked', BOOL, False, "if true, the default " +
|
||||
'table will be default_table inside a wrapper that checks that its results ' +
|
||||
'are the same as of default_table_checker table'),
|
||||
('datalog.default_table_checker', SYMBOL, 'null', "see default_table_checked"),
|
||||
|
@ -59,7 +59,7 @@ def_module_params('fixedpoint',
|
|||
('duality.full_expand', BOOL, False, 'Fully expand derivation trees'),
|
||||
('duality.no_conj', BOOL, False, 'No forced covering (conjectures)'),
|
||||
('duality.feasible_edges', BOOL, True,
|
||||
'Don\'t expand definitley infeasible edges'),
|
||||
'Don\'t expand definitely infeasible edges'),
|
||||
('duality.use_underapprox', BOOL, False, 'Use underapproximations'),
|
||||
('duality.stratified_inlining', BOOL, False, 'Use stratified inlining'),
|
||||
('duality.recursion_bound', UINT, UINT_MAX,
|
||||
|
@ -130,7 +130,7 @@ def_module_params('fixedpoint',
|
|||
('xform.magic', BOOL, False,
|
||||
"perform symbolic magic set transformation"),
|
||||
('xform.scale', BOOL, False,
|
||||
"add scaling variable to linear real arithemtic clauses"),
|
||||
"add scaling variable to linear real arithmetic clauses"),
|
||||
('xform.inline_linear', BOOL, True, "try linear inlining method"),
|
||||
('xform.inline_eager', BOOL, True, "try eager inlining of rules"),
|
||||
('xform.inline_linear_branch', BOOL, False,
|
||||
|
@ -176,7 +176,7 @@ def_module_params('fixedpoint',
|
|||
('spacer.elim_aux', BOOL, True, "Eliminate auxiliary variables in reachability facts"),
|
||||
('spacer.reach_as_init', BOOL, True, "Extend initial rules with computed reachability facts"),
|
||||
('spacer.blast_term_ite', BOOL, True, "Expand non-Boolean ite-terms"),
|
||||
('spacer.nondet_tie_break', BOOL, False, "Break ties in obligation queue non-deterministicly"),
|
||||
('spacer.nondet_tie_break', BOOL, False, "Break ties in obligation queue non-deterministically"),
|
||||
('spacer.reach_dnf', BOOL, True, "Restrict reachability facts to DNF"),
|
||||
('bmc.linear_unrolling_depth', UINT, UINT_MAX, "Maximal level to explore"),
|
||||
('spacer.split_farkas_literals', BOOL, False, "Split Farkas literals"),
|
||||
|
|
|
@ -1736,6 +1736,7 @@ namespace pdr {
|
|||
}
|
||||
|
||||
void context::validate_model() {
|
||||
IF_VERBOSE(1, verbose_stream() << "(pdr.validate_model)\n";);
|
||||
std::stringstream msg;
|
||||
expr_ref_vector refs(m);
|
||||
expr_ref tmp(m);
|
||||
|
@ -1745,11 +1746,10 @@ namespace pdr {
|
|||
get_level_property(m_inductive_lvl, refs, rs);
|
||||
inductive_property ex(m, mc, rs);
|
||||
ex.to_model(model);
|
||||
decl2rel::iterator it = m_rels.begin(), end = m_rels.end();
|
||||
var_subst vs(m, false);
|
||||
expr_free_vars fv;
|
||||
for (; it != end; ++it) {
|
||||
ptr_vector<datalog::rule> const& rules = it->m_value->rules();
|
||||
for (auto const& kv : m_rels) {
|
||||
ptr_vector<datalog::rule> const& rules = kv.m_value->rules();
|
||||
for (unsigned i = 0; i < rules.size(); ++i) {
|
||||
datalog::rule& r = *rules[i];
|
||||
model->eval(r.get_head(), tmp);
|
||||
|
@ -1916,7 +1916,7 @@ namespace pdr {
|
|||
verbose_stream() << ex.to_string();
|
||||
});
|
||||
|
||||
// upgrade invariants that are known to be inductive.
|
||||
// upgrade invariants that are known to be inductive.
|
||||
decl2rel::iterator it = m_rels.begin (), end = m_rels.end ();
|
||||
for (; m_inductive_lvl > 0 && it != end; ++it) {
|
||||
if (it->m_value->head() != m_query_pred) {
|
||||
|
|
|
@ -133,7 +133,7 @@ namespace pdr {
|
|||
else if ((m.is_eq(e, c, val) && is_app(val) && dt.is_constructor(to_app(val))) ||
|
||||
(m.is_eq(e, val, c) && is_app(val) && dt.is_constructor(to_app(val)))){
|
||||
func_decl* f = to_app(val)->get_decl();
|
||||
func_decl* r = dt.get_constructor_recognizer(f);
|
||||
func_decl* r = dt.get_constructor_is(f);
|
||||
conjs[i] = m.mk_app(r, c);
|
||||
ptr_vector<func_decl> const& acc = *dt.get_constructor_accessors(f);
|
||||
for (unsigned j = 0; j < acc.size(); ++j) {
|
||||
|
|
|
@ -694,7 +694,7 @@ void expand_literals(ast_manager &m, expr_ref_vector& conjs)
|
|||
} else if ((m.is_eq(e, c, val) && is_app(val) && dt.is_constructor(to_app(val))) ||
|
||||
(m.is_eq(e, val, c) && is_app(val) && dt.is_constructor(to_app(val)))){
|
||||
func_decl* f = to_app(val)->get_decl();
|
||||
func_decl* r = dt.get_constructor_recognizer(f);
|
||||
func_decl* r = dt.get_constructor_is(f);
|
||||
conjs[i] = m.mk_app(r, c);
|
||||
ptr_vector<func_decl> const& acc = *dt.get_constructor_accessors(f);
|
||||
for (unsigned j = 0; j < acc.size(); ++j) {
|
||||
|
|
|
@ -26,7 +26,7 @@ Implementation:
|
|||
|
||||
1) Dealing with multiple quantifiers -> The options fixedpoint.xform.instantiate_arrays.nb_quantifier gives the number of quantifiers per array.
|
||||
|
||||
2) Inforcing the instantiation -> We suggest an option (enforce_instantiation) to enforce this abstraction. This transforms
|
||||
2) Enforcing the instantiation -> We suggest an option (enforce_instantiation) to enforce this abstraction. This transforms
|
||||
P(a) into P(i, a[i]). This enforces the solver to limit the space search at the cost of imprecise results. This option
|
||||
corresponds to fixedpoint.xform.instantiate_arrays.enforce
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ namespace datalog {
|
|||
*/
|
||||
void reset(rule * r);
|
||||
|
||||
/** Reset subtitution and unify tail tgt_idx of the target rule and the head of the src rule */
|
||||
/** Reset substitution and unify tail tgt_idx of the target rule and the head of the src rule */
|
||||
bool unify(expr * e1, expr * e2);
|
||||
|
||||
void get_result(rule_ref & res);
|
||||
|
|
|
@ -209,9 +209,7 @@ namespace datalog {
|
|||
rel->collect_non_empty_predicates(m_preds_with_facts);
|
||||
}
|
||||
|
||||
rule_set::iterator rend = orig.end();
|
||||
for (rule_set::iterator rit = orig.begin(); rit!=rend; ++rit) {
|
||||
rule * r = *rit;
|
||||
for (rule * r : orig) {
|
||||
func_decl * head_pred = r->get_decl();
|
||||
m_head_pred_ctr.inc(head_pred);
|
||||
|
||||
|
@ -258,9 +256,7 @@ namespace datalog {
|
|||
rule_set * mk_rule_inliner::create_allowed_rule_set(rule_set const & orig)
|
||||
{
|
||||
rule_set * res = alloc(rule_set, m_context);
|
||||
unsigned rcnt = orig.get_num_rules();
|
||||
for (unsigned i=0; i<rcnt; i++) {
|
||||
rule * r = orig.get_rule(i);
|
||||
for (rule * r : orig) {
|
||||
if (inlining_allowed(orig, r->get_decl())) {
|
||||
res->add_rule(r);
|
||||
}
|
||||
|
@ -283,13 +279,11 @@ namespace datalog {
|
|||
|
||||
const rule_stratifier::comp_vector& comps = r.get_stratifier().get_strats();
|
||||
|
||||
rule_stratifier::comp_vector::const_iterator cend = comps.end();
|
||||
for (rule_stratifier::comp_vector::const_iterator it = comps.begin(); it!=cend; ++it) {
|
||||
rule_stratifier::item_set * stratum = *it;
|
||||
if (stratum->size()==1) {
|
||||
for (rule_stratifier::item_set * stratum : comps) {
|
||||
if (stratum->size() == 1) {
|
||||
continue;
|
||||
}
|
||||
SASSERT(stratum->size()>1);
|
||||
SASSERT(stratum->size() > 1);
|
||||
func_decl * first_stratum_pred = *stratum->begin();
|
||||
|
||||
//we're trying to break cycles by removing one predicate from each of them
|
||||
|
@ -307,9 +301,7 @@ namespace datalog {
|
|||
const rule_stratifier::comp_vector& comps =
|
||||
proposed_inlined_rules.get_stratifier().get_strats();
|
||||
|
||||
rule_stratifier::comp_vector::const_iterator cend = comps.end();
|
||||
for (rule_stratifier::comp_vector::const_iterator it = comps.begin(); it!=cend; ++it) {
|
||||
rule_stratifier::item_set * stratum = *it;
|
||||
for (rule_stratifier::item_set * stratum : comps) {
|
||||
|
||||
SASSERT(stratum->size()==1);
|
||||
func_decl * head_pred = *stratum->begin();
|
||||
|
@ -318,10 +310,7 @@ namespace datalog {
|
|||
bool is_multi_occurrence_pred = m_tail_pred_ctr.get(head_pred)>1;
|
||||
|
||||
const rule_vector& pred_rules = proposed_inlined_rules.get_predicate_rules(head_pred);
|
||||
rule_vector::const_iterator iend = pred_rules.end();
|
||||
for (rule_vector::const_iterator iit = pred_rules.begin(); iit!=iend; ++iit) {
|
||||
rule * r = *iit;
|
||||
|
||||
for (rule * r : pred_rules) {
|
||||
unsigned pt_len = r->get_positive_tail_size();
|
||||
for (unsigned ti = 0; ti<pt_len; ++ti) {
|
||||
func_decl * tail_pred = r->get_decl(ti);
|
||||
|
@ -405,28 +394,22 @@ namespace datalog {
|
|||
// now we start filling in the set of the inlined rules in a topological order,
|
||||
// so that we inline rules into other rules
|
||||
|
||||
SASSERT(m_inlined_rules.get_num_rules()==0);
|
||||
SASSERT(m_inlined_rules.get_num_rules() == 0);
|
||||
|
||||
const rule_stratifier::comp_vector& comps = candidate_inlined_set->get_stratifier().get_strats();
|
||||
|
||||
rule_stratifier::comp_vector::const_iterator cend = comps.end();
|
||||
for (rule_stratifier::comp_vector::const_iterator it = comps.begin(); it!=cend; ++it) {
|
||||
rule_stratifier::item_set * stratum = *it;
|
||||
SASSERT(stratum->size()==1);
|
||||
for (rule_stratifier::item_set * stratum : comps) {
|
||||
SASSERT(stratum->size() == 1);
|
||||
func_decl * pred = *stratum->begin();
|
||||
|
||||
const rule_vector& pred_rules = candidate_inlined_set->get_predicate_rules(pred);
|
||||
rule_vector::const_iterator iend = pred_rules.end();
|
||||
for (rule_vector::const_iterator iit = pred_rules.begin(); iit!=iend; ++iit) {
|
||||
transform_rule(orig, *iit, m_inlined_rules);
|
||||
for (rule * r : candidate_inlined_set->get_predicate_rules(pred)) {
|
||||
transform_rule(orig, r, m_inlined_rules);
|
||||
}
|
||||
}
|
||||
|
||||
TRACE("dl", tout << "inlined rules after mutual inlining:\n" << m_inlined_rules; );
|
||||
|
||||
for (unsigned i = 0; i < m_inlined_rules.get_num_rules(); ++i) {
|
||||
rule* r = m_inlined_rules.get_rule(i);
|
||||
datalog::del_rule(m_mc, *r, true);
|
||||
for (rule * r : m_inlined_rules) {
|
||||
datalog::del_rule(m_mc, *r, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -439,9 +422,7 @@ namespace datalog {
|
|||
rule_ref r(todo.back(), m_rm);
|
||||
todo.pop_back();
|
||||
unsigned pt_len = r->get_positive_tail_size();
|
||||
|
||||
unsigned i = 0;
|
||||
|
||||
for (; i < pt_len && !inlining_allowed(orig, r->get_decl(i)); ++i) {};
|
||||
|
||||
SASSERT(!has_quantifier(*r.get()));
|
||||
|
@ -455,9 +436,7 @@ namespace datalog {
|
|||
|
||||
func_decl * pred = r->get_decl(i);
|
||||
const rule_vector& pred_rules = m_inlined_rules.get_predicate_rules(pred);
|
||||
rule_vector::const_iterator iend = pred_rules.end();
|
||||
for (rule_vector::const_iterator iit = pred_rules.begin(); iit!=iend; ++iit) {
|
||||
rule * inl_rule = *iit;
|
||||
for (rule * inl_rule : pred_rules) {
|
||||
rule_ref inl_result(m_rm);
|
||||
if (try_to_inline_rule(*r.get(), *inl_rule, i, inl_result)) {
|
||||
todo.push_back(inl_result);
|
||||
|
@ -475,9 +454,8 @@ namespace datalog {
|
|||
|
||||
bool something_done = false;
|
||||
|
||||
rule_set::iterator rend = orig.end();
|
||||
for (rule_set::iterator rit = orig.begin(); rit!=rend; ++rit) {
|
||||
rule_ref r(*rit, m_rm);
|
||||
for (rule* rl : orig) {
|
||||
rule_ref r(rl, m_rm);
|
||||
func_decl * pred = r->get_decl();
|
||||
|
||||
// if inlining is allowed, then we are eliminating
|
||||
|
@ -508,19 +486,14 @@ namespace datalog {
|
|||
bool mk_rule_inliner::is_oriented_rewriter(rule * r, rule_stratifier const& strat) {
|
||||
func_decl * head_pred = r->get_decl();
|
||||
unsigned head_strat = strat.get_predicate_strat(head_pred);
|
||||
|
||||
unsigned head_arity = head_pred->get_arity();
|
||||
|
||||
|
||||
unsigned pt_len = r->get_positive_tail_size();
|
||||
for (unsigned ti=0; ti<pt_len; ++ti) {
|
||||
|
||||
for (unsigned ti=0; ti < pt_len; ++ti) {
|
||||
func_decl * pred = r->get_decl(ti);
|
||||
|
||||
unsigned pred_strat = strat.get_predicate_strat(pred);
|
||||
SASSERT(pred_strat<=head_strat);
|
||||
SASSERT(pred_strat <= head_strat);
|
||||
|
||||
if (pred_strat==head_strat) {
|
||||
if (pred_strat == head_strat) {
|
||||
if (pred->get_arity()>head_arity
|
||||
|| (pred->get_arity()==head_arity && pred->get_id()>=head_pred->get_id()) ) {
|
||||
return false;
|
||||
|
@ -855,13 +828,9 @@ namespace datalog {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
rule_set::iterator end = source.end();
|
||||
for (rule_set::iterator it = source.begin(); it != end; ++ it) {
|
||||
if (has_quantifier(**it)) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
for (rule const* r : source)
|
||||
if (has_quantifier(*r))
|
||||
return nullptr;
|
||||
|
||||
if (m_context.get_model_converter()) {
|
||||
hsmc = alloc(horn_subsume_model_converter, m);
|
||||
|
|
|
@ -45,7 +45,7 @@ namespace datalog {
|
|||
: m(ctx.get_manager()), m_rm(ctx.get_rule_manager()), m_context(ctx),
|
||||
m_interp_simplifier(ctx), m_subst(m), m_unif(m), m_ready(false), m_normalize(true) {}
|
||||
|
||||
/** Reset subtitution and unify tail tgt_idx of the target rule and the head of the src rule */
|
||||
/** Reset substitution and unify tail tgt_idx of the target rule and the head of the src rule */
|
||||
bool unify_rules(rule const& tgt, unsigned tgt_idx, rule const& src);
|
||||
|
||||
/**
|
||||
|
|
|
@ -7,7 +7,7 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
Add scale factor to linear (Real) arithemetic Horn clauses.
|
||||
Add scale factor to linear (Real) arithmetic Horn clauses.
|
||||
The transformation replaces occurrences of isolated constants by
|
||||
a scale multiplied to each constant.
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ namespace datalog {
|
|||
transf.register_plugin(alloc(datalog::mk_quantifier_instantiation, ctx, 37000));
|
||||
|
||||
if (ctx.get_params().datalog_subsumption()) {
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 35005));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 35005));
|
||||
}
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 35000));
|
||||
transf.register_plugin(alloc(datalog::mk_coi_filter, ctx, 34990));
|
||||
|
@ -67,20 +67,20 @@ namespace datalog {
|
|||
|
||||
//and another round of inlining
|
||||
if (ctx.get_params().datalog_subsumption()) {
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34975));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34975));
|
||||
}
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34970));
|
||||
transf.register_plugin(alloc(datalog::mk_coi_filter, ctx, 34960));
|
||||
transf.register_plugin(alloc(datalog::mk_interp_tail_simplifier, ctx, 34950));
|
||||
|
||||
|
||||
if (ctx.get_params().datalog_subsumption()) {
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34940));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34930));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34920));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34910));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34900));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34890));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34880));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34940));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34930));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34920));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34910));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34900));
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34890));
|
||||
transf.register_plugin(alloc(datalog::mk_subsumption_checker, ctx, 34880));
|
||||
}
|
||||
else {
|
||||
transf.register_plugin(alloc(datalog::mk_rule_inliner, ctx, 34930));
|
||||
|
|
|
@ -2,7 +2,6 @@ z3_add_component(opt
|
|||
SOURCES
|
||||
maxres.cpp
|
||||
maxsmt.cpp
|
||||
mss.cpp
|
||||
opt_cmds.cpp
|
||||
opt_context.cpp
|
||||
opt_pareto.cpp
|
||||
|
|
|
@ -57,7 +57,6 @@ Notes:
|
|||
#include "opt/maxres.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "solver/mus.h"
|
||||
#include "opt/mss.h"
|
||||
#include "sat/sat_solver/inc_sat_solver.h"
|
||||
#include "opt/opt_context.h"
|
||||
#include "ast/pb_decl_plugin.h"
|
||||
|
@ -90,7 +89,6 @@ private:
|
|||
obj_map<expr, rational> m_asm2weight;
|
||||
ptr_vector<expr> m_new_core;
|
||||
mus m_mus;
|
||||
mss m_mss;
|
||||
expr_ref_vector m_trail;
|
||||
strategy_t m_st;
|
||||
rational m_max_upper;
|
||||
|
@ -121,7 +119,6 @@ public:
|
|||
m_index(index),
|
||||
m_B(m), m_asms(m), m_defs(m),
|
||||
m_mus(c.get_solver()),
|
||||
m_mss(c.get_solver(), m),
|
||||
m_trail(m),
|
||||
m_st(st),
|
||||
m_correction_set_size(0),
|
||||
|
|
285
src/opt/mss.cpp
285
src/opt/mss.cpp
|
@ -1,285 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
mss.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
MSS/MCS extraction.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-2-8
|
||||
|
||||
Notes:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#include "solver/solver.h"
|
||||
#include "opt/mss.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "model/model_smt2_pp.h"
|
||||
|
||||
namespace opt {
|
||||
|
||||
|
||||
mss::mss(solver& s, ast_manager& m): m_s(s), m(m) {
|
||||
}
|
||||
|
||||
mss::~mss() {
|
||||
}
|
||||
|
||||
bool mss::check_result() {
|
||||
lbool is_sat = m_s.check_sat(m_mss.size(), m_mss.c_ptr());
|
||||
if (is_sat == l_undef) return true;
|
||||
SASSERT(m_mss.empty() || is_sat == l_true);
|
||||
if (is_sat == l_false) return false;
|
||||
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
|
||||
for (; it != end; ++it) {
|
||||
m_mss.push_back(*it);
|
||||
is_sat = m_s.check_sat(m_mss.size(), m_mss.c_ptr());
|
||||
m_mss.pop_back();
|
||||
if (is_sat == l_undef) return true;
|
||||
SASSERT(is_sat == l_false);
|
||||
if (is_sat == l_true) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void mss::initialize(exprs& literals) {
|
||||
expr* n;
|
||||
expr_set lits, core_lits;
|
||||
for (unsigned i = 0; i < literals.size(); ++i) {
|
||||
n = literals[i];
|
||||
lits.insert(n);
|
||||
m.is_not(n, n);
|
||||
if (!is_uninterp_const(n)) {
|
||||
throw default_exception("arguments have to be uninterpreted literals");
|
||||
}
|
||||
}
|
||||
exprs rest_core;
|
||||
expr_ref tmp(m);
|
||||
//
|
||||
// the last core is a dummy core. It contains literals that
|
||||
// did not occur in previous cores and did not evaluate to true
|
||||
// in the current model.
|
||||
//
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
exprs const& core = m_cores[i];
|
||||
for (unsigned j = 0; j < core.size(); ++j) {
|
||||
expr* n = core[j];
|
||||
if (!core_lits.contains(n)) {
|
||||
core_lits.insert(n);
|
||||
if (m_model->eval(n, tmp) && m.is_true(tmp)) {
|
||||
add_mss(n);
|
||||
}
|
||||
else {
|
||||
m_todo.push_back(n);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0; i < literals.size(); ++i) {
|
||||
expr* n = literals[i];
|
||||
if (!core_lits.contains(n)) {
|
||||
if (m_model->eval(n, tmp) && m.is_true(tmp)) {
|
||||
m_mss.push_back(n);
|
||||
}
|
||||
else {
|
||||
rest_core.push_back(n);
|
||||
core_lits.insert(n);
|
||||
m_todo.push_back(n);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_cores.push_back(rest_core);
|
||||
}
|
||||
|
||||
void mss::add_mss(expr* n) {
|
||||
if (!m_mss_set.contains(n)) {
|
||||
m_mss_set.insert(n);
|
||||
m_mss.push_back(n);
|
||||
}
|
||||
}
|
||||
|
||||
void mss::update_core(exprs& core) {
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
expr* n = core[i];
|
||||
if (!m_mss_set.contains(n)) {
|
||||
if (i != j) {
|
||||
core[j] = core[i];
|
||||
}
|
||||
++j;
|
||||
}
|
||||
}
|
||||
core.resize(j);
|
||||
}
|
||||
|
||||
void mss::update_mss() {
|
||||
expr_ref tmp(m);
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < m_todo.size(); ++i) {
|
||||
expr* n = m_todo[i];
|
||||
SASSERT(!m_mss_set.contains(n));
|
||||
if (m_mcs.contains(n)) {
|
||||
continue; // remove from cores.
|
||||
}
|
||||
if (m_model->eval(n, tmp) && m.is_true(tmp)) {
|
||||
add_mss(n);
|
||||
}
|
||||
else {
|
||||
if (j != i) {
|
||||
m_todo[j] = m_todo[i];
|
||||
}
|
||||
++j;
|
||||
}
|
||||
}
|
||||
m_todo.resize(j);
|
||||
}
|
||||
|
||||
lbool mss::operator()(model* initial_model, vector<exprs> const& _cores, exprs& literals, exprs& mcs) {
|
||||
m_mss.reset();
|
||||
m_todo.reset();
|
||||
m_model = initial_model;
|
||||
m_cores.reset();
|
||||
SASSERT(m_model);
|
||||
m_cores.append(_cores);
|
||||
initialize(literals);
|
||||
TRACE("opt",
|
||||
display_vec(tout << "lits: ", literals.size(), literals.c_ptr());
|
||||
display(tout););
|
||||
lbool is_sat = l_true;
|
||||
for (unsigned i = 0; is_sat == l_true && i < m_cores.size(); ++i) {
|
||||
bool has_mcs = false;
|
||||
bool is_last = i + 1 < m_cores.size();
|
||||
SASSERT(check_invariant());
|
||||
update_core(m_cores[i]); // remove members of mss
|
||||
is_sat = process_core(1, m_cores[i], has_mcs, is_last);
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
SASSERT(check_invariant());
|
||||
TRACE("opt", display(tout););
|
||||
literals.reset();
|
||||
literals.append(m_mss);
|
||||
mcs.reset();
|
||||
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
|
||||
for (; it != end; ++it) {
|
||||
mcs.push_back(*it);
|
||||
}
|
||||
SASSERT(check_result());
|
||||
}
|
||||
m_mcs.reset();
|
||||
m_mss_set.reset();
|
||||
IF_VERBOSE(2, display_vec(verbose_stream() << "mcs: ", mcs.size(), mcs.c_ptr()););
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// at least one literal in core is false in current model.
|
||||
// pick literals in core that are not yet in mss.
|
||||
//
|
||||
lbool mss::process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last) {
|
||||
SASSERT(sz > 0);
|
||||
if (core.empty()) {
|
||||
return l_true;
|
||||
}
|
||||
if (m.canceled()) {
|
||||
return l_undef;
|
||||
}
|
||||
if (sz == 1 && core.size() == 1 && is_last && !has_mcs) {
|
||||
// there has to be at least one false
|
||||
// literal in the core.
|
||||
TRACE("opt", tout << "mcs: " << mk_pp(core[0], m) << "\n";);
|
||||
m_mcs.insert(core[0]);
|
||||
return l_true;
|
||||
}
|
||||
sz = std::min(sz, core.size());
|
||||
TRACE("opt", display_vec(tout << "process (total " << core.size() << ") :", sz, core.c_ptr()););
|
||||
unsigned sz_save = m_mss.size();
|
||||
m_mss.append(sz, core.c_ptr());
|
||||
lbool is_sat = m_s.check_sat(m_mss.size(), m_mss.c_ptr());
|
||||
IF_VERBOSE(3, display_vec(verbose_stream() << "mss: ", m_mss.size(), m_mss.c_ptr()););
|
||||
m_mss.resize(sz_save);
|
||||
switch (is_sat) {
|
||||
case l_true:
|
||||
m_s.get_model(m_model);
|
||||
update_mss();
|
||||
DEBUG_CODE(
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
SASSERT(m_mss_set.contains(core[i]));
|
||||
});
|
||||
update_core(core);
|
||||
return process_core(2*sz, core, has_mcs, is_last);
|
||||
case l_false:
|
||||
if (sz == 1) {
|
||||
has_mcs = true;
|
||||
m_mcs.insert(core[0]);
|
||||
core[0] = core.back();
|
||||
core.pop_back();
|
||||
}
|
||||
else {
|
||||
exprs core2;
|
||||
core2.append(core.size()-sz, core.c_ptr()+sz);
|
||||
core.resize(sz);
|
||||
is_sat = process_core(sz, core2, has_mcs, false);
|
||||
if (is_sat != l_true) {
|
||||
return is_sat;
|
||||
}
|
||||
update_core(core);
|
||||
}
|
||||
return process_core(1, core, has_mcs, is_last);
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
return l_true;
|
||||
}
|
||||
|
||||
void mss::display_vec(std::ostream& out, unsigned sz, expr* const* args) const {
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
out << mk_pp(args[i], m) << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
void mss::display(std::ostream& out) const {
|
||||
for (unsigned i = 0; i < m_cores.size(); ++i) {
|
||||
display_vec(out << "core: ", m_cores[i].size(), m_cores[i].c_ptr());
|
||||
}
|
||||
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
|
||||
out << "mcs:\n";
|
||||
for (; it != end; ++it) {
|
||||
out << mk_pp(*it, m) << "\n";
|
||||
}
|
||||
out << "\n";
|
||||
out << "mss:\n";
|
||||
for (unsigned i = 0; i < m_mss.size(); ++i) {
|
||||
out << mk_pp(m_mss[i], m) << "\n";
|
||||
}
|
||||
out << "\n";
|
||||
if (m_model) {
|
||||
model_smt2_pp(out, m, *(m_model.get()), 0);
|
||||
}
|
||||
}
|
||||
|
||||
bool mss::check_invariant() const {
|
||||
if (!m_model) return true;
|
||||
expr_ref tmp(m);
|
||||
for (unsigned i = 0; i < m_mss.size(); ++i) {
|
||||
expr* n = m_mss[i];
|
||||
if (!m_model->eval(n, tmp)) return true;
|
||||
CTRACE("opt", !m.is_true(tmp), tout << mk_pp(n, m) << " |-> " << mk_pp(tmp, m) << "\n";);
|
||||
SASSERT(!m.is_false(tmp));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,57 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
mss.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Maximal satisfying subset/minimal correction sets: MSS/MCS
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-2-8
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef MSS_H_
|
||||
#define MSS_H_
|
||||
|
||||
namespace opt {
|
||||
class mss {
|
||||
solver& m_s;
|
||||
ast_manager& m;
|
||||
typedef ptr_vector<expr> exprs;
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
exprs m_mss;
|
||||
expr_set m_mcs;
|
||||
expr_set m_mss_set;
|
||||
vector<exprs> m_cores;
|
||||
exprs m_todo;
|
||||
model_ref m_model;
|
||||
public:
|
||||
mss(solver& s, ast_manager& m);
|
||||
~mss();
|
||||
|
||||
lbool operator()(model* initial_model, vector<exprs> const& cores, exprs& literals, exprs& mcs);
|
||||
|
||||
|
||||
void get_model(model_ref& mdl) { mdl = m_model; }
|
||||
|
||||
private:
|
||||
void initialize(exprs& literals);
|
||||
bool check_result();
|
||||
void add_mss(expr* n);
|
||||
void update_mss();
|
||||
void update_core(exprs& core);
|
||||
lbool process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last);
|
||||
void display(std::ostream& out) const;
|
||||
void display_vec(std::ostream& out, unsigned sz, expr* const* args) const;
|
||||
bool check_invariant() const;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
|
@ -402,8 +402,8 @@ namespace opt {
|
|||
*/
|
||||
bool context::scoped_lex() {
|
||||
if (m_maxsat_engine == symbol("maxres")) {
|
||||
for (unsigned i = 0; i < m_objectives.size(); ++i) {
|
||||
if (m_objectives[i].m_type != O_MAXSMT) return true;
|
||||
for (auto const& o : m_objectives) {
|
||||
if (o.m_type != O_MAXSMT) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -413,14 +413,16 @@ namespace opt {
|
|||
lbool context::execute_lex() {
|
||||
lbool r = l_true;
|
||||
bool sc = scoped_lex();
|
||||
IF_VERBOSE(1, verbose_stream() << "(optsmt:lex)\n";);
|
||||
for (unsigned i = 0; r == l_true && i < m_objectives.size(); ++i) {
|
||||
bool is_last = i + 1 == m_objectives.size();
|
||||
r = execute(m_objectives[i], i + 1 < m_objectives.size(), sc && !is_last);
|
||||
IF_VERBOSE(1, verbose_stream() << "(opt :lex)\n";);
|
||||
unsigned sz = m_objectives.size();
|
||||
for (unsigned i = 0; r == l_true && i < sz; ++i) {
|
||||
objective const& o = m_objectives[i];
|
||||
bool is_last = i + 1 == sz;
|
||||
r = execute(o, i + 1 < sz, sc && !is_last && o.m_type != O_MAXSMT);
|
||||
if (r == l_true && !get_lower_as_num(i).is_finite()) {
|
||||
return r;
|
||||
}
|
||||
if (r == l_true && i + 1 < m_objectives.size()) {
|
||||
if (r == l_true && i + 1 < sz) {
|
||||
update_lower();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -227,9 +227,13 @@ namespace opt {
|
|||
smt::theory_var v = m_objective_vars[i];
|
||||
bool has_shared = false;
|
||||
inf_eps val = get_optimizer().maximize(v, blocker, has_shared);
|
||||
get_model(m_model);
|
||||
inf_eps val2;
|
||||
m_valid_objectives[i] = true;
|
||||
TRACE("opt", tout << (has_shared?"has shared":"non-shared") << "\n";);
|
||||
if (!m_models[i]) {
|
||||
set_model(i);
|
||||
}
|
||||
if (m_context.get_context().update_model(has_shared)) {
|
||||
if (has_shared && val != current_objective_value(i)) {
|
||||
decrement_value(i, val);
|
||||
|
@ -247,7 +251,7 @@ namespace opt {
|
|||
tout << "objective: " << mk_pp(m_objective_terms[i].get(), m) << "\n";
|
||||
tout << "maximal value: " << val << "\n";
|
||||
tout << "new condition: " << blocker << "\n";
|
||||
model_smt2_pp(tout << "update model:\n", m, *m_models[i], 0); });
|
||||
if (m_models[i]) model_smt2_pp(tout << "update model:\n", m, *m_models[i], 0); });
|
||||
}
|
||||
|
||||
void opt_solver::set_model(unsigned i) {
|
||||
|
@ -299,6 +303,7 @@ namespace opt {
|
|||
|
||||
void opt_solver::get_model(model_ref & m) {
|
||||
m_context.get_model(m);
|
||||
if (!m) m = m_model; else m_model = m;
|
||||
}
|
||||
|
||||
proof * opt_solver::get_proof() {
|
||||
|
|
|
@ -73,6 +73,7 @@ namespace opt {
|
|||
filter_model_converter& m_fm;
|
||||
progress_callback * m_callback;
|
||||
symbol m_logic;
|
||||
model_ref m_model;
|
||||
svector<smt::theory_var> m_objective_vars;
|
||||
vector<inf_eps> m_objective_values;
|
||||
sref_vector<model> m_models;
|
||||
|
|
|
@ -970,6 +970,9 @@ namespace smt2 {
|
|||
check_rparen_next("invalid datatype declaration, ')' expected");
|
||||
}
|
||||
else {
|
||||
if (dt_name) {
|
||||
m_ctx.insert(pm().mk_psort_dt_decl(0, *dt_name));
|
||||
}
|
||||
parse_constructor_decls(ct_decls);
|
||||
}
|
||||
check_rparen_next("invalid datatype declaration, ')' expected");
|
||||
|
@ -1411,7 +1414,7 @@ namespace smt2 {
|
|||
else {
|
||||
SASSERT(is_app(pattern));
|
||||
func_decl * f = to_app(pattern)->get_decl();
|
||||
func_decl * r = dtutil().get_constructor_recognizer(f);
|
||||
func_decl * r = dtutil().get_constructor_is(f);
|
||||
ptr_vector<func_decl> const * acc = dtutil().get_constructor_accessors(f);
|
||||
shifter()(t, acc->size(), tsh);
|
||||
for (func_decl* a : *acc) {
|
||||
|
|
|
@ -261,7 +261,7 @@ namespace qe {
|
|||
return false;
|
||||
}
|
||||
func_decl* c = a->get_decl();
|
||||
func_decl* r = m_util.get_constructor_recognizer(c);
|
||||
func_decl_ref r(m_util.get_constructor_is(c), m);
|
||||
ptr_vector<func_decl> const & acc = *m_util.get_constructor_accessors(c);
|
||||
SASSERT(acc.size() == a->get_num_args());
|
||||
//
|
||||
|
@ -380,7 +380,7 @@ namespace qe {
|
|||
}
|
||||
func_decl* c = l->get_decl();
|
||||
ptr_vector<func_decl> const& acc = *m_util.get_constructor_accessors(c);
|
||||
func_decl* rec = m_util.get_constructor_recognizer(c);
|
||||
func_decl* rec = m_util.get_constructor_is(c);
|
||||
expr_ref_vector conj(m);
|
||||
conj.push_back(m.mk_app(rec, r));
|
||||
for (unsigned i = 0; i < acc.size(); ++i) {
|
||||
|
@ -627,7 +627,7 @@ namespace qe {
|
|||
//
|
||||
if (!has_recognizer(x, fml, r, c)) {
|
||||
c = m_datatype_util.get_datatype_constructors(s)->get(vl.get_unsigned());
|
||||
r = m_datatype_util.get_constructor_recognizer(c);
|
||||
r = m_datatype_util.get_constructor_is(c);
|
||||
app* is_c = m.mk_app(r, x);
|
||||
// assert v => r(x)
|
||||
m_ctx.add_constraint(true, is_c);
|
||||
|
@ -674,7 +674,7 @@ namespace qe {
|
|||
//
|
||||
if (!has_recognizer(x, fml, r, c)) {
|
||||
c = m_datatype_util.get_datatype_constructors(s)->get(vl.get_unsigned());
|
||||
r = m_datatype_util.get_constructor_recognizer(c);
|
||||
r = m_datatype_util.get_constructor_is(c);
|
||||
app* is_c = m.mk_app(r, x);
|
||||
fml = m.mk_and(is_c, fml);
|
||||
app_ref fresh_x(m.mk_fresh_const("x", s), m);
|
||||
|
@ -775,7 +775,7 @@ namespace qe {
|
|||
}
|
||||
|
||||
c = m_datatype_util.get_datatype_constructors(s)->get(vl.get_unsigned());
|
||||
r = m_datatype_util.get_constructor_recognizer(c);
|
||||
r = m_datatype_util.get_constructor_is(c);
|
||||
app* is_c = m.mk_app(r, x);
|
||||
|
||||
// assert v => r(x)
|
||||
|
|
|
@ -151,7 +151,7 @@ namespace qe {
|
|||
return false;
|
||||
}
|
||||
func_decl* c = a->get_decl();
|
||||
func_decl* rec = dt.get_constructor_recognizer(c);
|
||||
func_decl_ref rec(dt.get_constructor_is(c), m);
|
||||
ptr_vector<func_decl> const & acc = *dt.get_constructor_accessors(c);
|
||||
SASSERT(acc.size() == a->get_num_args());
|
||||
//
|
||||
|
@ -232,7 +232,7 @@ namespace qe {
|
|||
func_decl* c = to_app(l)->get_decl();
|
||||
ptr_vector<func_decl> const& acc = *dt.get_constructor_accessors(c);
|
||||
if (!is_app_of(r, c)) {
|
||||
lits.push_back(m.mk_app(dt.get_constructor_recognizer(c), r));
|
||||
lits.push_back(m.mk_app(dt.get_constructor_is(c), r));
|
||||
}
|
||||
for (unsigned i = 0; i < acc.size(); ++i) {
|
||||
lits.push_back(m.mk_eq(to_app(l)->get_arg(i), access(c, i, acc, r)));
|
||||
|
|
|
@ -692,7 +692,7 @@ namespace eq {
|
|||
}
|
||||
}
|
||||
else {
|
||||
func_decl* rec = dt.get_constructor_recognizer(d);
|
||||
func_decl* rec = dt.get_constructor_is(d);
|
||||
conjs.push_back(m.mk_app(rec, r));
|
||||
ptr_vector<func_decl> const& acc = *dt.get_constructor_accessors(d);
|
||||
for (unsigned i = 0; i < acc.size(); ++i) {
|
||||
|
|
|
@ -1139,7 +1139,7 @@ namespace sat {
|
|||
}
|
||||
|
||||
void solver::reinit_assumptions() {
|
||||
if (tracking_assumptions() && scope_lvl() == 0) {
|
||||
if (tracking_assumptions() && scope_lvl() == 0 && !inconsistent()) {
|
||||
TRACE("sat", tout << m_assumptions << "\n";);
|
||||
push();
|
||||
for (unsigned i = 0; !inconsistent() && i < m_user_scope_literals.size(); ++i) {
|
||||
|
|
|
@ -27,8 +27,9 @@ Revision History:
|
|||
#include "ast/macros/quasi_macros.h"
|
||||
#include "smt/asserted_formulas.h"
|
||||
|
||||
asserted_formulas::asserted_formulas(ast_manager & m, smt_params & p):
|
||||
asserted_formulas::asserted_formulas(ast_manager & m, smt_params & sp, params_ref const& p):
|
||||
m(m),
|
||||
m_smt_params(sp),
|
||||
m_params(p),
|
||||
m_rewriter(m),
|
||||
m_substitution(m),
|
||||
|
@ -46,7 +47,6 @@ asserted_formulas::asserted_formulas(ast_manager & m, smt_params & p):
|
|||
m_refine_inj_axiom(*this),
|
||||
m_max_bv_sharing_fn(*this),
|
||||
m_elim_term_ite(*this),
|
||||
m_pull_cheap_ite_trees(*this),
|
||||
m_pull_nested_quantifiers(*this),
|
||||
m_elim_bvs_from_quantifiers(*this),
|
||||
m_cheap_quant_fourier_motzkin(*this),
|
||||
|
@ -66,20 +66,20 @@ asserted_formulas::asserted_formulas(ast_manager & m, smt_params & p):
|
|||
}
|
||||
|
||||
void asserted_formulas::setup() {
|
||||
switch (m_params.m_lift_ite) {
|
||||
switch (m_smt_params.m_lift_ite) {
|
||||
case LI_FULL:
|
||||
m_params.m_ng_lift_ite = LI_NONE;
|
||||
m_smt_params.m_ng_lift_ite = LI_NONE;
|
||||
break;
|
||||
case LI_CONSERVATIVE:
|
||||
if (m_params.m_ng_lift_ite == LI_CONSERVATIVE)
|
||||
m_params.m_ng_lift_ite = LI_NONE;
|
||||
if (m_smt_params.m_ng_lift_ite == LI_CONSERVATIVE)
|
||||
m_smt_params.m_ng_lift_ite = LI_NONE;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (m_params.m_relevancy_lvl == 0)
|
||||
m_params.m_relevancy_lemma = false;
|
||||
if (m_smt_params.m_relevancy_lvl == 0)
|
||||
m_smt_params.m_relevancy_lemma = false;
|
||||
}
|
||||
|
||||
|
||||
|
@ -118,21 +118,24 @@ void asserted_formulas::push_assertion(expr * e, proof * pr, vector<justified_ex
|
|||
}
|
||||
}
|
||||
|
||||
void asserted_formulas::updt_params(params_ref const& p) {
|
||||
m_params.append(p);
|
||||
}
|
||||
|
||||
void asserted_formulas::set_eliminate_and(bool flag) {
|
||||
if (flag == m_elim_and) return;
|
||||
m_elim_and = flag;
|
||||
params_ref p;
|
||||
p.set_bool("pull_cheap_ite", false);
|
||||
p.set_bool("elim_and", flag);
|
||||
p.set_bool("arith_ineq_lhs", true);
|
||||
p.set_bool("sort_sums", true);
|
||||
p.set_bool("rewrite_patterns", true);
|
||||
p.set_bool("eq2ineq", m_params.m_arith_eq2ineq);
|
||||
p.set_bool("gcd_rounding", true);
|
||||
p.set_bool("expand_select_store", true);
|
||||
p.set_bool("bv_sort_ac", true);
|
||||
p.set_bool("som", true);
|
||||
m_rewriter.updt_params(p);
|
||||
if (m_smt_params.m_pull_cheap_ite) m_params.set_bool("pull_cheap_ite", true);
|
||||
m_params.set_bool("elim_and", flag);
|
||||
m_params.set_bool("arith_ineq_lhs", true);
|
||||
m_params.set_bool("sort_sums", true);
|
||||
m_params.set_bool("rewrite_patterns", true);
|
||||
m_params.set_bool("eq2ineq", m_smt_params.m_arith_eq2ineq);
|
||||
m_params.set_bool("gcd_rounding", true);
|
||||
m_params.set_bool("expand_select_store", true);
|
||||
m_params.set_bool("bv_sort_ac", true);
|
||||
m_params.set_bool("som", true);
|
||||
m_rewriter.updt_params(m_params);
|
||||
flush_cache();
|
||||
}
|
||||
|
||||
|
@ -144,7 +147,7 @@ void asserted_formulas::assert_expr(expr * e, proof * _in_pr) {
|
|||
if (inconsistent())
|
||||
return;
|
||||
|
||||
if (m_params.m_preprocess) {
|
||||
if (m_smt_params.m_preprocess) {
|
||||
TRACE("assert_expr_bug", tout << r << "\n";);
|
||||
set_eliminate_and(false); // do not eliminate and before nnf.
|
||||
m_rewriter(e, r, pr);
|
||||
|
@ -227,7 +230,7 @@ void asserted_formulas::reduce() {
|
|||
return;
|
||||
if (m_qhead == m_formulas.size())
|
||||
return;
|
||||
if (!m_params.m_preprocess)
|
||||
if (!m_smt_params.m_preprocess)
|
||||
return;
|
||||
if (m_macro_manager.has_macros())
|
||||
invoke(m_find_macros);
|
||||
|
@ -241,7 +244,6 @@ void asserted_formulas::reduce() {
|
|||
if (!invoke(m_nnf_cnf)) return;
|
||||
set_eliminate_and(true);
|
||||
if (!invoke(m_reduce_asserted_formulas)) return;
|
||||
if (!invoke(m_pull_cheap_ite_trees)) return;
|
||||
if (!invoke(m_pull_nested_quantifiers)) return;
|
||||
if (!invoke(m_lift_ite)) return;
|
||||
if (!invoke(m_ng_lift_ite)) return;
|
||||
|
|
|
@ -26,7 +26,6 @@ Revision History:
|
|||
#include "ast/rewriter/bit2int.h"
|
||||
#include "ast/rewriter/maximize_ac_sharing.h"
|
||||
#include "ast/rewriter/distribute_forall.h"
|
||||
#include "ast/rewriter/pull_ite_tree.h"
|
||||
#include "ast/rewriter/push_app_ite.h"
|
||||
#include "ast/rewriter/inj_axiom.h"
|
||||
#include "ast/rewriter/bv_elim.h"
|
||||
|
@ -44,7 +43,8 @@ Revision History:
|
|||
class asserted_formulas {
|
||||
|
||||
ast_manager & m;
|
||||
smt_params & m_params;
|
||||
smt_params & m_smt_params;
|
||||
params_ref m_params;
|
||||
th_rewriter m_rewriter;
|
||||
expr_substitution m_substitution;
|
||||
scoped_expr_substitution m_scoped_substitution;
|
||||
|
@ -89,7 +89,7 @@ class asserted_formulas {
|
|||
public:
|
||||
find_macros_fn(asserted_formulas& af): simplify_fmls(af, "find-macros") {}
|
||||
void operator()() override { af.find_macros_core(); }
|
||||
bool should_apply() const override { return af.m_params.m_macro_finder && af.has_quantifiers(); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_macro_finder && af.has_quantifiers(); }
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { UNREACHABLE(); }
|
||||
};
|
||||
|
||||
|
@ -97,7 +97,7 @@ class asserted_formulas {
|
|||
public:
|
||||
apply_quasi_macros_fn(asserted_formulas& af): simplify_fmls(af, "find-quasi-macros") {}
|
||||
void operator()() override { af.apply_quasi_macros(); }
|
||||
bool should_apply() const override { return af.m_params.m_quasi_macros && af.has_quantifiers(); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_quasi_macros && af.has_quantifiers(); }
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { UNREACHABLE(); }
|
||||
};
|
||||
|
||||
|
@ -105,7 +105,7 @@ class asserted_formulas {
|
|||
public:
|
||||
nnf_cnf_fn(asserted_formulas& af): simplify_fmls(af, "nnf-cnf") {}
|
||||
void operator()() override { af.nnf_cnf(); }
|
||||
bool should_apply() const override { return af.m_params.m_nnf_cnf || (af.m_params.m_mbqi && af.has_quantifiers()); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_nnf_cnf || (af.m_smt_params.m_mbqi && af.has_quantifiers()); }
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { UNREACHABLE(); }
|
||||
};
|
||||
|
||||
|
@ -113,7 +113,7 @@ class asserted_formulas {
|
|||
public:
|
||||
propagate_values_fn(asserted_formulas& af): simplify_fmls(af, "propagate-values") {}
|
||||
void operator()() override { af.propagate_values(); }
|
||||
bool should_apply() const override { return af.m_params.m_propagate_values; }
|
||||
bool should_apply() const override { return af.m_smt_params.m_propagate_values; }
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { UNREACHABLE(); }
|
||||
};
|
||||
|
||||
|
@ -122,30 +122,30 @@ class asserted_formulas {
|
|||
public:
|
||||
distribute_forall_fn(asserted_formulas& af): simplify_fmls(af, "distribute-forall"), m_functor(af.m) {}
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { m_functor(j.get_fml(), n); }
|
||||
bool should_apply() const override { return af.m_params.m_distribute_forall && af.has_quantifiers(); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_distribute_forall && af.has_quantifiers(); }
|
||||
void post_op() override { af.reduce_and_solve(); TRACE("asserted_formulas", af.display(tout);); }
|
||||
};
|
||||
|
||||
class pattern_inference_fn : public simplify_fmls {
|
||||
pattern_inference_rw m_infer;
|
||||
public:
|
||||
pattern_inference_fn(asserted_formulas& af): simplify_fmls(af, "pattern-inference"), m_infer(af.m, af.m_params) {}
|
||||
pattern_inference_fn(asserted_formulas& af): simplify_fmls(af, "pattern-inference"), m_infer(af.m, af.m_smt_params) {}
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { m_infer(j.get_fml(), n, p); }
|
||||
bool should_apply() const override { return af.m_params.m_ematching && af.has_quantifiers(); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_ematching && af.has_quantifiers(); }
|
||||
};
|
||||
|
||||
class refine_inj_axiom_fn : public simplify_fmls {
|
||||
public:
|
||||
refine_inj_axiom_fn(asserted_formulas& af): simplify_fmls(af, "refine-injectivity") {}
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override;
|
||||
bool should_apply() const override { return af.m_params.m_refine_inj_axiom && af.has_quantifiers(); }
|
||||
bool should_apply() const override { return af.m_smt_params.m_refine_inj_axiom && af.has_quantifiers(); }
|
||||
};
|
||||
|
||||
class max_bv_sharing_fn : public simplify_fmls {
|
||||
public:
|
||||
max_bv_sharing_fn(asserted_formulas& af): simplify_fmls(af, "maximizing-bv-sharing") {}
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { af.m_bv_sharing(j.get_fml(), n, p); }
|
||||
bool should_apply() const override { return af.m_params.m_max_bv_sharing; }
|
||||
bool should_apply() const override { return af.m_smt_params.m_max_bv_sharing; }
|
||||
void post_op() override { af.m_reduce_asserted_formulas(); }
|
||||
};
|
||||
|
||||
|
@ -154,7 +154,7 @@ class asserted_formulas {
|
|||
public:
|
||||
elim_term_ite_fn(asserted_formulas& af): simplify_fmls(af, "elim-term-ite"), m_elim(af.m, af.m_defined_names) {}
|
||||
void simplify(justified_expr const& j, expr_ref& n, proof_ref& p) override { m_elim(j.get_fml(), n, p); }
|
||||
bool should_apply() const override { return af.m_params.m_eliminate_term_ite && af.m_params.m_lift_ite != LI_FULL; }
|
||||
bool should_apply() const override { return af.m_smt_params.m_eliminate_term_ite && af.m_smt_params.m_lift_ite != LI_FULL; }
|
||||
void post_op() override { af.m_formulas.append(m_elim.new_defs()); af.reduce_and_solve(); m_elim.reset(); }
|
||||
};
|
||||
|
||||
|
@ -172,13 +172,12 @@ class asserted_formulas {
|
|||
|
||||
#define MK_SIMPLIFIERF(NAME, FUNCTOR, MSG, APP, REDUCE) MK_SIMPLIFIERA(NAME, FUNCTOR, MSG, APP, (af.m), REDUCE)
|
||||
|
||||
MK_SIMPLIFIERF(pull_cheap_ite_trees, pull_cheap_ite_tree_rw, "pull-cheap-ite-trees", af.m_params.m_pull_cheap_ite_trees, false);
|
||||
MK_SIMPLIFIERF(pull_nested_quantifiers, pull_nested_quant, "pull-nested-quantifiers", af.m_params.m_pull_nested_quantifiers && af.has_quantifiers(), false);
|
||||
MK_SIMPLIFIERF(cheap_quant_fourier_motzkin, elim_bounds_rw, "cheap-fourier-motzkin", af.m_params.m_eliminate_bounds && af.has_quantifiers(), true);
|
||||
MK_SIMPLIFIERF(elim_bvs_from_quantifiers, bv_elim_rw, "eliminate-bit-vectors-from-quantifiers", af.m_params.m_bb_quantifiers, true);
|
||||
MK_SIMPLIFIERF(apply_bit2int, bit2int, "propagate-bit-vector-over-integers", af.m_params.m_simplify_bit2int, true);
|
||||
MK_SIMPLIFIERA(lift_ite, push_app_ite_rw, "lift-ite", af.m_params.m_lift_ite != LI_NONE, (af.m, af.m_params.m_lift_ite == LI_CONSERVATIVE), true);
|
||||
MK_SIMPLIFIERA(ng_lift_ite, ng_push_app_ite_rw, "lift-ite", af.m_params.m_ng_lift_ite != LI_NONE, (af.m, af.m_params.m_ng_lift_ite == LI_CONSERVATIVE), true);
|
||||
MK_SIMPLIFIERF(pull_nested_quantifiers, pull_nested_quant, "pull-nested-quantifiers", af.m_smt_params.m_pull_nested_quantifiers && af.has_quantifiers(), false);
|
||||
MK_SIMPLIFIERF(cheap_quant_fourier_motzkin, elim_bounds_rw, "cheap-fourier-motzkin", af.m_smt_params.m_eliminate_bounds && af.has_quantifiers(), true);
|
||||
MK_SIMPLIFIERF(elim_bvs_from_quantifiers, bv_elim_rw, "eliminate-bit-vectors-from-quantifiers", af.m_smt_params.m_bb_quantifiers, true);
|
||||
MK_SIMPLIFIERF(apply_bit2int, bit2int, "propagate-bit-vector-over-integers", af.m_smt_params.m_simplify_bit2int, true);
|
||||
MK_SIMPLIFIERA(lift_ite, push_app_ite_rw, "lift-ite", af.m_smt_params.m_lift_ite != LI_NONE, (af.m, af.m_smt_params.m_lift_ite == LI_CONSERVATIVE), true);
|
||||
MK_SIMPLIFIERA(ng_lift_ite, ng_push_app_ite_rw, "lift-ite", af.m_smt_params.m_ng_lift_ite != LI_NONE, (af.m, af.m_smt_params.m_ng_lift_ite == LI_CONSERVATIVE), true);
|
||||
|
||||
|
||||
reduce_asserted_formulas_fn m_reduce_asserted_formulas;
|
||||
|
@ -187,7 +186,6 @@ class asserted_formulas {
|
|||
refine_inj_axiom_fn m_refine_inj_axiom;
|
||||
max_bv_sharing_fn m_max_bv_sharing_fn;
|
||||
elim_term_ite_fn m_elim_term_ite;
|
||||
pull_cheap_ite_trees m_pull_cheap_ite_trees;
|
||||
pull_nested_quantifiers m_pull_nested_quantifiers;
|
||||
elim_bvs_from_quantifiers m_elim_bvs_from_quantifiers;
|
||||
cheap_quant_fourier_motzkin m_cheap_quant_fourier_motzkin;
|
||||
|
@ -219,14 +217,14 @@ class asserted_formulas {
|
|||
bool is_gt(expr* lhs, expr* rhs);
|
||||
void compute_depth(expr* e);
|
||||
unsigned depth(expr* e) { return m_expr2depth[e]; }
|
||||
bool pull_cheap_ite_trees();
|
||||
|
||||
void init(unsigned num_formulas, expr * const * formulas, proof * const * prs);
|
||||
|
||||
public:
|
||||
asserted_formulas(ast_manager & m, smt_params & p);
|
||||
asserted_formulas(ast_manager & m, smt_params & smtp, params_ref const& p);
|
||||
~asserted_formulas();
|
||||
|
||||
void updt_params(params_ref const& p);
|
||||
bool has_quantifiers() const { return m_has_quantifiers; }
|
||||
void setup();
|
||||
void assert_expr(expr * e, proof * in_pr);
|
||||
|
|
|
@ -3924,7 +3924,7 @@ namespace smt {
|
|||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
virtual bool check_missing_instances() {
|
||||
bool check_missing_instances() override {
|
||||
TRACE("missing_instance", tout << "checking for missing instances...\n";);
|
||||
flet<bool> l(m_check_missing_instances, true);
|
||||
rematch(false);
|
||||
|
|
|
@ -41,7 +41,7 @@ void preprocessor_params::display(std::ostream & out) const {
|
|||
|
||||
DISPLAY_PARAM(m_lift_ite);
|
||||
DISPLAY_PARAM(m_ng_lift_ite);
|
||||
DISPLAY_PARAM(m_pull_cheap_ite_trees);
|
||||
DISPLAY_PARAM(m_pull_cheap_ite);
|
||||
DISPLAY_PARAM(m_pull_nested_quantifiers);
|
||||
DISPLAY_PARAM(m_eliminate_term_ite);
|
||||
DISPLAY_PARAM(m_macro_finder);
|
||||
|
|
|
@ -32,7 +32,7 @@ struct preprocessor_params : public pattern_inference_params,
|
|||
public bit_blaster_params {
|
||||
lift_ite_kind m_lift_ite;
|
||||
lift_ite_kind m_ng_lift_ite; // lift ite for non ground terms
|
||||
bool m_pull_cheap_ite_trees;
|
||||
bool m_pull_cheap_ite;
|
||||
bool m_pull_nested_quantifiers;
|
||||
bool m_eliminate_term_ite;
|
||||
bool m_macro_finder;
|
||||
|
@ -54,7 +54,7 @@ public:
|
|||
preprocessor_params(params_ref const & p = params_ref()):
|
||||
m_lift_ite(LI_NONE),
|
||||
m_ng_lift_ite(LI_NONE),
|
||||
m_pull_cheap_ite_trees(false),
|
||||
m_pull_cheap_ite(false),
|
||||
m_pull_nested_quantifiers(false),
|
||||
m_eliminate_term_ite(false),
|
||||
m_macro_finder(false),
|
||||
|
|
|
@ -45,7 +45,7 @@ namespace smt {
|
|||
m_fparams(p),
|
||||
m_params(_p),
|
||||
m_setup(*this, p),
|
||||
m_asserted_formulas(m, p),
|
||||
m_asserted_formulas(m, p, _p),
|
||||
m_qmanager(alloc(quantifier_manager, *this, p, _p)),
|
||||
m_model_generator(alloc(model_generator, m)),
|
||||
m_relevancy_propagator(mk_relevancy_propagator(*this)),
|
||||
|
@ -132,6 +132,10 @@ namespace smt {
|
|||
return !m_manager.limit().inc();
|
||||
}
|
||||
|
||||
void context::updt_params(params_ref const& p) {
|
||||
m_params.append(p);
|
||||
m_asserted_formulas.updt_params(p);
|
||||
}
|
||||
|
||||
void context::copy(context& src_ctx, context& dst_ctx) {
|
||||
ast_manager& dst_m = dst_ctx.get_manager();
|
||||
|
@ -3143,6 +3147,7 @@ namespace smt {
|
|||
push_scope();
|
||||
for (unsigned i = 0; i < num_assumptions; i++) {
|
||||
expr * curr_assumption = assumptions[i];
|
||||
if (m_manager.is_true(curr_assumption)) continue;
|
||||
SASSERT(is_valid_assumption(m_manager, curr_assumption));
|
||||
proof * pr = m_manager.mk_asserted(curr_assumption);
|
||||
internalize_assertion(curr_assumption, pr, 0);
|
||||
|
@ -4313,9 +4318,7 @@ namespace smt {
|
|||
if (m_fparams.m_model_compact)
|
||||
m_proto_model->compress();
|
||||
TRACE("mbqi_bug", tout << "after cleanup:\n"; model_pp(tout, *m_proto_model););
|
||||
}
|
||||
else {
|
||||
|
||||
IF_VERBOSE(11, model_pp(verbose_stream(), *m_proto_model););
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -262,6 +262,8 @@ namespace smt {
|
|||
return m_params;
|
||||
}
|
||||
|
||||
void updt_params(params_ref const& p);
|
||||
|
||||
bool get_cancel_flag();
|
||||
|
||||
region & get_region() {
|
||||
|
@ -1387,7 +1389,7 @@ namespace smt {
|
|||
void flush();
|
||||
config_mode get_config_mode(bool use_static_features) const;
|
||||
virtual void setup_context(bool use_static_features);
|
||||
void setup_components(void);
|
||||
void setup_components();
|
||||
void pop_to_base_lvl();
|
||||
void pop_to_search_lvl();
|
||||
#ifdef Z3DEBUG
|
||||
|
|
|
@ -123,7 +123,6 @@ namespace smt {
|
|||
return m_kernel.preferred_sat(asms, cores);
|
||||
}
|
||||
|
||||
|
||||
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) {
|
||||
return m_kernel.find_mutexes(vars, mutexes);
|
||||
}
|
||||
|
@ -196,9 +195,7 @@ namespace smt {
|
|||
}
|
||||
|
||||
void updt_params(params_ref const & p) {
|
||||
// We don't need params2smt_params anymore. smt_params has support for reading params_ref.
|
||||
// The update is performed at smt_kernel "users".
|
||||
// params2smt_params(p, fparams());
|
||||
m_kernel.updt_params(p);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -218,7 +215,6 @@ namespace smt {
|
|||
imp::copy(*src.m_imp, *dst.m_imp);
|
||||
}
|
||||
|
||||
|
||||
bool kernel::set_logic(symbol logic) {
|
||||
return m_imp->set_logic(logic);
|
||||
}
|
||||
|
@ -263,9 +259,9 @@ namespace smt {
|
|||
}
|
||||
|
||||
void kernel::reset() {
|
||||
ast_manager & _m = m();
|
||||
ast_manager & _m = m();
|
||||
smt_params & fps = m_imp->fparams();
|
||||
params_ref ps = m_imp->params();
|
||||
params_ref ps = m_imp->params();
|
||||
#pragma omp critical (smt_kernel)
|
||||
{
|
||||
m_imp->~imp();
|
||||
|
|
|
@ -914,6 +914,7 @@ namespace smt {
|
|||
func_interp * fi = m_model->get_func_interp(f);
|
||||
if (fi == nullptr) {
|
||||
fi = alloc(func_interp, m, f->get_arity());
|
||||
TRACE("model_finder", tout << "register " << f->get_name() << "\n";);
|
||||
m_model->register_decl(f, fi);
|
||||
SASSERT(fi->is_partial());
|
||||
}
|
||||
|
@ -1784,13 +1785,8 @@ namespace smt {
|
|||
return !m_cond_macros.empty();
|
||||
}
|
||||
|
||||
macro_iterator begin_macros() const {
|
||||
return m_cond_macros.begin();
|
||||
}
|
||||
ptr_vector<cond_macro> const& macros() const { return m_cond_macros; }
|
||||
|
||||
macro_iterator end_macros() const {
|
||||
return m_cond_macros.end();
|
||||
}
|
||||
|
||||
void set_the_one(func_decl * m) {
|
||||
m_the_one = m;
|
||||
|
@ -2445,6 +2441,7 @@ namespace smt {
|
|||
m_model->register_decl(f, fi);
|
||||
}
|
||||
fi->set_else(f_else);
|
||||
TRACE("model_finder", tout << f->get_name() << " " << mk_pp(f_else, m_manager) << "\n";);
|
||||
}
|
||||
|
||||
virtual bool process(ptr_vector<quantifier> const & qs, ptr_vector<quantifier> & new_qs, ptr_vector<quantifier> & residue) = 0;
|
||||
|
@ -2499,10 +2496,7 @@ namespace smt {
|
|||
|
||||
bool process(quantifier * q, ptr_vector<quantifier> const & qs) {
|
||||
quantifier_info * qi = get_qinfo(q);
|
||||
quantifier_info::macro_iterator it = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end = qi->end_macros();
|
||||
for (; it != end; ++it) {
|
||||
cond_macro * m = *it;
|
||||
for (cond_macro* m : qi->macros()) {
|
||||
if (!m->satisfy_atom())
|
||||
continue;
|
||||
func_decl * f = m->get_f();
|
||||
|
@ -2548,10 +2542,10 @@ namespace smt {
|
|||
where Q_{f_i} is the set of quantifiers that contain the function f_i.
|
||||
Let f_i = def_i be macros (in this solver conditions are ignored).
|
||||
Let Q_{f_i = def_i} be the set of quantifiers where f_i = def_i is a macro.
|
||||
Then, the set Q can be satisfied using f_1 = def_1 ... f_n = d_n
|
||||
Then, the set Q can be satisfied using f_1 = def_1 ... f_n = def_n
|
||||
when
|
||||
|
||||
Q_{f_1} union ... union Q_{f_n} = Q_{f_1 = def_1} ... Q_{f_n = d_n} (*)
|
||||
Q_{f_1} union ... union Q_{f_n} = Q_{f_1 = def_1} ... Q_{f_n = def_n} (*)
|
||||
|
||||
So, given a set of macros f_1 = def_1, ..., f_n = d_n, it is very easy to check
|
||||
whether they can be used to satisfy all quantifiers that use f_1, ..., f_n in
|
||||
|
@ -2630,12 +2624,7 @@ namespace smt {
|
|||
s->insert(q);
|
||||
}
|
||||
|
||||
quantifier_set * get_q_f(func_decl * f) {
|
||||
quantifier_set * s = nullptr;
|
||||
m_q_f.find(f, s);
|
||||
SASSERT(s != 0);
|
||||
return s;
|
||||
}
|
||||
quantifier_set * get_q_f(func_decl * f) { return m_q_f[f]; }
|
||||
|
||||
quantifier_set * get_q_f_def(func_decl * f, expr * def) {
|
||||
quantifier_set * s = nullptr;
|
||||
|
@ -2644,12 +2633,7 @@ namespace smt {
|
|||
return s;
|
||||
}
|
||||
|
||||
expr_set * get_f_defs(func_decl * f) {
|
||||
expr_set * s = nullptr;
|
||||
m_f2defs.find(f, s);
|
||||
SASSERT(s != 0);
|
||||
return s;
|
||||
}
|
||||
expr_set * get_f_defs(func_decl * f) { return m_f2defs[f]; }
|
||||
|
||||
void reset_q_fs() {
|
||||
std::for_each(m_qsets.begin(), m_qsets.end(), delete_proc<quantifier_set>());
|
||||
|
@ -2666,10 +2650,7 @@ namespace smt {
|
|||
|
||||
bool is_candidate(quantifier * q) const {
|
||||
quantifier_info * qi = get_qinfo(q);
|
||||
quantifier_info::macro_iterator it = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end = qi->end_macros();
|
||||
for (; it != end; ++it) {
|
||||
cond_macro * m = *it;
|
||||
for (cond_macro * m : qi->macros()) {
|
||||
if (m->satisfy_atom() && !m_forbidden.contains(m->get_f()))
|
||||
return true;
|
||||
}
|
||||
|
@ -2712,10 +2693,7 @@ namespace smt {
|
|||
if (!m_forbidden.contains(f))
|
||||
insert_q_f(q, f);
|
||||
}
|
||||
quantifier_info::macro_iterator it3 = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end3 = qi->end_macros();
|
||||
for (; it3 != end3; ++it3) {
|
||||
cond_macro * m = *it3;
|
||||
for (cond_macro * m : qi->macros()) {
|
||||
if (m->satisfy_atom() && !m_forbidden.contains(m->get_f())) {
|
||||
insert_q_f_def(q, m->get_f(), m->get_def());
|
||||
m_candidates.insert(m->get_f());
|
||||
|
@ -2842,11 +2820,7 @@ namespace smt {
|
|||
void get_candidates_from_residue(func_decl_set & candidates) {
|
||||
for (quantifier * q : m_residue) {
|
||||
quantifier_info * qi = get_qinfo(q);
|
||||
|
||||
quantifier_info::macro_iterator it2 = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end2 = qi->end_macros();
|
||||
for (; it2 != end2; ++it2) {
|
||||
cond_macro * m = *it2;
|
||||
for (cond_macro * m : qi->macros()) {
|
||||
func_decl * f = m->get_f();
|
||||
if (m->satisfy_atom() && !m_forbidden.contains(f) && !m_fs.contains(f)) {
|
||||
candidates.insert(f);
|
||||
|
@ -2875,6 +2849,7 @@ namespace smt {
|
|||
|
||||
m_satisfied.push_scope();
|
||||
m_residue.push_scope();
|
||||
TRACE("model_finder", tout << f->get_name() << " " << mk_pp(def, m_manager) << "\n";);
|
||||
m_fs.insert(f, def);
|
||||
|
||||
if (update_satisfied_residue(f, def)) {
|
||||
|
@ -2889,12 +2864,56 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief check if satisfied subset introduces a cyclic dependency.
|
||||
|
||||
f_1 = def_1(f_2), ..., f_n = def_n(f_1)
|
||||
*/
|
||||
|
||||
expr_mark m_visited;
|
||||
obj_hashtable<func_decl> m_acyclic;
|
||||
bool is_cyclic() {
|
||||
m_acyclic.reset();
|
||||
while (true) {
|
||||
unsigned sz = m_acyclic.size();
|
||||
if (sz == m_fs.size()) return false; // there are no cyclic dependencies
|
||||
for (auto const& kv : m_fs) {
|
||||
func_decl * f = kv.m_key;
|
||||
if (m_acyclic.contains(f)) continue;
|
||||
if (is_acyclic(kv.m_value))
|
||||
m_acyclic.insert(f);
|
||||
}
|
||||
if (sz == m_acyclic.size()) return true; // no progress, so dependency cycle found.
|
||||
}
|
||||
}
|
||||
|
||||
struct occurs {};
|
||||
struct occurs_check {
|
||||
hint_solver& m_cls;
|
||||
occurs_check(hint_solver& hs): m_cls(hs) {}
|
||||
void operator()(app* n) { if (m_cls.m_fs.contains(n->get_decl()) && !m_cls.m_acyclic.contains(n->get_decl())) throw occurs(); }
|
||||
void operator()(var* n) {}
|
||||
void operator()(quantifier* n) {}
|
||||
};
|
||||
bool is_acyclic(expr* def) {
|
||||
m_visited.reset();
|
||||
occurs_check oc(*this);
|
||||
try {
|
||||
for_each_expr(oc, m_visited, def);
|
||||
}
|
||||
catch (occurs) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Try to reduce m_residue (if not empty) by selecting a function f
|
||||
that is a macro in the residue.
|
||||
*/
|
||||
void greedy(unsigned depth) {
|
||||
if (m_residue.empty()) {
|
||||
if (is_cyclic()) return;
|
||||
TRACE("model_finder_hint",
|
||||
tout << "found subset that is satisfied by macros\n";
|
||||
display_search_state(tout););
|
||||
|
@ -3007,11 +3026,11 @@ namespace smt {
|
|||
qi_params const * m_qi_params;
|
||||
|
||||
bool add_macro(func_decl * f, expr * f_else) {
|
||||
TRACE("non_auf_macro_solver", tout << "trying to add macro for " << f->get_name() << "\n" << mk_pp(f_else, m_manager) << "\n";);
|
||||
TRACE("model_finder", tout << "trying to add macro for " << f->get_name() << "\n" << mk_pp(f_else, m_manager) << "\n";);
|
||||
func_decl_set * s = m_dependencies.mk_func_decl_set();
|
||||
m_dependencies.collect_ng_func_decls(f_else, s);
|
||||
if (!m_dependencies.insert(f, s)) {
|
||||
TRACE("non_auf_macro_solver", tout << "failed to add macro\n";);
|
||||
TRACE("model_finder", tout << "failed to add macro\n";);
|
||||
return false; // cyclic dependency
|
||||
}
|
||||
set_else_interp(f, f_else);
|
||||
|
@ -3033,10 +3052,7 @@ namespace smt {
|
|||
cond_macro * get_macro_for(func_decl * f, quantifier * q) {
|
||||
cond_macro * r = nullptr;
|
||||
quantifier_info * qi = get_qinfo(q);
|
||||
quantifier_info::macro_iterator it = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end = qi->end_macros();
|
||||
for (; it != end; ++it) {
|
||||
cond_macro * m = *it;
|
||||
for (cond_macro * m : qi->macros()) {
|
||||
if (m->get_f() == f && !m->is_hint() && is_better_macro(m, r))
|
||||
r = m;
|
||||
}
|
||||
|
@ -3048,13 +3064,10 @@ namespace smt {
|
|||
void collect_candidates(ptr_vector<quantifier> const & qs, obj_map<func_decl, mq_pair> & full_macros, func_decl_set & cond_macros) {
|
||||
for (quantifier * q : qs) {
|
||||
quantifier_info * qi = get_qinfo(q);
|
||||
quantifier_info::macro_iterator it2 = qi->begin_macros();
|
||||
quantifier_info::macro_iterator end2 = qi->end_macros();
|
||||
for (; it2 != end2; ++it2) {
|
||||
cond_macro * m = *it2;
|
||||
for (cond_macro * m : qi->macros()) {
|
||||
if (!m->is_hint()) {
|
||||
func_decl * f = m->get_f();
|
||||
TRACE("non_auf_macro_solver", tout << "considering macro for: " << f->get_name() << "\n";
|
||||
TRACE("model_finder", tout << "considering macro for: " << f->get_name() << "\n";
|
||||
m->display(tout); tout << "\n";);
|
||||
SASSERT(m_qi_params != 0);
|
||||
if (m->is_unconditional() && (!qi->is_auf() || m->get_weight() >= m_qi_params->m_mbqi_force_template)) {
|
||||
|
|
|
@ -527,7 +527,7 @@ namespace smt {
|
|||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
bool check_relevancy_app(app * n) const {
|
||||
bool check_relevancy_app(app * n) const {
|
||||
SASSERT(is_relevant(n));
|
||||
unsigned num_args = n->get_num_args();
|
||||
for (unsigned i = 0; i < num_args; i++) {
|
||||
|
@ -537,7 +537,7 @@ namespace smt {
|
|||
return true;
|
||||
}
|
||||
|
||||
virtual bool check_relevancy_or(app * n, bool root) const {
|
||||
bool check_relevancy_or(app * n, bool root) const override {
|
||||
lbool val = root ? l_true : m_context.find_assignment(n);
|
||||
if (val == l_false)
|
||||
return check_relevancy_app(n);
|
||||
|
@ -600,7 +600,7 @@ namespace smt {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool check_relevancy(expr_ref_vector const & v) const {
|
||||
bool check_relevancy(expr_ref_vector const & v) const override {
|
||||
SASSERT(!can_propagate());
|
||||
ast_manager & m = get_manager();
|
||||
unsigned sz = v.size();
|
||||
|
|
|
@ -507,7 +507,7 @@ namespace smt {
|
|||
m_params.m_nnf_cnf = false;
|
||||
if (st.m_max_ite_tree_depth > 50) {
|
||||
m_params.m_arith_eq2ineq = false;
|
||||
m_params.m_pull_cheap_ite_trees = true;
|
||||
m_params.m_pull_cheap_ite = true;
|
||||
m_params.m_arith_propagate_eqs = true;
|
||||
m_params.m_relevancy_lvl = 2;
|
||||
m_params.m_relevancy_lemma = false;
|
||||
|
|
|
@ -469,7 +469,8 @@ namespace smt {
|
|||
if (negated) l_conseq.neg();
|
||||
|
||||
TRACE("arith_axiom", tout << mk_pp(ante, m) << "\n" << mk_pp(conseq, m) << "\n";
|
||||
tout << s_ante << "\n" << s_conseq << "\n";);
|
||||
tout << s_ante << "\n" << s_conseq << "\n";
|
||||
tout << l_ante << "\n" << l_conseq << "\n";);
|
||||
|
||||
// literal lits[2] = {l_ante, l_conseq};
|
||||
mk_clause(l_ante, l_conseq, 0, nullptr);
|
||||
|
@ -589,13 +590,13 @@ namespace smt {
|
|||
}
|
||||
|
||||
//
|
||||
// create the term: s := to_real(to_int(x)) - x
|
||||
// create the term: s := x - to_real(to_int(x))
|
||||
// add the bounds 0 <= s < 1
|
||||
//
|
||||
template<typename Ext>
|
||||
void theory_arith<Ext>::mk_to_int_axiom(app * n) {
|
||||
SASSERT(m_util.is_to_int(n));
|
||||
ast_manager & m = get_manager();
|
||||
ast_manager & m = get_manager();
|
||||
expr* x = n->get_arg(0);
|
||||
|
||||
// to_int (to_real x) = x
|
||||
|
@ -603,11 +604,15 @@ namespace smt {
|
|||
mk_axiom(m.mk_false(), m.mk_eq(to_app(x)->get_arg(0), n));
|
||||
return;
|
||||
}
|
||||
expr* to_r = m_util.mk_to_real(n);
|
||||
expr_ref lo(m_util.mk_le(to_r, x), m);
|
||||
expr_ref hi(m_util.mk_lt(x, m_util.mk_add(to_r, m_util.mk_numeral(rational(1), false))), m);
|
||||
mk_axiom(m.mk_false(), lo);
|
||||
mk_axiom(m.mk_false(), hi);
|
||||
expr_ref to_r(m_util.mk_to_real(n), m);
|
||||
expr_ref diff(m_util.mk_add(x, m_util.mk_mul(m_util.mk_real(-1), to_r)), m);
|
||||
|
||||
expr_ref lo(m_util.mk_ge(diff, m_util.mk_real(0)), m);
|
||||
expr_ref hi(m_util.mk_ge(diff, m_util.mk_real(1)), m);
|
||||
hi = m.mk_not(hi);
|
||||
|
||||
mk_axiom(m.mk_false(), lo, false);
|
||||
mk_axiom(m.mk_false(), hi, false);
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
|
@ -1202,7 +1207,7 @@ namespace smt {
|
|||
|
||||
template<typename Ext>
|
||||
bool theory_arith<Ext>::internalize_atom(app * n, bool gate_ctx) {
|
||||
TRACE("arith_internalize", tout << "internalising atom:\n" << mk_pp(n, this->get_manager()) << "\n";);
|
||||
TRACE("arith_internalize", tout << "internalizing atom:\n" << mk_pp(n, this->get_manager()) << "\n";);
|
||||
context & ctx = get_context();
|
||||
SASSERT(m_util.is_le(n) || m_util.is_ge(n) || m_util.is_is_int(n));
|
||||
SASSERT(!ctx.b_internalized(n));
|
||||
|
|
|
@ -167,7 +167,7 @@ namespace smt {
|
|||
func_decl * upd = n->get_decl();
|
||||
func_decl * acc = to_func_decl(upd->get_parameter(0).get_ast());
|
||||
func_decl * con = m_util.get_accessor_constructor(acc);
|
||||
func_decl * rec = m_util.get_constructor_recognizer(con);
|
||||
func_decl * rec = m_util.get_constructor_is(con);
|
||||
ptr_vector<func_decl> const & accessors = *m_util.get_constructor_accessors(con);
|
||||
app_ref rec_app(m.mk_app(rec, arg1), m);
|
||||
ctx.internalize(rec_app, false);
|
||||
|
@ -710,7 +710,7 @@ namespace smt {
|
|||
literal consequent;
|
||||
if (!r) {
|
||||
ptr_vector<func_decl> const & constructors = *m_util.get_datatype_constructors(dt);
|
||||
func_decl * rec = m_util.get_constructor_recognizer(constructors[unassigned_idx]);
|
||||
func_decl * rec = m_util.get_constructor_is(constructors[unassigned_idx]);
|
||||
app * rec_app = get_manager().mk_app(rec, n->get_owner());
|
||||
ctx.internalize(rec_app, false);
|
||||
consequent = literal(ctx.get_bool_var(rec_app));
|
||||
|
@ -751,12 +751,12 @@ namespace smt {
|
|||
m_stats.m_splits++;
|
||||
|
||||
if (d->m_recognizers.empty()) {
|
||||
r = m_util.get_constructor_recognizer(non_rec_c);
|
||||
r = m_util.get_constructor_is(non_rec_c);
|
||||
}
|
||||
else {
|
||||
enode * recognizer = d->m_recognizers[non_rec_idx];
|
||||
if (recognizer == nullptr) {
|
||||
r = m_util.get_constructor_recognizer(non_rec_c);
|
||||
r = m_util.get_constructor_is(non_rec_c);
|
||||
}
|
||||
else if (!ctx.is_relevant(recognizer)) {
|
||||
ctx.mark_as_relevant(recognizer);
|
||||
|
@ -776,7 +776,7 @@ namespace smt {
|
|||
if (curr == nullptr) {
|
||||
ptr_vector<func_decl> const & constructors = *m_util.get_datatype_constructors(s);
|
||||
// found empty slot...
|
||||
r = m_util.get_constructor_recognizer(constructors[idx]);
|
||||
r = m_util.get_constructor_is(constructors[idx]);
|
||||
break;
|
||||
}
|
||||
else if (!ctx.is_relevant(curr)) {
|
||||
|
|
|
@ -2346,28 +2346,31 @@ bool theory_seq::check_int_string() {
|
|||
bool change = false;
|
||||
for (unsigned i = 0; i < m_int_string.size(); ++i) {
|
||||
expr* e = m_int_string[i].get(), *n;
|
||||
if (m_util.str.is_itos(e) && add_itos_axiom(e)) {
|
||||
if (m_util.str.is_itos(e) && add_itos_val_axiom(e)) {
|
||||
change = true;
|
||||
}
|
||||
else if (m_util.str.is_stoi(e, n) && add_stoi_axiom(e)) {
|
||||
else if (m_util.str.is_stoi(e, n) && add_stoi_val_axiom(e)) {
|
||||
change = true;
|
||||
}
|
||||
}
|
||||
return change;
|
||||
}
|
||||
|
||||
bool theory_seq::add_stoi_axiom(expr* e) {
|
||||
void theory_seq::add_stoi_axiom(expr* e) {
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
SASSERT(m_util.str.is_stoi(e));
|
||||
literal l = mk_simplified_literal(m_autil.mk_ge(e, arith_util(m).mk_int(-1)));
|
||||
add_axiom(l);
|
||||
}
|
||||
|
||||
bool theory_seq::add_stoi_val_axiom(expr* e) {
|
||||
context& ctx = get_context();
|
||||
expr* n = nullptr;
|
||||
rational val;
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
VERIFY(m_util.str.is_stoi(e, n));
|
||||
if (!get_num_value(e, val)) {
|
||||
literal l = mk_simplified_literal(m_autil.mk_ge(e, arith_util(m).mk_int(-1)));
|
||||
add_axiom(l);
|
||||
TRACE("seq", tout << l << " " << ctx.get_assignment(l) << "\n";
|
||||
ctx.display(tout););
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
if (!m_stoi_axioms.contains(val)) {
|
||||
m_stoi_axioms.insert(val);
|
||||
|
@ -2445,54 +2448,60 @@ expr_ref theory_seq::digit2int(expr* ch) {
|
|||
return expr_ref(mk_skolem(symbol("seq.digit2int"), ch, nullptr, nullptr, m_autil.mk_int()), m);
|
||||
}
|
||||
|
||||
bool theory_seq::add_itos_axiom(expr* e) {
|
||||
void theory_seq::add_itos_axiom(expr* e) {
|
||||
rational val;
|
||||
expr* n = nullptr;
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
VERIFY(m_util.str.is_itos(e, n));
|
||||
|
||||
// itos(n) = "" <=> n < 0
|
||||
app_ref e1(m_util.str.mk_empty(m.get_sort(e)), m);
|
||||
expr_ref zero(arith_util(m).mk_int(0), m);
|
||||
literal eq1 = mk_eq(e1, e, false);
|
||||
literal ge0 = mk_literal(m_autil.mk_ge(n, zero));
|
||||
// n >= 0 => itos(n) != ""
|
||||
// itos(n) = "" or n >= 0
|
||||
add_axiom(~eq1, ~ge0);
|
||||
add_axiom(eq1, ge0);
|
||||
|
||||
// n >= 0 => stoi(itos(n)) = n
|
||||
app_ref stoi(m_util.str.mk_stoi(e), m);
|
||||
add_axiom(~ge0, mk_eq(stoi, n, false));
|
||||
|
||||
// n >= 0 => itos(n) in (0-9)+
|
||||
expr_ref num_re(m);
|
||||
num_re = m_util.re.mk_range(m_util.str.mk_string(symbol("0")), m_util.str.mk_string(symbol("9")));
|
||||
num_re = m_util.re.mk_plus(num_re);
|
||||
app_ref in_re(m_util.re.mk_in_re(e, num_re), m);
|
||||
add_axiom(~ge0, mk_literal(in_re));
|
||||
}
|
||||
|
||||
bool theory_seq::add_itos_val_axiom(expr* e) {
|
||||
context& ctx = get_context();
|
||||
rational val;
|
||||
expr* n = nullptr;
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
VERIFY(m_util.str.is_itos(e, n));
|
||||
if (get_num_value(n, val)) {
|
||||
if (!m_itos_axioms.contains(val)) {
|
||||
m_itos_axioms.insert(val);
|
||||
app_ref e1(m_util.str.mk_string(symbol(val.to_string().c_str())), m);
|
||||
expr_ref n1(arith_util(m).mk_numeral(val, true), m);
|
||||
bool change = false;
|
||||
|
||||
// itos(n) = "25" <=> n = 25
|
||||
literal eq1 = mk_eq(n1, n , false);
|
||||
literal eq2 = mk_eq(e, e1, false);
|
||||
add_axiom(~eq1, eq2);
|
||||
add_axiom(~eq2, eq1);
|
||||
ctx.force_phase(eq1);
|
||||
ctx.force_phase(eq2);
|
||||
|
||||
m_trail_stack.push(insert_map<theory_seq, rational_set, rational>(m_itos_axioms, val));
|
||||
m_trail_stack.push(push_replay(alloc(replay_axiom, m, e)));
|
||||
return true;
|
||||
}
|
||||
if (get_num_value(n, val) && !val.is_neg() && !m_itos_axioms.contains(val)) {
|
||||
m_itos_axioms.insert(val);
|
||||
app_ref e1(m_util.str.mk_string(symbol(val.to_string().c_str())), m);
|
||||
expr_ref n1(arith_util(m).mk_numeral(val, true), m);
|
||||
|
||||
// itos(n) = "25" <=> n = 25
|
||||
literal eq1 = mk_eq(n1, n , false);
|
||||
literal eq2 = mk_eq(e, e1, false);
|
||||
add_axiom(~eq1, eq2);
|
||||
add_axiom(~eq2, eq1);
|
||||
ctx.force_phase(eq1);
|
||||
ctx.force_phase(eq2);
|
||||
|
||||
m_trail_stack.push(insert_map<theory_seq, rational_set, rational>(m_itos_axioms, val));
|
||||
m_trail_stack.push(push_replay(alloc(replay_axiom, m, e)));
|
||||
change = true;
|
||||
}
|
||||
else {
|
||||
// stoi(itos(n)) = n
|
||||
app_ref e2(m_util.str.mk_stoi(e), m);
|
||||
if (ctx.e_internalized(e2) && ctx.get_enode(e2)->get_root() == ctx.get_enode(n)->get_root()) {
|
||||
return false;
|
||||
}
|
||||
add_axiom(mk_eq(e2, n, false));
|
||||
|
||||
#if 1
|
||||
expr_ref num_re(m), opt_re(m);
|
||||
num_re = m_util.re.mk_range(m_util.str.mk_string(symbol("0")), m_util.str.mk_string(symbol("9")));
|
||||
num_re = m_util.re.mk_plus(num_re);
|
||||
opt_re = m_util.re.mk_opt(m_util.re.mk_to_re(m_util.str.mk_string(symbol("-"))));
|
||||
num_re = m_util.re.mk_concat(opt_re, num_re);
|
||||
app_ref in_re(m_util.re.mk_in_re(e, num_re), m);
|
||||
internalize_term(in_re);
|
||||
propagate_in_re(in_re, true);
|
||||
#endif
|
||||
m_trail_stack.push(push_replay(alloc(replay_axiom, m, e)));
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
return change;
|
||||
}
|
||||
|
||||
void theory_seq::apply_sort_cnstr(enode* n, sort* s) {
|
||||
|
@ -2721,13 +2730,12 @@ public:
|
|||
bool is_string = th.m_util.is_string(m_sort);
|
||||
expr_ref result(th.m);
|
||||
if (is_string) {
|
||||
svector<unsigned> sbuffer;
|
||||
unsigned_vector sbuffer;
|
||||
bv_util bv(th.m);
|
||||
rational val;
|
||||
unsigned sz;
|
||||
|
||||
for (unsigned i = 0; i < m_source.size(); ++i) {
|
||||
switch (m_source[i]) {
|
||||
for (source_t src : m_source) {
|
||||
switch (src) {
|
||||
case unit_source: {
|
||||
VERIFY(bv.is_numeral(values[j++], val, sz));
|
||||
sbuffer.push_back(val.get_unsigned());
|
||||
|
@ -2757,12 +2765,13 @@ public:
|
|||
break;
|
||||
}
|
||||
}
|
||||
// TRACE("seq", tout << src << " " << sbuffer << "\n";);
|
||||
}
|
||||
result = th.m_util.str.mk_string(zstring(sbuffer.size(), sbuffer.c_ptr()));
|
||||
}
|
||||
else {
|
||||
for (unsigned i = 0; i < m_source.size(); ++i) {
|
||||
switch (m_source[i]) {
|
||||
for (source_t src : m_source) {
|
||||
switch (src) {
|
||||
case unit_source:
|
||||
args.push_back(th.m_util.str.mk_unit(values[j++]));
|
||||
break;
|
||||
|
@ -2804,8 +2813,8 @@ model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) {
|
|||
seq_value_proc* sv = alloc(seq_value_proc, *this, srt);
|
||||
|
||||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
for (unsigned i = 0; i < concats.size(); ++i) {
|
||||
expr* c = concats[i], *c1;
|
||||
for (expr* c : concats) {
|
||||
expr *c1;
|
||||
TRACE("seq", tout << mk_pp(c, m) << "\n";);
|
||||
if (m_util.str.is_unit(c, c1)) {
|
||||
if (ctx.e_internalized(c1)) {
|
||||
|
@ -3048,8 +3057,11 @@ expr_ref theory_seq::expand1(expr* e0, dependency*& eqs) {
|
|||
enode* n2 = ctx.get_enode(e1);
|
||||
res = m_util.str.mk_string(symbol(val.to_string().c_str()));
|
||||
#if 1
|
||||
if (val.is_neg()) {
|
||||
result = e;
|
||||
}
|
||||
// TBD remove this: using roots is unsound for propagation.
|
||||
if (n1->get_root() == n2->get_root()) {
|
||||
else if (n1->get_root() == n2->get_root()) {
|
||||
result = res;
|
||||
deps = m_dm.mk_join(deps, m_dm.mk_leaf(assumption(n1, n2)));
|
||||
}
|
||||
|
@ -3147,6 +3159,9 @@ void theory_seq::deque_axiom(expr* n) {
|
|||
else if (m_util.str.is_itos(n)) {
|
||||
add_itos_axiom(n);
|
||||
}
|
||||
else if (m_util.str.is_stoi(n)) {
|
||||
add_stoi_axiom(n);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -3366,9 +3381,9 @@ void theory_seq::add_itos_length_axiom(expr* len) {
|
|||
rational len1, len2;
|
||||
rational ten(10);
|
||||
if (get_num_value(n, len1)) {
|
||||
bool neg = len1.is_neg();
|
||||
if (neg) len1.neg();
|
||||
num_char1 = neg?2:1;
|
||||
if (len1.is_neg()) {
|
||||
return;
|
||||
}
|
||||
// 0 <= x < 10
|
||||
// 10 <= x < 100
|
||||
// 100 <= x < 1000
|
||||
|
@ -3387,13 +3402,12 @@ void theory_seq::add_itos_length_axiom(expr* len) {
|
|||
|
||||
literal len_le(mk_literal(m_autil.mk_le(len, m_autil.mk_int(num_char))));
|
||||
literal len_ge(mk_literal(m_autil.mk_ge(len, m_autil.mk_int(num_char))));
|
||||
literal n_ge_0(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(0))));
|
||||
add_axiom(~n_ge_0, mk_literal(m_autil.mk_ge(len, m_autil.mk_int(1))));
|
||||
|
||||
if (num_char == 1) {
|
||||
add_axiom(len_ge);
|
||||
literal n_ge_0(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(0))));
|
||||
literal n_ge_10(mk_literal(m_autil.mk_ge(n, m_autil.mk_int(10))));
|
||||
add_axiom(~n_ge_0, n_ge_10, len_le);
|
||||
add_axiom(~len_le, n_ge_0);
|
||||
add_axiom(~len_le, ~n_ge_10);
|
||||
return;
|
||||
}
|
||||
|
@ -3401,22 +3415,13 @@ void theory_seq::add_itos_length_axiom(expr* len) {
|
|||
for (unsigned i = 2; i < num_char; ++i) {
|
||||
hi *= ten;
|
||||
}
|
||||
// n <= -hi or n >= hi*10 <=> len >= num_chars
|
||||
// -10*hi < n < 100*hi <=> len <= num_chars
|
||||
literal n_le_hi = mk_literal(m_autil.mk_le(n, m_autil.mk_numeral(-hi, true)));
|
||||
// n >= hi*10 <=> len >= num_chars
|
||||
// n < 100*hi <=> len <= num_chars
|
||||
literal n_ge_10hi = mk_literal(m_autil.mk_ge(n, m_autil.mk_numeral(ten*hi, true)));
|
||||
literal n_le_m10hi = mk_literal(m_autil.mk_le(n, m_autil.mk_numeral(-ten*hi, true)));
|
||||
literal n_ge_100hi = mk_literal(m_autil.mk_ge(n, m_autil.mk_numeral(ten*ten*hi, true)));
|
||||
|
||||
add_axiom(~n_le_hi, len_ge);
|
||||
add_axiom(~n_ge_10hi, len_ge);
|
||||
add_axiom(n_le_hi, n_ge_10hi, ~len_ge);
|
||||
|
||||
add_axiom(n_le_m10hi, n_ge_100hi, len_le);
|
||||
add_axiom(~n_le_m10hi, ~len_le);
|
||||
add_axiom(~n_ge_100hi, ~len_le);
|
||||
|
||||
add_axiom(mk_literal(m_autil.mk_ge(len, m_autil.mk_int(1))));
|
||||
}
|
||||
|
||||
|
||||
|
@ -3729,6 +3734,7 @@ bool theory_seq::is_extract_suffix(expr* s, expr* i, expr* l) {
|
|||
|
||||
/*
|
||||
0 <= l <= len(s) => s = ey & l = len(e)
|
||||
len(s) < l => s = e
|
||||
*/
|
||||
void theory_seq::add_extract_prefix_axiom(expr* e, expr* s, expr* l) {
|
||||
TRACE("seq", tout << mk_pp(e, m) << " " << mk_pp(s, m) << " " << mk_pp(l, m) << "\n";);
|
||||
|
@ -3743,6 +3749,7 @@ void theory_seq::add_extract_prefix_axiom(expr* e, expr* s, expr* l) {
|
|||
add_axiom(~l_ge_0, ~l_le_s, mk_seq_eq(s, ey));
|
||||
add_axiom(~l_ge_0, ~l_le_s, mk_eq(l, le, false));
|
||||
add_axiom(~l_ge_0, ~l_le_s, mk_eq(ls_minus_l, m_util.str.mk_length(y), false));
|
||||
add_axiom(l_le_s, mk_eq(e, s, false));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -4214,7 +4221,9 @@ void theory_seq::relevant_eh(app* n) {
|
|||
m_util.str.is_extract(n) ||
|
||||
m_util.str.is_at(n) ||
|
||||
m_util.str.is_empty(n) ||
|
||||
m_util.str.is_string(n)) {
|
||||
m_util.str.is_string(n) ||
|
||||
m_util.str.is_itos(n) ||
|
||||
m_util.str.is_stoi(n)) {
|
||||
enque_axiom(n);
|
||||
}
|
||||
|
||||
|
|
|
@ -507,8 +507,10 @@ namespace smt {
|
|||
void add_elim_string_axiom(expr* n);
|
||||
void add_at_axiom(expr* n);
|
||||
void add_in_re_axiom(expr* n);
|
||||
bool add_stoi_axiom(expr* n);
|
||||
bool add_itos_axiom(expr* n);
|
||||
void add_itos_axiom(expr* n);
|
||||
void add_stoi_axiom(expr* n);
|
||||
bool add_stoi_val_axiom(expr* n);
|
||||
bool add_itos_val_axiom(expr* n);
|
||||
literal is_digit(expr* ch);
|
||||
expr_ref digit2int(expr* ch);
|
||||
void add_itos_length_axiom(expr* n);
|
||||
|
|
|
@ -668,7 +668,6 @@ namespace smt {
|
|||
}
|
||||
|
||||
app * theory_str::mk_indexof(expr * haystack, expr * needle) {
|
||||
// TODO check meaning of the third argument here
|
||||
app * indexof = u.str.mk_index(haystack, needle, mk_int(0));
|
||||
m_trail.push_back(indexof);
|
||||
// immediately force internalization so that axiom setup does not fail
|
||||
|
@ -877,14 +876,7 @@ namespace smt {
|
|||
instantiate_axiom_Contains(e);
|
||||
} else if (u.str.is_index(a)) {
|
||||
instantiate_axiom_Indexof(e);
|
||||
/* TODO NEXT: Indexof2/Lastindexof rewrite?
|
||||
} else if (is_Indexof2(e)) {
|
||||
instantiate_axiom_Indexof2(e);
|
||||
} else if (is_LastIndexof(e)) {
|
||||
instantiate_axiom_LastIndexof(e);
|
||||
*/
|
||||
} else if (u.str.is_extract(a)) {
|
||||
// TODO check semantics of substr vs. extract
|
||||
instantiate_axiom_Substr(e);
|
||||
} else if (u.str.is_replace(a)) {
|
||||
instantiate_axiom_Replace(e);
|
||||
|
@ -1265,27 +1257,37 @@ namespace smt {
|
|||
context & ctx = get_context();
|
||||
ast_manager & m = get_manager();
|
||||
|
||||
app * expr = e->get_owner();
|
||||
if (axiomatized_terms.contains(expr)) {
|
||||
TRACE("str", tout << "already set up Indexof axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
app * ex = e->get_owner();
|
||||
if (axiomatized_terms.contains(ex)) {
|
||||
TRACE("str", tout << "already set up str.indexof axiom for " << mk_pp(ex, m) << std::endl;);
|
||||
return;
|
||||
}
|
||||
axiomatized_terms.insert(expr);
|
||||
SASSERT(ex->get_num_args() == 3);
|
||||
// if the third argument is exactly the integer 0, we can use this "simple" indexof;
|
||||
// otherwise, we call the "extended" version
|
||||
expr * startingPosition = ex->get_arg(2);
|
||||
rational startingInteger;
|
||||
if (!m_autil.is_numeral(startingPosition, startingInteger) || !startingInteger.is_zero()) {
|
||||
// "extended" indexof term with prefix
|
||||
instantiate_axiom_Indexof_extended(e);
|
||||
return;
|
||||
}
|
||||
axiomatized_terms.insert(ex);
|
||||
|
||||
TRACE("str", tout << "instantiate Indexof axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
TRACE("str", tout << "instantiate str.indexof axiom for " << mk_pp(ex, m) << std::endl;);
|
||||
|
||||
expr_ref x1(mk_str_var("x1"), m);
|
||||
expr_ref x2(mk_str_var("x2"), m);
|
||||
expr_ref indexAst(mk_int_var("index"), m);
|
||||
|
||||
expr_ref condAst(mk_contains(expr->get_arg(0), expr->get_arg(1)), m);
|
||||
expr_ref condAst(mk_contains(ex->get_arg(0), ex->get_arg(1)), m);
|
||||
SASSERT(condAst);
|
||||
|
||||
// -----------------------
|
||||
// true branch
|
||||
expr_ref_vector thenItems(m);
|
||||
// args[0] = x1 . args[1] . x2
|
||||
thenItems.push_back(ctx.mk_eq_atom(expr->get_arg(0), mk_concat(x1, mk_concat(expr->get_arg(1), x2))));
|
||||
thenItems.push_back(ctx.mk_eq_atom(ex->get_arg(0), mk_concat(x1, mk_concat(ex->get_arg(1), x2))));
|
||||
// indexAst = |x1|
|
||||
thenItems.push_back(ctx.mk_eq_atom(indexAst, mk_strlen(x1)));
|
||||
// args[0] = x3 . x4
|
||||
|
@ -1293,11 +1295,11 @@ namespace smt {
|
|||
// /\ ! contains(x3, args[1])
|
||||
expr_ref x3(mk_str_var("x3"), m);
|
||||
expr_ref x4(mk_str_var("x4"), m);
|
||||
expr_ref tmpLen(m_autil.mk_add(indexAst, mk_strlen(expr->get_arg(1)), mk_int(-1)), m);
|
||||
expr_ref tmpLen(m_autil.mk_add(indexAst, mk_strlen(ex->get_arg(1)), mk_int(-1)), m);
|
||||
SASSERT(tmpLen);
|
||||
thenItems.push_back(ctx.mk_eq_atom(expr->get_arg(0), mk_concat(x3, x4)));
|
||||
thenItems.push_back(ctx.mk_eq_atom(ex->get_arg(0), mk_concat(x3, x4)));
|
||||
thenItems.push_back(ctx.mk_eq_atom(mk_strlen(x3), tmpLen));
|
||||
thenItems.push_back(mk_not(m, mk_contains(x3, expr->get_arg(1))));
|
||||
thenItems.push_back(mk_not(m, mk_contains(x3, ex->get_arg(1))));
|
||||
expr_ref thenBranch(m.mk_and(thenItems.size(), thenItems.c_ptr()), m);
|
||||
SASSERT(thenBranch);
|
||||
|
||||
|
@ -1309,26 +1311,42 @@ namespace smt {
|
|||
expr_ref breakdownAssert(m.mk_ite(condAst, thenBranch, elseBranch), m);
|
||||
SASSERT(breakdownAssert);
|
||||
|
||||
expr_ref reduceToIndex(ctx.mk_eq_atom(expr, indexAst), m);
|
||||
expr_ref reduceToIndex(ctx.mk_eq_atom(ex, indexAst), m);
|
||||
SASSERT(reduceToIndex);
|
||||
|
||||
expr_ref finalAxiom(m.mk_and(breakdownAssert, reduceToIndex), m);
|
||||
SASSERT(finalAxiom);
|
||||
assert_axiom(finalAxiom);
|
||||
|
||||
{
|
||||
// heuristic: integrate with str.contains information
|
||||
// (but don't introduce it if it isn't already in the instance)
|
||||
expr_ref haystack(ex->get_arg(0), m), needle(ex->get_arg(1), m), startIdx(ex->get_arg(2), m);
|
||||
expr_ref zeroAst(mk_int(0), m);
|
||||
// (H contains N) <==> (H indexof N, i) >= 0
|
||||
expr_ref premise(u.str.mk_contains(haystack, needle), m);
|
||||
ctx.internalize(premise, false);
|
||||
expr_ref conclusion(m_autil.mk_ge(ex, zeroAst), m);
|
||||
expr_ref containsAxiom(ctx.mk_eq_atom(premise, conclusion), m);
|
||||
SASSERT(containsAxiom);
|
||||
// we can't assert this during init_search as it breaks an invariant if the instance becomes inconsistent
|
||||
m_delayed_axiom_setup_terms.push_back(containsAxiom);
|
||||
}
|
||||
}
|
||||
|
||||
void theory_str::instantiate_axiom_Indexof2(enode * e) {
|
||||
void theory_str::instantiate_axiom_Indexof_extended(enode * e) {
|
||||
context & ctx = get_context();
|
||||
ast_manager & m = get_manager();
|
||||
|
||||
app * expr = e->get_owner();
|
||||
if (axiomatized_terms.contains(expr)) {
|
||||
TRACE("str", tout << "already set up Indexof2 axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
TRACE("str", tout << "already set up extended str.indexof axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
return;
|
||||
}
|
||||
SASSERT(expr->get_num_args() == 3);
|
||||
axiomatized_terms.insert(expr);
|
||||
|
||||
TRACE("str", tout << "instantiate Indexof2 axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
TRACE("str", tout << "instantiate extended str.indexof axiom for " << mk_pp(expr, m) << std::endl;);
|
||||
|
||||
// -------------------------------------------------------------------------------
|
||||
// if (arg[2] >= length(arg[0])) // ite2
|
||||
|
@ -1360,7 +1378,7 @@ namespace smt {
|
|||
ite2ElseItems.push_back(ctx.mk_eq_atom(indexAst, mk_indexof(suffix, expr->get_arg(1))));
|
||||
ite2ElseItems.push_back(ctx.mk_eq_atom(expr->get_arg(2), prefixLen));
|
||||
ite2ElseItems.push_back(ite3);
|
||||
expr_ref ite2Else(m.mk_and(ite2ElseItems.size(), ite2ElseItems.c_ptr()), m);
|
||||
expr_ref ite2Else(mk_and(ite2ElseItems), m);
|
||||
SASSERT(ite2Else);
|
||||
|
||||
expr_ref ite2(m.mk_ite(
|
||||
|
@ -1383,6 +1401,20 @@ namespace smt {
|
|||
expr_ref reduceTerm(ctx.mk_eq_atom(expr, resAst), m);
|
||||
SASSERT(reduceTerm);
|
||||
assert_axiom(reduceTerm);
|
||||
|
||||
{
|
||||
// heuristic: integrate with str.contains information
|
||||
// (but don't introduce it if it isn't already in the instance)
|
||||
expr_ref haystack(expr->get_arg(0), m), needle(expr->get_arg(1), m), startIdx(expr->get_arg(2), m);
|
||||
// (H contains N) <==> (H indexof N, i) >= 0
|
||||
expr_ref premise(u.str.mk_contains(haystack, needle), m);
|
||||
ctx.internalize(premise, false);
|
||||
expr_ref conclusion(m_autil.mk_ge(expr, zeroAst), m);
|
||||
expr_ref containsAxiom(ctx.mk_eq_atom(premise, conclusion), m);
|
||||
SASSERT(containsAxiom);
|
||||
// we can't assert this during init_search as it breaks an invariant if the instance becomes inconsistent
|
||||
m_delayed_axiom_setup_terms.push_back(containsAxiom);
|
||||
}
|
||||
}
|
||||
|
||||
void theory_str::instantiate_axiom_LastIndexof(enode * e) {
|
||||
|
@ -1854,8 +1886,11 @@ namespace smt {
|
|||
// trivially true for any string!
|
||||
assert_axiom(ex);
|
||||
} else if (u.re.is_full_char(regex)) {
|
||||
TRACE("str", tout << "ERROR: unknown regex expression " << mk_pp(regex, m) << "!" << std::endl;);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
// any char = any string of length 1
|
||||
expr_ref rhs(ctx.mk_eq_atom(mk_strlen(str), mk_int(1)), m);
|
||||
expr_ref finalAxiom(m.mk_iff(ex, rhs), m);
|
||||
SASSERT(finalAxiom);
|
||||
assert_axiom(finalAxiom);
|
||||
} else {
|
||||
TRACE("str", tout << "ERROR: unknown regex expression " << mk_pp(regex, m) << "!" << std::endl;);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
|
@ -5602,6 +5637,8 @@ namespace smt {
|
|||
// merge arg0 and arg1
|
||||
expr * arg0 = to_app(node)->get_arg(0);
|
||||
expr * arg1 = to_app(node)->get_arg(1);
|
||||
SASSERT(arg0 != node);
|
||||
SASSERT(arg1 != node);
|
||||
expr * arg0DeAlias = dealias_node(arg0, varAliasMap, concatAliasMap);
|
||||
expr * arg1DeAlias = dealias_node(arg1, varAliasMap, concatAliasMap);
|
||||
get_grounded_concats(arg0DeAlias, varAliasMap, concatAliasMap, varConstMap, concatConstMap, varEqConcatMap, groundedMap);
|
||||
|
@ -6369,6 +6406,13 @@ namespace smt {
|
|||
make_transition(tmp, ch, tmp);
|
||||
}
|
||||
TRACE("str", tout << "re.all NFA: start = " << start << ", end = " << end << std::endl;);
|
||||
} else if (u.re.is_full_char(e)) {
|
||||
// effectively . (match any one character)
|
||||
for (unsigned int i = 0; i < 256; ++i) {
|
||||
char ch = (char)i;
|
||||
make_transition(start, ch, end);
|
||||
}
|
||||
TRACE("str", tout << "re.allchar NFA: start = " << start << ", end = " << end << std::endl;);
|
||||
} else {
|
||||
TRACE("str", tout << "invalid regular expression" << std::endl;);
|
||||
m_valid = false;
|
||||
|
@ -9678,8 +9722,8 @@ namespace smt {
|
|||
context & ctx = get_context();
|
||||
ast_manager & m = get_manager();
|
||||
|
||||
expr_ref_vector assignments(m);
|
||||
ctx.get_assignments(assignments);
|
||||
//expr_ref_vector assignments(m);
|
||||
//ctx.get_assignments(assignments);
|
||||
|
||||
if (opt_VerifyFinalCheckProgress) {
|
||||
finalCheckProgressIndicator = false;
|
||||
|
|
|
@ -538,7 +538,7 @@ protected:
|
|||
void instantiate_axiom_suffixof(enode * e);
|
||||
void instantiate_axiom_Contains(enode * e);
|
||||
void instantiate_axiom_Indexof(enode * e);
|
||||
void instantiate_axiom_Indexof2(enode * e);
|
||||
void instantiate_axiom_Indexof_extended(enode * e);
|
||||
void instantiate_axiom_LastIndexof(enode * e);
|
||||
void instantiate_axiom_Substr(enode * e);
|
||||
void instantiate_axiom_Replace(enode * e);
|
||||
|
|
|
@ -18,10 +18,11 @@ Author:
|
|||
Notes:
|
||||
|
||||
--*/
|
||||
#include "solver/solver.h"
|
||||
#include "util/scoped_timer.h"
|
||||
#include "solver/combined_solver_params.hpp"
|
||||
#include "util/common_msgs.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "solver/solver.h"
|
||||
#include "solver/combined_solver_params.hpp"
|
||||
#define PS_VB_LVL 15
|
||||
|
||||
/**
|
||||
|
|
|
@ -267,7 +267,7 @@ struct aig_manager::imp {
|
|||
}
|
||||
if (b == r) {
|
||||
if (sign1) {
|
||||
// subsitution
|
||||
// substitution
|
||||
// not (a and b) and r --> (not a) and r IF b == r
|
||||
l = a;
|
||||
l.invert();
|
||||
|
|
|
@ -459,7 +459,7 @@ public:
|
|||
SASSERT(g->is_well_sorted());
|
||||
}
|
||||
|
||||
void cleanup(void) override {
|
||||
void cleanup() override {
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -582,7 +582,7 @@ struct ctx_simplify_tactic::imp {
|
|||
for (unsigned i = 0; !g.inconsistent() && i < sz; ++i) {
|
||||
expr * t = g.form(i);
|
||||
process(t, r);
|
||||
proof* new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite_star(t, r, 0, nullptr)); // TODO :-)
|
||||
proof* new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite(t, r));
|
||||
g.update(i, r, new_pr, g.dep(i));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -382,7 +382,7 @@ void dom_simplify_tactic::simplify_goal(goal& g) {
|
|||
change |= r != g.form(i);
|
||||
proof* new_pr = nullptr;
|
||||
if (g.proofs_enabled()) {
|
||||
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite_star(g.form(i), r, 0, nullptr));
|
||||
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite(g.form(i), r));
|
||||
}
|
||||
g.update(i, r, new_pr, g.dep(i));
|
||||
}
|
||||
|
@ -402,7 +402,7 @@ void dom_simplify_tactic::simplify_goal(goal& g) {
|
|||
CTRACE("simplify", r != g.form(i), tout << r << " " << mk_pp(g.form(i), m) << "\n";);
|
||||
proof* new_pr = nullptr;
|
||||
if (g.proofs_enabled()) {
|
||||
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite_star(g.form(i), r, 0, nullptr));
|
||||
new_pr = m.mk_modus_ponens(g.pr(i), m.mk_rewrite(g.form(i), r));
|
||||
}
|
||||
g.update(i, r, new_pr, g.dep(i));
|
||||
}
|
||||
|
|
|
@ -65,7 +65,7 @@ protected:
|
|||
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move,
|
||||
mpz const & max_score, expr * objective);
|
||||
|
||||
mpz top_score(void) {
|
||||
mpz top_score() {
|
||||
mpz res(0);
|
||||
obj_hashtable<expr> const & top_exprs = m_obj_tracker.get_top_exprs();
|
||||
for (obj_hashtable<expr>::iterator it = top_exprs.begin();
|
||||
|
|
|
@ -99,7 +99,7 @@ public:
|
|||
|
||||
// stats const & get_stats(void) { return m_stats; }
|
||||
void collect_statistics(statistics & st) const;
|
||||
void reset_statistics(void) { m_stats.reset(); }
|
||||
void reset_statistics() { m_stats.reset(); }
|
||||
|
||||
bool full_eval(model & mdl);
|
||||
|
||||
|
@ -109,7 +109,7 @@ public:
|
|||
void mk_inv(unsigned bv_sz, const mpz & old_value, mpz & inverted);
|
||||
void mk_flip(sort * s, const mpz & old_value, unsigned bit, mpz & flipped);
|
||||
|
||||
lbool search(void);
|
||||
lbool search();
|
||||
|
||||
lbool operator()();
|
||||
void operator()(goal_ref const & g, model_converter_ref & mc);
|
||||
|
|
|
@ -7,7 +7,7 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
Tactic expection object.
|
||||
Tactic exception object.
|
||||
|
||||
Author:
|
||||
|
||||
|
|
|
@ -907,7 +907,7 @@ public:
|
|||
m_t->operator()(in, result, mc, pc, core);
|
||||
}
|
||||
|
||||
void cleanup(void) override { m_t->cleanup(); }
|
||||
void cleanup() override { m_t->cleanup(); }
|
||||
void collect_statistics(statistics & st) const override { m_t->collect_statistics(st); }
|
||||
void reset_statistics() override { m_t->reset_statistics(); }
|
||||
void updt_params(params_ref const & p) override { m_t->updt_params(p); }
|
||||
|
|
|
@ -47,7 +47,7 @@ tactic * or_else(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5
|
|||
|
||||
tactic * repeat(tactic * t, unsigned max = UINT_MAX);
|
||||
/**
|
||||
\brief Fails if \c t produeces more than \c threshold subgoals.
|
||||
\brief Fails if \c t produces more than \c threshold subgoals.
|
||||
Otherwise, it behaves like \c t.
|
||||
*/
|
||||
tactic * fail_if_branching(tactic * t, unsigned threshold = 1);
|
||||
|
|
|
@ -196,14 +196,14 @@ int ufbv_rewriter::is_smaller(expr * e1, expr * e2) const {
|
|||
class max_var_id_proc {
|
||||
unsigned m_max_var_id;
|
||||
public:
|
||||
max_var_id_proc(void):m_max_var_id(0) {}
|
||||
max_var_id_proc():m_max_var_id(0) {}
|
||||
void operator()(var * n) {
|
||||
if(n->get_idx() > m_max_var_id)
|
||||
m_max_var_id = n->get_idx();
|
||||
}
|
||||
void operator()(quantifier * n) {}
|
||||
void operator()(app * n) {}
|
||||
unsigned get_max(void) { return m_max_var_id; }
|
||||
unsigned get_max() { return m_max_var_id; }
|
||||
};
|
||||
|
||||
unsigned ufbv_rewriter::max_var_id(expr * e)
|
||||
|
@ -253,7 +253,7 @@ void ufbv_rewriter::remove_fwd_idx(func_decl * f, quantifier * demodulator) {
|
|||
}
|
||||
}
|
||||
|
||||
bool ufbv_rewriter::check_fwd_idx_consistency(void) {
|
||||
bool ufbv_rewriter::check_fwd_idx_consistency() {
|
||||
for (fwd_idx_map::iterator it = m_fwd_idx.begin(); it != m_fwd_idx.end() ; it++ ) {
|
||||
quantifier_set * set = it->m_value;
|
||||
SASSERT(set);
|
||||
|
|
|
@ -173,7 +173,7 @@ class ufbv_rewriter {
|
|||
|
||||
void insert_fwd_idx(expr * large, expr * small, quantifier * demodulator);
|
||||
void remove_fwd_idx(func_decl * f, quantifier * demodulator);
|
||||
bool check_fwd_idx_consistency(void);
|
||||
bool check_fwd_idx_consistency();
|
||||
void show_fwd_idx(std::ostream & out);
|
||||
bool is_demodulator(expr * e, expr_ref & large, expr_ref & small) const;
|
||||
bool can_rewrite(expr * n, expr * lhs);
|
||||
|
|
|
@ -19,20 +19,22 @@ Revision History:
|
|||
#include<iostream>
|
||||
#include "util/util.h"
|
||||
#include "util/heap.h"
|
||||
#include "util/hashtable.h"
|
||||
#include "util/trace.h"
|
||||
#include "util/uint_set.h"
|
||||
// include "util/hashtable.h"
|
||||
|
||||
struct lt_proc { bool operator()(int v1, int v2) const { return v1 < v2; } };
|
||||
//struct int_hash_proc { unsigned operator()(int v) const { std::cout << "hash " << v << "\n"; VERIFY(v >= 0); return v; }};
|
||||
//typedef int_hashtable<int_hash_proc, default_eq<int> > int_set;
|
||||
typedef heap<lt_proc> int_heap;
|
||||
struct int_hash_proc { unsigned operator()(int v) const { return v * 17; }};
|
||||
typedef int_hashtable<int_hash_proc, default_eq<int> > int_set;
|
||||
#define N 10000
|
||||
|
||||
static random_gen heap_rand(1);
|
||||
|
||||
static void tst1() {
|
||||
int_heap h(N);
|
||||
int_set t;
|
||||
// int_set t;
|
||||
uint_set t;
|
||||
for (int i = 0; i < N * 3; i++) {
|
||||
int val = heap_rand() % N;
|
||||
if (!h.contains(val)) {
|
||||
|
@ -41,14 +43,15 @@ static void tst1() {
|
|||
t.insert(val);
|
||||
}
|
||||
else {
|
||||
if (!t.contains(val)) {
|
||||
for (int v : t) std::cout << v << "\n";
|
||||
}
|
||||
ENSURE(t.contains(val));
|
||||
}
|
||||
}
|
||||
ENSURE(h.check_invariant());
|
||||
int_set::iterator it = t.begin();
|
||||
int_set::iterator end = t.end();
|
||||
for (; it != end; ++it) {
|
||||
ENSURE(h.contains(*it));
|
||||
for (int v : t) {
|
||||
ENSURE(h.contains(v));
|
||||
}
|
||||
while (!h.empty()) {
|
||||
int m1 = h.min_value();
|
||||
|
@ -84,6 +87,8 @@ static void dump_heap(const int_heap2 & h, std::ostream & out) {
|
|||
static void tst2() {
|
||||
int_heap2 h(N);
|
||||
for (int i = 0; i < N * 10; i++) {
|
||||
|
||||
if (i % 1 == 0) std::cout << "i: " << i << std::endl;
|
||||
if (i % 1000 == 0) std::cout << "i: " << i << std::endl;
|
||||
int cmd = heap_rand() % 10;
|
||||
if (cmd <= 3) {
|
||||
|
@ -134,6 +139,7 @@ void tst_heap() {
|
|||
enable_trace("heap");
|
||||
unsigned i = 0;
|
||||
while (i < 3) {
|
||||
IF_VERBOSE(1, verbose_stream() << "test\n";);
|
||||
heap_rand.set_seed(i++);
|
||||
tst1();
|
||||
init_values();
|
||||
|
|
|
@ -13,6 +13,7 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
#include "ast/reg_decl_plugins.h"
|
||||
|
||||
|
||||
#if 0
|
||||
static void test_qe(ast_manager& m, lbool expected_outcome, expr* fml, char const* option) {
|
||||
|
||||
// enable_trace("bit2int");
|
||||
|
@ -48,6 +49,7 @@ static void test_qe(ast_manager& m, lbool expected_outcome, expr* fml, char cons
|
|||
//exit(-1);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void test_formula(lbool expected_outcome, char const* fml) {
|
||||
ast_manager m;
|
||||
|
|
|
@ -449,7 +449,7 @@ public:
|
|||
INSERT_LOOP_CORE_BODY();
|
||||
}
|
||||
UNREACHABLE();
|
||||
return 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool insert_if_not_there_core(const data & e, entry * & et) {
|
||||
|
|
|
@ -79,13 +79,14 @@ public:
|
|||
|
||||
void apply_from_left_to_X(vector<X> & w, lp_settings & );
|
||||
|
||||
virtual void set_number_of_rows(unsigned /*m*/) {}
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
void set_number_of_rows(unsigned /*m*/) override {}
|
||||
void set_number_of_columns(unsigned /*n*/) override {}
|
||||
#ifdef Z3DEBUG
|
||||
T get_elem(unsigned i, unsigned j) const override { return m_values[i * m_n + j]; }
|
||||
#endif
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const { return m_values[i * m_n + j]; }
|
||||
|
||||
unsigned row_count() const { return m_m; }
|
||||
unsigned column_count() const { return m_n; }
|
||||
unsigned row_count() const override { return m_m; }
|
||||
unsigned column_count() const override { return m_n; }
|
||||
|
||||
void set_elem(unsigned i, unsigned j, const T& val) { m_values[i * m_n + j] = val; }
|
||||
|
||||
|
|
|
@ -83,12 +83,12 @@ public:
|
|||
void apply_from_right(vector<T> & w) override;
|
||||
void apply_from_right(indexed_vector<T> & w) override;
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const;
|
||||
#ifdef Z3DEBUG
|
||||
unsigned row_count() const { return m_length; }
|
||||
unsigned column_count() const { return m_length; }
|
||||
void set_number_of_rows(unsigned m) { m_length = m; }
|
||||
void set_number_of_columns(unsigned n) { m_length = n; }
|
||||
T get_elem(unsigned i, unsigned j) const override;
|
||||
unsigned row_count() const override { return m_length; }
|
||||
unsigned column_count() const override { return m_length; }
|
||||
void set_number_of_rows(unsigned m) override { m_length = m; }
|
||||
void set_number_of_columns(unsigned n) override { m_length = n; }
|
||||
#endif
|
||||
void divide_by_diagonal_element() {
|
||||
m_column_vector.divide(m_diagonal_element);
|
||||
|
|
|
@ -74,14 +74,14 @@ public:
|
|||
#ifdef Z3DEBUG
|
||||
unsigned m_m;
|
||||
unsigned m_n;
|
||||
virtual void set_number_of_rows(unsigned m) { m_m = m; m_n = m; }
|
||||
virtual void set_number_of_columns(unsigned n) { m_m = n; m_n = n; }
|
||||
void set_number_of_rows(unsigned m) override { m_m = m; m_n = m; }
|
||||
void set_number_of_columns(unsigned n) override { m_m = n; m_n = n; }
|
||||
T m_one_over_val;
|
||||
|
||||
T get_elem (unsigned i, unsigned j) const;
|
||||
T get_elem (unsigned i, unsigned j) const override;
|
||||
|
||||
unsigned row_count() const { return m_m; } // not defined }
|
||||
unsigned column_count() const { return m_m; } // not defined }
|
||||
unsigned row_count() const override { return m_m; } // not defined }
|
||||
unsigned column_count() const override { return m_m; } // not defined }
|
||||
#endif
|
||||
void apply_from_left(vector<X> & w, lp_settings &) override {
|
||||
w[m_i] /= m_val;
|
||||
|
|
|
@ -109,13 +109,13 @@ class permutation_matrix : public tail_matrix<T, X> {
|
|||
|
||||
void transpose_from_right(unsigned i, unsigned j);
|
||||
#ifdef Z3DEBUG
|
||||
T get_elem(unsigned i, unsigned j) const{
|
||||
T get_elem(unsigned i, unsigned j) const override {
|
||||
return m_permutation[i] == j? numeric_traits<T>::one() : numeric_traits<T>::zero();
|
||||
}
|
||||
unsigned row_count() const{ return size(); }
|
||||
unsigned column_count() const { return size(); }
|
||||
virtual void set_number_of_rows(unsigned /*m*/) { }
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
unsigned row_count() const override { return size(); }
|
||||
unsigned column_count() const override { return size(); }
|
||||
void set_number_of_rows(unsigned /*m*/) override { }
|
||||
void set_number_of_columns(unsigned /*n*/) override { }
|
||||
#endif
|
||||
void multiply_by_permutation_from_left(permutation_matrix<T, X> & p);
|
||||
|
||||
|
|
|
@ -79,11 +79,11 @@ public:
|
|||
|
||||
void conjugate_by_permutation(permutation_matrix<T, X> & p);
|
||||
#ifdef Z3DEBUG
|
||||
T get_elem(unsigned row, unsigned col) const;
|
||||
unsigned row_count() const { return m_dimension; }
|
||||
unsigned column_count() const { return m_dimension; }
|
||||
void set_number_of_rows(unsigned m) { m_dimension = m; }
|
||||
void set_number_of_columns(unsigned n) { m_dimension = n; }
|
||||
T get_elem(unsigned row, unsigned col) const override;
|
||||
unsigned row_count() const override { return m_dimension; }
|
||||
unsigned column_count() const override { return m_dimension; }
|
||||
void set_number_of_rows(unsigned m) override { m_dimension = m; }
|
||||
void set_number_of_columns(unsigned n) override { m_dimension = n; }
|
||||
#endif
|
||||
}; // end of row_eta_matrix
|
||||
}
|
||||
|
|
|
@ -162,8 +162,8 @@ public:
|
|||
unsigned dimension() const {return static_cast<unsigned>(m_row_permutation.size());}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
unsigned row_count() const {return dimension();}
|
||||
unsigned column_count() const {return dimension();}
|
||||
unsigned row_count() const override {return dimension();}
|
||||
unsigned column_count() const override {return dimension();}
|
||||
#endif
|
||||
|
||||
void init_row_headers();
|
||||
|
@ -302,11 +302,11 @@ public:
|
|||
void solve_U_y_indexed_only(indexed_vector<L> & y, const lp_settings&, vector<unsigned> & sorted_active_rows );
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
T get_elem(unsigned i, unsigned j) const { return get(i, j); }
|
||||
T get_elem(unsigned i, unsigned j) const override { return get(i, j); }
|
||||
unsigned get_number_of_rows() const { return dimension(); }
|
||||
unsigned get_number_of_columns() const { return dimension(); }
|
||||
virtual void set_number_of_rows(unsigned /*m*/) { }
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
void set_number_of_rows(unsigned /*m*/) override { }
|
||||
void set_number_of_columns(unsigned /*n*/) override { }
|
||||
#endif
|
||||
template <typename L>
|
||||
L dot_product_with_row (unsigned row, const vector<L> & y) const;
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue