mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
adding dump facility for cancelation #2095, easing dimacs in/out
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
f7746e2284
commit
498864c582
src
api
ast
muz/spacer
opt
sat/sat_solver
smt
solver
CMakeLists.txtcombined_solver.cppsolver.cppsolver.hsolver_na2as.cppsolver_na2as.hsolver_params.pygsolver_pool.cpptactic2solver.cpp
tactic
util
|
@ -163,12 +163,46 @@ extern "C" {
|
|||
to_solver_ref(s)->set_model_converter(ctx->get_model_converter());
|
||||
}
|
||||
|
||||
static void solver_from_dimacs_stream(Z3_context c, Z3_solver s, std::istream& is) {
|
||||
init_solver(c, s);
|
||||
ast_manager& m = to_solver_ref(s)->get_manager();
|
||||
std::stringstream err;
|
||||
sat::solver solver(to_solver_ref(s)->get_params(), m.limit());
|
||||
if (!parse_dimacs(is, err, solver)) {
|
||||
SET_ERROR_CODE(Z3_PARSER_ERROR, err.str().c_str());
|
||||
return;
|
||||
}
|
||||
sat2goal s2g;
|
||||
ref<sat2goal::mc> mc;
|
||||
atom2bool_var a2b(m);
|
||||
for (unsigned v = 0; v < solver.num_vars(); ++v) {
|
||||
a2b.insert(m.mk_const(symbol(v), m.mk_bool_sort()), v);
|
||||
}
|
||||
goal g(m);
|
||||
s2g(solver, a2b, to_solver_ref(s)->get_params(), g, mc);
|
||||
for (unsigned i = 0; i < g.size(); ++i) {
|
||||
to_solver_ref(s)->assert_expr(g.form(i));
|
||||
}
|
||||
}
|
||||
|
||||
// DIMACS files start with "p cnf" and number of variables/clauses.
|
||||
// This is not legal SMT syntax, so use the DIMACS parser.
|
||||
static bool is_dimacs_string(Z3_string c_str) {
|
||||
std::cout << c_str << "\n";
|
||||
return c_str[0] == 'p' && c_str[1] == ' ' && c_str[2] == 'c';
|
||||
}
|
||||
|
||||
void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string c_str) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_solver_from_string(c, s, c_str);
|
||||
std::string str(c_str);
|
||||
std::istringstream is(str);
|
||||
solver_from_stream(c, s, is);
|
||||
if (is_dimacs_string(c_str)) {
|
||||
solver_from_dimacs_stream(c, s, is);
|
||||
}
|
||||
else {
|
||||
solver_from_stream(c, s, is);
|
||||
}
|
||||
Z3_CATCH;
|
||||
}
|
||||
|
||||
|
@ -182,24 +216,7 @@ extern "C" {
|
|||
SET_ERROR_CODE(Z3_FILE_ACCESS_ERROR, nullptr);
|
||||
}
|
||||
else if (ext && (std::string("dimacs") == ext || std::string("cnf") == ext)) {
|
||||
ast_manager& m = to_solver_ref(s)->get_manager();
|
||||
std::stringstream err;
|
||||
sat::solver solver(to_solver_ref(s)->get_params(), m.limit());
|
||||
if (!parse_dimacs(is, err, solver)) {
|
||||
SET_ERROR_CODE(Z3_PARSER_ERROR, err.str().c_str());
|
||||
return;
|
||||
}
|
||||
sat2goal s2g;
|
||||
ref<sat2goal::mc> mc;
|
||||
atom2bool_var a2b(m);
|
||||
for (unsigned v = 0; v < solver.num_vars(); ++v) {
|
||||
a2b.insert(m.mk_const(symbol(v), m.mk_bool_sort()), v);
|
||||
}
|
||||
goal g(m);
|
||||
s2g(solver, a2b, to_solver_ref(s)->get_params(), g, mc);
|
||||
for (unsigned i = 0; i < g.size(); ++i) {
|
||||
to_solver_ref(s)->assert_expr(g.form(i));
|
||||
}
|
||||
solver_from_dimacs_stream(c, s, is);
|
||||
}
|
||||
else {
|
||||
solver_from_stream(c, s, is);
|
||||
|
@ -532,6 +549,17 @@ extern "C" {
|
|||
Z3_CATCH_RETURN("");
|
||||
}
|
||||
|
||||
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_solver_to_string(c, s);
|
||||
RESET_ERROR_CODE();
|
||||
init_solver(c, s);
|
||||
std::ostringstream buffer;
|
||||
to_solver_ref(s)->display_dimacs(buffer);
|
||||
return mk_c(c)->mk_external_string(buffer.str());
|
||||
Z3_CATCH_RETURN("");
|
||||
}
|
||||
|
||||
|
||||
Z3_lbool Z3_API Z3_get_implied_equalities(Z3_context c,
|
||||
Z3_solver s,
|
||||
|
|
|
@ -2240,6 +2240,8 @@ namespace z3 {
|
|||
fml));
|
||||
}
|
||||
|
||||
std::string dimacs() const { return std::string(Z3_solver_to_dimacs_string(ctx(), m_solver)); }
|
||||
|
||||
param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_solver_get_param_descrs(ctx(), m_solver)); }
|
||||
|
||||
|
||||
|
|
|
@ -6800,6 +6800,10 @@ class Solver(Z3PPObject):
|
|||
"""
|
||||
return Z3_solver_to_string(self.ctx.ref(), self.solver)
|
||||
|
||||
def dimacs(self):
|
||||
"""Return a textual representation of the solver in DIMACS format."""
|
||||
return Z3_solver_to_dimacs_string(self.ctx.ref(), self.solver)
|
||||
|
||||
def to_smt2(self):
|
||||
"""return SMTLIB2 formatted benchmark for solver's assertions"""
|
||||
es = self.assertions()
|
||||
|
|
|
@ -6368,6 +6368,14 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s);
|
||||
|
||||
/**
|
||||
\brief Convert a solver into a DIMACS formatted string.
|
||||
\sa Z3_goal_to_diamcs_string for requirements.
|
||||
|
||||
def_API('Z3_solver_to_dimacs_string', STRING, (_in(CONTEXT), _in(SOLVER)))
|
||||
*/
|
||||
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s);
|
||||
|
||||
/*@}*/
|
||||
|
||||
/** @name Statistics */
|
||||
|
|
|
@ -17,6 +17,7 @@ z3_add_component(ast
|
|||
csp_decl_plugin.cpp
|
||||
datatype_decl_plugin.cpp
|
||||
decl_collector.cpp
|
||||
display_dimacs.cpp
|
||||
dl_decl_plugin.cpp
|
||||
expr2polynomial.cpp
|
||||
expr2var.cpp
|
||||
|
|
81
src/ast/display_dimacs.cpp
Normal file
81
src/ast/display_dimacs.cpp
Normal file
|
@ -0,0 +1,81 @@
|
|||
/*++
|
||||
Copyright (c) 2019 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
display_dimacs.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Display expressions in DIMACS format.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner0 2019-01-24
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast.h"
|
||||
#include "display_dimacs.h"
|
||||
|
||||
std::ostream& display_dimacs(std::ostream& out, expr_ref_vector const& fmls) {
|
||||
ast_manager& m = fmls.m();
|
||||
unsigned_vector expr2var;
|
||||
ptr_vector<expr> exprs;
|
||||
unsigned num_vars = 0;
|
||||
unsigned num_cls = fmls.size();
|
||||
for (expr * f : fmls) {
|
||||
unsigned num_lits;
|
||||
expr * const * lits;
|
||||
if (m.is_or(f)) {
|
||||
num_lits = to_app(f)->get_num_args();
|
||||
lits = to_app(f)->get_args();
|
||||
}
|
||||
else {
|
||||
num_lits = 1;
|
||||
lits = &f;
|
||||
}
|
||||
for (unsigned j = 0; j < num_lits; j++) {
|
||||
expr * l = lits[j];
|
||||
if (m.is_not(l))
|
||||
l = to_app(l)->get_arg(0);
|
||||
if (expr2var.get(l->get_id(), UINT_MAX) == UINT_MAX) {
|
||||
num_vars++;
|
||||
expr2var.setx(l->get_id(), num_vars, UINT_MAX);
|
||||
exprs.setx(l->get_id(), l, nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
out << "p cnf " << num_vars << " " << num_cls << "\n";
|
||||
for (expr* f : fmls) {
|
||||
unsigned num_lits;
|
||||
expr * const * lits;
|
||||
if (m.is_or(f)) {
|
||||
num_lits = to_app(f)->get_num_args();
|
||||
lits = to_app(f)->get_args();
|
||||
}
|
||||
else {
|
||||
num_lits = 1;
|
||||
lits = &f;
|
||||
}
|
||||
for (unsigned j = 0; j < num_lits; j++) {
|
||||
expr * l = lits[j];
|
||||
if (m.is_not(l)) {
|
||||
out << "-";
|
||||
l = to_app(l)->get_arg(0);
|
||||
}
|
||||
SASSERT(exprs[l->get_id()]);
|
||||
out << expr2var[l->get_id()] << " ";
|
||||
}
|
||||
out << "0\n";
|
||||
}
|
||||
for (expr* e : exprs) {
|
||||
if (e && is_app(e)) {
|
||||
symbol const& n = to_app(e)->get_decl()->get_name();
|
||||
out << "c " << expr2var[e->get_id()] << " " << n << "\n";
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
26
src/ast/display_dimacs.h
Normal file
26
src/ast/display_dimacs.h
Normal file
|
@ -0,0 +1,26 @@
|
|||
/*++
|
||||
Copyright (c) 2019 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
display_dimacs.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Display expressions in DIMACS format.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner0 2019-01-24
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef DISPLAY_DIMACS_H_
|
||||
#define DISPLAY_DIMACS_H_
|
||||
|
||||
#include "ast.h"
|
||||
|
||||
std::ostream& display_dimacs(std::ostream& out, expr_ref_vector const& fmls);
|
||||
|
||||
#endif /* DISPLAY_DIMACS_H__ */
|
|
@ -27,443 +27,426 @@ Notes:
|
|||
#include "muz/spacer/spacer_iuc_proof.h"
|
||||
|
||||
namespace spacer {
|
||||
void iuc_solver::push ()
|
||||
{
|
||||
m_defs.push_back (def_manager (*this));
|
||||
m_solver.push ();
|
||||
}
|
||||
|
||||
void iuc_solver::pop (unsigned n)
|
||||
{
|
||||
m_solver.pop (n);
|
||||
unsigned lvl = m_defs.size ();
|
||||
SASSERT (n <= lvl);
|
||||
unsigned new_lvl = lvl-n;
|
||||
while (m_defs.size() > new_lvl) {
|
||||
m_num_proxies -= m_defs.back ().m_defs.size ();
|
||||
m_defs.pop_back ();
|
||||
void iuc_solver::push () {
|
||||
m_defs.push_back (def_manager (*this));
|
||||
m_solver.push ();
|
||||
}
|
||||
}
|
||||
|
||||
app* iuc_solver::fresh_proxy ()
|
||||
{
|
||||
if (m_num_proxies == m_proxies.size()) {
|
||||
std::stringstream name;
|
||||
name << "spacer_proxy!" << m_proxies.size ();
|
||||
app_ref res(m);
|
||||
res = m.mk_const (symbol (name.str ().c_str ()),
|
||||
m.mk_bool_sort ());
|
||||
m_proxies.push_back (res);
|
||||
|
||||
// -- add the new proxy to proxy eliminator
|
||||
proof_ref pr(m);
|
||||
pr = m.mk_asserted (m.mk_true ());
|
||||
m_elim_proxies_sub.insert (res, m.mk_true (), pr);
|
||||
|
||||
void iuc_solver::pop (unsigned n) {
|
||||
m_solver.pop (n);
|
||||
unsigned lvl = m_defs.size ();
|
||||
SASSERT (n <= lvl);
|
||||
unsigned new_lvl = lvl-n;
|
||||
while (m_defs.size() > new_lvl) {
|
||||
m_num_proxies -= m_defs.back ().m_defs.size ();
|
||||
m_defs.pop_back ();
|
||||
}
|
||||
}
|
||||
return m_proxies.get (m_num_proxies++);
|
||||
}
|
||||
|
||||
app* iuc_solver::mk_proxy (expr *v)
|
||||
{
|
||||
{
|
||||
app* iuc_solver::fresh_proxy () {
|
||||
if (m_num_proxies == m_proxies.size()) {
|
||||
std::stringstream name;
|
||||
name << "spacer_proxy!" << m_proxies.size ();
|
||||
app_ref res(m);
|
||||
res = m.mk_const (symbol (name.str ().c_str ()),
|
||||
m.mk_bool_sort ());
|
||||
m_proxies.push_back (res);
|
||||
|
||||
// -- add the new proxy to proxy eliminator
|
||||
proof_ref pr(m);
|
||||
pr = m.mk_asserted (m.mk_true ());
|
||||
m_elim_proxies_sub.insert (res, m.mk_true (), pr);
|
||||
|
||||
}
|
||||
return m_proxies.get (m_num_proxies++);
|
||||
}
|
||||
|
||||
app* iuc_solver::mk_proxy (expr *v) {
|
||||
expr *e = v;
|
||||
m.is_not (v, e);
|
||||
if (is_uninterp_const(e)) { return to_app(v); }
|
||||
if (is_uninterp_const(e)) {
|
||||
return to_app(v);
|
||||
}
|
||||
|
||||
def_manager &def = !m_defs.empty() ? m_defs.back () : m_base_defs;
|
||||
return def.mk_proxy (v);
|
||||
}
|
||||
|
||||
def_manager &def = !m_defs.empty() ? m_defs.back () : m_base_defs;
|
||||
return def.mk_proxy (v);
|
||||
}
|
||||
|
||||
bool iuc_solver::mk_proxies (expr_ref_vector &v, unsigned from)
|
||||
{
|
||||
bool dirty = false;
|
||||
for (unsigned i = from, sz = v.size(); i < sz; ++i) {
|
||||
app *p = mk_proxy (v.get (i));
|
||||
dirty |= (v.get (i) != p);
|
||||
v[i] = p;
|
||||
bool iuc_solver::mk_proxies (expr_ref_vector &v, unsigned from) {
|
||||
bool dirty = false;
|
||||
for (unsigned i = from, sz = v.size(); i < sz; ++i) {
|
||||
app *p = mk_proxy (v.get (i));
|
||||
dirty |= (v.get (i) != p);
|
||||
v[i] = p;
|
||||
}
|
||||
return dirty;
|
||||
}
|
||||
return dirty;
|
||||
}
|
||||
|
||||
void iuc_solver::push_bg (expr *e)
|
||||
{
|
||||
if (m_assumptions.size () > m_first_assumption)
|
||||
{ m_assumptions.shrink(m_first_assumption); }
|
||||
m_assumptions.push_back (e);
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
}
|
||||
|
||||
void iuc_solver::pop_bg (unsigned n)
|
||||
{
|
||||
if (n == 0) { return; }
|
||||
|
||||
if (m_assumptions.size () > m_first_assumption) {
|
||||
void iuc_solver::push_bg (expr *e) {
|
||||
if (m_assumptions.size () > m_first_assumption) {
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
}
|
||||
m_assumptions.push_back (e);
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
}
|
||||
|
||||
void iuc_solver::pop_bg (unsigned n) {
|
||||
if (n == 0) return;
|
||||
|
||||
if (m_assumptions.size () > m_first_assumption) {
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
}
|
||||
m_first_assumption = m_first_assumption > n ? m_first_assumption - n : 0;
|
||||
m_assumptions.shrink (m_first_assumption);
|
||||
}
|
||||
|
||||
unsigned iuc_solver::get_num_bg () {
|
||||
return m_first_assumption;
|
||||
}
|
||||
|
||||
lbool iuc_solver::check_sat_core (unsigned num_assumptions, expr * const *assumptions) {
|
||||
// -- remove any old assumptions
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
|
||||
// -- replace theory literals in background assumptions with proxies
|
||||
mk_proxies (m_assumptions);
|
||||
// -- in case mk_proxies added new literals, they are all background
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
|
||||
m_assumptions.append (num_assumptions, assumptions);
|
||||
m_is_proxied = mk_proxies (m_assumptions, m_first_assumption);
|
||||
|
||||
return set_status (m_solver.check_sat (m_assumptions));
|
||||
}
|
||||
m_first_assumption = m_first_assumption > n ? m_first_assumption - n : 0;
|
||||
m_assumptions.shrink (m_first_assumption);
|
||||
}
|
||||
|
||||
lbool iuc_solver::check_sat_cc(const expr_ref_vector &cube,
|
||||
vector<expr_ref_vector> const & clauses) {
|
||||
if (clauses.empty())
|
||||
return check_sat(cube.size(), cube.c_ptr());
|
||||
|
||||
// -- remove any old assumptions
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
|
||||
// -- replace theory literals in background assumptions with proxies
|
||||
mk_proxies(m_assumptions);
|
||||
// -- in case mk_proxies added new literals, they are all background
|
||||
m_first_assumption = m_assumptions.size();
|
||||
|
||||
m_assumptions.append(cube);
|
||||
m_is_proxied = mk_proxies(m_assumptions, m_first_assumption);
|
||||
|
||||
return set_status (m_solver.check_sat_cc(m_assumptions, clauses));
|
||||
}
|
||||
|
||||
|
||||
unsigned iuc_solver::get_num_bg () {return m_first_assumption;}
|
||||
|
||||
lbool iuc_solver::check_sat (unsigned num_assumptions, expr * const *assumptions)
|
||||
{
|
||||
// -- remove any old assumptions
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
|
||||
// -- replace theory literals in background assumptions with proxies
|
||||
mk_proxies (m_assumptions);
|
||||
// -- in case mk_proxies added new literals, they are all background
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
|
||||
m_assumptions.append (num_assumptions, assumptions);
|
||||
m_is_proxied = mk_proxies (m_assumptions, m_first_assumption);
|
||||
|
||||
return set_status (m_solver.check_sat (m_assumptions));
|
||||
}
|
||||
|
||||
lbool iuc_solver::check_sat_cc(const expr_ref_vector &cube,
|
||||
vector<expr_ref_vector> const & clauses) {
|
||||
if (clauses.empty())
|
||||
return check_sat(cube.size(), cube.c_ptr());
|
||||
|
||||
// -- remove any old assumptions
|
||||
m_assumptions.shrink(m_first_assumption);
|
||||
|
||||
// -- replace theory literals in background assumptions with proxies
|
||||
mk_proxies(m_assumptions);
|
||||
// -- in case mk_proxies added new literals, they are all background
|
||||
m_first_assumption = m_assumptions.size();
|
||||
|
||||
m_assumptions.append(cube);
|
||||
m_is_proxied = mk_proxies(m_assumptions, m_first_assumption);
|
||||
|
||||
return set_status (m_solver.check_sat_cc(m_assumptions, clauses));
|
||||
}
|
||||
|
||||
|
||||
app* iuc_solver::def_manager::mk_proxy (expr *v)
|
||||
{
|
||||
app* r;
|
||||
if (m_expr2proxy.find(v, r))
|
||||
return r;
|
||||
|
||||
ast_manager &m = m_parent.m;
|
||||
app* proxy = m_parent.fresh_proxy ();
|
||||
app* def = m.mk_or (m.mk_not (proxy), v);
|
||||
m_defs.push_back (def);
|
||||
m_expr2proxy.insert (v, proxy);
|
||||
m_proxy2def.insert (proxy, def);
|
||||
|
||||
m_parent.assert_expr (def);
|
||||
return proxy;
|
||||
}
|
||||
|
||||
bool iuc_solver::def_manager::is_proxy (app *k, app_ref &def)
|
||||
{
|
||||
app *r = nullptr;
|
||||
bool found = m_proxy2def.find (k, r);
|
||||
def = r;
|
||||
return found;
|
||||
}
|
||||
|
||||
void iuc_solver::def_manager::reset ()
|
||||
{
|
||||
m_expr2proxy.reset ();
|
||||
m_proxy2def.reset ();
|
||||
m_defs.reset ();
|
||||
}
|
||||
|
||||
bool iuc_solver::def_manager::is_proxy_def (expr *v)
|
||||
{
|
||||
// XXX This might not be the most robust way to check
|
||||
return m_defs.contains (v);
|
||||
}
|
||||
|
||||
bool iuc_solver::is_proxy(expr *e, app_ref &def)
|
||||
{
|
||||
if (!is_uninterp_const(e))
|
||||
return false;
|
||||
|
||||
app* a = to_app (e);
|
||||
|
||||
for (int i = m_defs.size (); i-- > 0; )
|
||||
if (m_defs[i].is_proxy (a, def))
|
||||
return true;
|
||||
|
||||
return m_base_defs.is_proxy (a, def);
|
||||
}
|
||||
|
||||
void iuc_solver::collect_statistics (statistics &st) const
|
||||
{
|
||||
m_solver.collect_statistics (st);
|
||||
st.update ("time.iuc_solver.get_iuc", m_iuc_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.hyp_reduce1", m_hyp_reduce1_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.hyp_reduce2", m_hyp_reduce2_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.learn_core", m_learn_core_sw.get_seconds());
|
||||
|
||||
st.update("iuc_solver.num_proxies", m_proxies.size());
|
||||
}
|
||||
|
||||
void iuc_solver::reset_statistics ()
|
||||
{
|
||||
m_iuc_sw.reset();
|
||||
m_hyp_reduce1_sw.reset();
|
||||
m_hyp_reduce2_sw.reset();
|
||||
m_learn_core_sw.reset();
|
||||
}
|
||||
|
||||
void iuc_solver::get_unsat_core (expr_ref_vector &core) {
|
||||
m_solver.get_unsat_core (core);
|
||||
undo_proxies_in_core (core);
|
||||
}
|
||||
|
||||
void iuc_solver::undo_proxies_in_core (expr_ref_vector &r)
|
||||
{
|
||||
app_ref e(m);
|
||||
expr_fast_mark1 bg;
|
||||
for (unsigned i = 0; i < m_first_assumption; ++i) {
|
||||
bg.mark(m_assumptions.get(i));
|
||||
app* iuc_solver::def_manager::mk_proxy (expr *v) {
|
||||
app* r;
|
||||
if (m_expr2proxy.find(v, r))
|
||||
return r;
|
||||
|
||||
ast_manager &m = m_parent.m;
|
||||
app* proxy = m_parent.fresh_proxy ();
|
||||
app* def = m.mk_or (m.mk_not (proxy), v);
|
||||
m_defs.push_back (def);
|
||||
m_expr2proxy.insert (v, proxy);
|
||||
m_proxy2def.insert (proxy, def);
|
||||
|
||||
m_parent.assert_expr (def);
|
||||
return proxy;
|
||||
}
|
||||
|
||||
// expand proxies
|
||||
unsigned j = 0;
|
||||
for (expr* rr : r) {
|
||||
// skip background assumptions
|
||||
if (bg.is_marked(rr))
|
||||
continue;
|
||||
bool iuc_solver::def_manager::is_proxy (app *k, app_ref &def) {
|
||||
app *r = nullptr;
|
||||
bool found = m_proxy2def.find (k, r);
|
||||
def = r;
|
||||
return found;
|
||||
}
|
||||
|
||||
void iuc_solver::def_manager::reset () {
|
||||
m_expr2proxy.reset ();
|
||||
m_proxy2def.reset ();
|
||||
m_defs.reset ();
|
||||
}
|
||||
|
||||
// -- undo proxies, but only if they were introduced in check_sat
|
||||
if (m_is_proxied && is_proxy(rr, e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[j++] = e->get_arg (1);
|
||||
bool iuc_solver::def_manager::is_proxy_def (expr *v) {
|
||||
// XXX This might not be the most robust way to check
|
||||
return m_defs.contains (v);
|
||||
}
|
||||
|
||||
bool iuc_solver::is_proxy(expr *e, app_ref &def) {
|
||||
if (!is_uninterp_const(e))
|
||||
return false;
|
||||
|
||||
app* a = to_app (e);
|
||||
|
||||
for (int i = m_defs.size (); i-- > 0; )
|
||||
if (m_defs[i].is_proxy (a, def))
|
||||
return true;
|
||||
|
||||
return m_base_defs.is_proxy (a, def);
|
||||
}
|
||||
|
||||
void iuc_solver::collect_statistics (statistics &st) const {
|
||||
m_solver.collect_statistics (st);
|
||||
st.update ("time.iuc_solver.get_iuc", m_iuc_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.hyp_reduce1", m_hyp_reduce1_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.hyp_reduce2", m_hyp_reduce2_sw.get_seconds());
|
||||
st.update ("time.iuc_solver.get_iuc.learn_core", m_learn_core_sw.get_seconds());
|
||||
|
||||
st.update("iuc_solver.num_proxies", m_proxies.size());
|
||||
}
|
||||
|
||||
void iuc_solver::reset_statistics () {
|
||||
m_iuc_sw.reset();
|
||||
m_hyp_reduce1_sw.reset();
|
||||
m_hyp_reduce2_sw.reset();
|
||||
m_learn_core_sw.reset();
|
||||
}
|
||||
|
||||
void iuc_solver::get_unsat_core (expr_ref_vector &core) {
|
||||
m_solver.get_unsat_core (core);
|
||||
undo_proxies_in_core (core);
|
||||
}
|
||||
|
||||
void iuc_solver::undo_proxies_in_core (expr_ref_vector &r) {
|
||||
app_ref e(m);
|
||||
expr_fast_mark1 bg;
|
||||
for (unsigned i = 0; i < m_first_assumption; ++i) {
|
||||
bg.mark(m_assumptions.get(i));
|
||||
}
|
||||
|
||||
// expand proxies
|
||||
unsigned j = 0;
|
||||
for (expr* rr : r) {
|
||||
// skip background assumptions
|
||||
if (bg.is_marked(rr))
|
||||
continue;
|
||||
|
||||
// -- undo proxies, but only if they were introduced in check_sat
|
||||
if (m_is_proxied && is_proxy(rr, e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[j++] = e->get_arg (1);
|
||||
}
|
||||
else {
|
||||
r[j++] = rr;
|
||||
}
|
||||
}
|
||||
r.shrink (j);
|
||||
}
|
||||
|
||||
void iuc_solver::undo_proxies (expr_ref_vector &r) {
|
||||
app_ref e(m);
|
||||
// expand proxies
|
||||
for (unsigned i = 0, sz = r.size (); i < sz; ++i)
|
||||
if (is_proxy(r.get(i), e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[i] = e->get_arg (1);
|
||||
}
|
||||
}
|
||||
|
||||
void iuc_solver::elim_proxies (expr_ref_vector &v) {
|
||||
expr_ref f = mk_and (v);
|
||||
scoped_ptr<expr_replacer> rep = mk_expr_simp_replacer (m);
|
||||
rep->set_substitution (&m_elim_proxies_sub);
|
||||
(*rep)(f);
|
||||
v.reset();
|
||||
flatten_and(f, v);
|
||||
}
|
||||
|
||||
void iuc_solver::get_iuc(expr_ref_vector &core) {
|
||||
scoped_watch _t_ (m_iuc_sw);
|
||||
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
expr_set core_lits;
|
||||
for (unsigned i = m_first_assumption, sz = m_assumptions.size(); i < sz; ++i) {
|
||||
expr *a = m_assumptions.get (i);
|
||||
app_ref def(m);
|
||||
if (is_proxy(a, def)) { core_lits.insert(def.get()); }
|
||||
core_lits.insert (a);
|
||||
}
|
||||
|
||||
if (m_iuc == 0) {
|
||||
// ORIGINAL PDR CODE
|
||||
// AG: deprecated
|
||||
proof_ref pr(m);
|
||||
pr = get_proof ();
|
||||
|
||||
farkas_learner learner_old;
|
||||
learner_old.set_split_literals(m_split_literals);
|
||||
|
||||
learner_old.get_lemmas (pr, core_lits, core);
|
||||
elim_proxies (core);
|
||||
simplify_bounds (core); // XXX potentially redundant
|
||||
}
|
||||
else {
|
||||
r[j++] = rr;
|
||||
}
|
||||
}
|
||||
r.shrink (j);
|
||||
}
|
||||
|
||||
void iuc_solver::undo_proxies (expr_ref_vector &r)
|
||||
{
|
||||
app_ref e(m);
|
||||
// expand proxies
|
||||
for (unsigned i = 0, sz = r.size (); i < sz; ++i)
|
||||
if (is_proxy(r.get(i), e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[i] = e->get_arg (1);
|
||||
}
|
||||
}
|
||||
|
||||
void iuc_solver::elim_proxies (expr_ref_vector &v)
|
||||
{
|
||||
expr_ref f = mk_and (v);
|
||||
scoped_ptr<expr_replacer> rep = mk_expr_simp_replacer (m);
|
||||
rep->set_substitution (&m_elim_proxies_sub);
|
||||
(*rep)(f);
|
||||
v.reset();
|
||||
flatten_and(f, v);
|
||||
}
|
||||
|
||||
void iuc_solver::get_iuc(expr_ref_vector &core)
|
||||
{
|
||||
scoped_watch _t_ (m_iuc_sw);
|
||||
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
expr_set core_lits;
|
||||
for (unsigned i = m_first_assumption, sz = m_assumptions.size(); i < sz; ++i) {
|
||||
expr *a = m_assumptions.get (i);
|
||||
app_ref def(m);
|
||||
if (is_proxy(a, def)) { core_lits.insert(def.get()); }
|
||||
core_lits.insert (a);
|
||||
}
|
||||
|
||||
if (m_iuc == 0) {
|
||||
// ORIGINAL PDR CODE
|
||||
// AG: deprecated
|
||||
proof_ref pr(m);
|
||||
pr = get_proof ();
|
||||
|
||||
farkas_learner learner_old;
|
||||
learner_old.set_split_literals(m_split_literals);
|
||||
|
||||
learner_old.get_lemmas (pr, core_lits, core);
|
||||
elim_proxies (core);
|
||||
simplify_bounds (core); // XXX potentially redundant
|
||||
}
|
||||
else {
|
||||
// NEW IUC
|
||||
proof_ref res(get_proof(), m);
|
||||
|
||||
// -- old hypothesis reducer while the new one is broken
|
||||
if (m_old_hyp_reducer) {
|
||||
scoped_watch _t_ (m_hyp_reduce1_sw);
|
||||
// AG: deprecated
|
||||
// pre-process proof in order to get a proof which is
|
||||
// better suited for unsat-core-extraction
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_before(m, res.get(), core_lits);
|
||||
verbose_stream() << "\nOld reduce_hypotheses. Before:";
|
||||
iuc_before.dump_farkas_stats();
|
||||
// NEW IUC
|
||||
proof_ref res(get_proof(), m);
|
||||
|
||||
// -- old hypothesis reducer while the new one is broken
|
||||
if (m_old_hyp_reducer) {
|
||||
scoped_watch _t_ (m_hyp_reduce1_sw);
|
||||
// AG: deprecated
|
||||
// pre-process proof in order to get a proof which is
|
||||
// better suited for unsat-core-extraction
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_before(m, res.get(), core_lits);
|
||||
verbose_stream() << "\nOld reduce_hypotheses. Before:";
|
||||
iuc_before.dump_farkas_stats();
|
||||
}
|
||||
|
||||
proof_utils::reduce_hypotheses(res);
|
||||
proof_utils::permute_unit_resolution(res);
|
||||
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_after(m, res.get(), core_lits);
|
||||
verbose_stream() << "Old reduce_hypothesis. After:";
|
||||
iuc_after.dump_farkas_stats();
|
||||
}
|
||||
}
|
||||
|
||||
proof_utils::reduce_hypotheses(res);
|
||||
proof_utils::permute_unit_resolution(res);
|
||||
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_after(m, res.get(), core_lits);
|
||||
verbose_stream() << "Old reduce_hypothesis. After:";
|
||||
iuc_after.dump_farkas_stats();
|
||||
}
|
||||
}
|
||||
// -- new hypothesis reducer
|
||||
else
|
||||
{
|
||||
// -- new hypothesis reducer
|
||||
else
|
||||
{
|
||||
#if 0
|
||||
static unsigned bcnt = 0;
|
||||
static unsigned bcnt = 0;
|
||||
{
|
||||
bcnt++;
|
||||
TRACE("spacer", tout << "Dumping pf bcnt: " << bcnt << "\n";);
|
||||
if (bcnt == 123) {
|
||||
std::ofstream ofs;
|
||||
ofs.open("/tmp/bpf_" + std::to_string(bcnt) + ".dot");
|
||||
iuc_proof iuc_pf_before(m, res.get(), core_lits);
|
||||
iuc_pf_before.display_dot(ofs);
|
||||
ofs.close();
|
||||
|
||||
proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
ENSURE(pc.check(res, side));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
scoped_watch _t_ (m_hyp_reduce2_sw);
|
||||
|
||||
// pre-process proof for better iuc extraction
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_before(m, res.get(), core_lits);
|
||||
verbose_stream() << "\n New hypothesis_reducer. Before:";
|
||||
iuc_before.dump_farkas_stats();
|
||||
}
|
||||
|
||||
proof_ref pr1(m);
|
||||
{
|
||||
scoped_watch _t_ (m_hyp_reduce1_sw);
|
||||
theory_axiom_reducer ta_reducer(m);
|
||||
pr1 = ta_reducer.reduce (res.get());
|
||||
}
|
||||
|
||||
proof_ref pr2(m);
|
||||
{
|
||||
scoped_watch _t_ (m_hyp_reduce2_sw);
|
||||
hypothesis_reducer hyp_reducer(m);
|
||||
pr2 = hyp_reducer.reduce(pr1);
|
||||
}
|
||||
|
||||
res = pr2;
|
||||
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_after(m, res.get(), core_lits);
|
||||
verbose_stream() << "New hypothesis_reducer. After:";
|
||||
iuc_after.dump_farkas_stats();
|
||||
}
|
||||
}
|
||||
|
||||
iuc_proof iuc_pf(m, res, core_lits);
|
||||
|
||||
#if 0
|
||||
static unsigned cnt = 0;
|
||||
{
|
||||
bcnt++;
|
||||
TRACE("spacer", tout << "Dumping pf bcnt: " << bcnt << "\n";);
|
||||
if (bcnt == 123) {
|
||||
cnt++;
|
||||
TRACE("spacer", tout << "Dumping pf cnt: " << cnt << "\n";);
|
||||
if (cnt == 123) {
|
||||
std::ofstream ofs;
|
||||
ofs.open("/tmp/bpf_" + std::to_string(bcnt) + ".dot");
|
||||
iuc_proof iuc_pf_before(m, res.get(), core_lits);
|
||||
iuc_pf_before.display_dot(ofs);
|
||||
ofs.open("/tmp/pf_" + std::to_string(cnt) + ".dot");
|
||||
iuc_pf.display_dot(ofs);
|
||||
ofs.close();
|
||||
|
||||
proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
ENSURE(pc.check(res, side));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
scoped_watch _t_ (m_hyp_reduce2_sw);
|
||||
|
||||
// pre-process proof for better iuc extraction
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_before(m, res.get(), core_lits);
|
||||
verbose_stream() << "\n New hypothesis_reducer. Before:";
|
||||
iuc_before.dump_farkas_stats();
|
||||
unsat_core_learner learner(m, iuc_pf);
|
||||
|
||||
unsat_core_plugin* plugin;
|
||||
// -- register iuc plugins
|
||||
switch (m_iuc_arith) {
|
||||
case 0:
|
||||
case 1:
|
||||
plugin =
|
||||
alloc(unsat_core_plugin_farkas_lemma,
|
||||
learner, m_split_literals,
|
||||
(m_iuc_arith == 1) /* use constants from A */);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 2:
|
||||
SASSERT(false && "Broken");
|
||||
plugin = alloc(unsat_core_plugin_farkas_lemma_optimized, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 3:
|
||||
plugin = alloc(unsat_core_plugin_farkas_lemma_bounded, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
|
||||
proof_ref pr1(m);
|
||||
|
||||
switch (m_iuc) {
|
||||
case 1:
|
||||
// -- iuc based on the lowest cut in the proof
|
||||
plugin = alloc(unsat_core_plugin_lemma, learner);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 2:
|
||||
// -- iuc based on the smallest cut in the proof
|
||||
plugin = alloc(unsat_core_plugin_min_cut, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
|
||||
{
|
||||
scoped_watch _t_ (m_hyp_reduce1_sw);
|
||||
theory_axiom_reducer ta_reducer(m);
|
||||
pr1 = ta_reducer.reduce (res.get());
|
||||
}
|
||||
|
||||
proof_ref pr2(m);
|
||||
{
|
||||
scoped_watch _t_ (m_hyp_reduce2_sw);
|
||||
hypothesis_reducer hyp_reducer(m);
|
||||
pr2 = hyp_reducer.reduce(pr1);
|
||||
}
|
||||
|
||||
res = pr2;
|
||||
|
||||
if (m_print_farkas_stats) {
|
||||
iuc_proof iuc_after(m, res.get(), core_lits);
|
||||
verbose_stream() << "New hypothesis_reducer. After:";
|
||||
iuc_after.dump_farkas_stats();
|
||||
scoped_watch _t_ (m_learn_core_sw);
|
||||
// compute interpolating unsat core
|
||||
learner.compute_unsat_core(core);
|
||||
}
|
||||
|
||||
elim_proxies (core);
|
||||
// AG: this should be taken care of by minimizing the iuc cut
|
||||
simplify_bounds (core);
|
||||
}
|
||||
|
||||
iuc_proof iuc_pf(m, res, core_lits);
|
||||
|
||||
#if 0
|
||||
static unsigned cnt = 0;
|
||||
{
|
||||
cnt++;
|
||||
TRACE("spacer", tout << "Dumping pf cnt: " << cnt << "\n";);
|
||||
if (cnt == 123) {
|
||||
std::ofstream ofs;
|
||||
ofs.open("/tmp/pf_" + std::to_string(cnt) + ".dot");
|
||||
iuc_pf.display_dot(ofs);
|
||||
ofs.close();
|
||||
proof_checker pc(m);
|
||||
expr_ref_vector side(m);
|
||||
ENSURE(pc.check(res, side));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
unsat_core_learner learner(m, iuc_pf);
|
||||
|
||||
unsat_core_plugin* plugin;
|
||||
// -- register iuc plugins
|
||||
switch (m_iuc_arith) {
|
||||
case 0:
|
||||
case 1:
|
||||
plugin =
|
||||
alloc(unsat_core_plugin_farkas_lemma,
|
||||
learner, m_split_literals,
|
||||
(m_iuc_arith == 1) /* use constants from A */);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 2:
|
||||
SASSERT(false && "Broken");
|
||||
plugin = alloc(unsat_core_plugin_farkas_lemma_optimized, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 3:
|
||||
plugin = alloc(unsat_core_plugin_farkas_lemma_bounded, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
|
||||
switch (m_iuc) {
|
||||
case 1:
|
||||
// -- iuc based on the lowest cut in the proof
|
||||
plugin = alloc(unsat_core_plugin_lemma, learner);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
case 2:
|
||||
// -- iuc based on the smallest cut in the proof
|
||||
plugin = alloc(unsat_core_plugin_min_cut, learner, m);
|
||||
learner.register_plugin(plugin);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
|
||||
{
|
||||
scoped_watch _t_ (m_learn_core_sw);
|
||||
// compute interpolating unsat core
|
||||
learner.compute_unsat_core(core);
|
||||
}
|
||||
|
||||
elim_proxies (core);
|
||||
// AG: this should be taken care of by minimizing the iuc cut
|
||||
simplify_bounds (core);
|
||||
|
||||
IF_VERBOSE(2,
|
||||
verbose_stream () << "IUC Core:\n" << core << "\n";);
|
||||
}
|
||||
|
||||
IF_VERBOSE(2,
|
||||
verbose_stream () << "IUC Core:\n" << core << "\n";);
|
||||
}
|
||||
|
||||
void iuc_solver::refresh ()
|
||||
{
|
||||
// only refresh in non-pushed state
|
||||
SASSERT (m_defs.empty());
|
||||
expr_ref_vector assertions (m);
|
||||
for (unsigned i = 0, e = m_solver.get_num_assertions(); i < e; ++i) {
|
||||
expr* a = m_solver.get_assertion (i);
|
||||
if (!m_base_defs.is_proxy_def(a)) { assertions.push_back(a); }
|
||||
|
||||
|
||||
void iuc_solver::refresh () {
|
||||
// only refresh in non-pushed state
|
||||
SASSERT (m_defs.empty());
|
||||
expr_ref_vector assertions (m);
|
||||
for (unsigned i = 0, e = m_solver.get_num_assertions(); i < e; ++i) {
|
||||
expr* a = m_solver.get_assertion (i);
|
||||
if (!m_base_defs.is_proxy_def(a)) { assertions.push_back(a); }
|
||||
|
||||
}
|
||||
m_base_defs.reset ();
|
||||
NOT_IMPLEMENTED_YET ();
|
||||
// solver interface does not have a reset method. need to introduce it somewhere.
|
||||
// m_solver.reset ();
|
||||
for (unsigned i = 0, e = assertions.size (); i < e; ++i)
|
||||
{ m_solver.assert_expr(assertions.get(i)); }
|
||||
}
|
||||
m_base_defs.reset ();
|
||||
NOT_IMPLEMENTED_YET ();
|
||||
// solver interface does not have a reset method. need to introduce it somewhere.
|
||||
// m_solver.reset ();
|
||||
for (unsigned i = 0, e = assertions.size (); i < e; ++i)
|
||||
{ m_solver.assert_expr(assertions.get(i)); }
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -127,7 +127,7 @@ public:
|
|||
void pop(unsigned n) override;
|
||||
unsigned get_scope_level() const override { return m_solver.get_scope_level(); }
|
||||
|
||||
lbool check_sat(unsigned num_assumptions, expr * const *assumptions) override;
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const *assumptions) override;
|
||||
lbool check_sat_cc(const expr_ref_vector &cube, vector<expr_ref_vector> const & clauses) override;
|
||||
void set_progress_callback(progress_callback *callback) override {
|
||||
m_solver.set_progress_callback(callback);
|
||||
|
|
|
@ -158,7 +158,7 @@ namespace opt {
|
|||
return m_dump_benchmarks;
|
||||
}
|
||||
|
||||
lbool opt_solver::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
lbool opt_solver::check_sat_core2(unsigned num_assumptions, expr * const * assumptions) {
|
||||
TRACE("opt_verbose", {
|
||||
tout << "context size: " << m_context.size() << "\n";
|
||||
for (unsigned i = 0; i < m_context.size(); ++i) {
|
||||
|
|
|
@ -95,7 +95,7 @@ namespace opt {
|
|||
void assert_expr_core(expr * t) override;
|
||||
void push_core() override;
|
||||
void pop_core(unsigned n) override;
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
void get_unsat_core(expr_ref_vector & r) override;
|
||||
void get_model_core(model_ref & _m) override;
|
||||
proof * get_proof() override;
|
||||
|
|
|
@ -166,7 +166,7 @@ public:
|
|||
(m.is_not(e, e) && is_uninterp_const(e));
|
||||
}
|
||||
|
||||
lbool check_sat(unsigned sz, expr * const * assumptions) override {
|
||||
lbool check_sat_core(unsigned sz, expr * const * assumptions) override {
|
||||
m_solver.pop_to_base_level();
|
||||
m_core.reset();
|
||||
if (m_solver.inconsistent()) return l_false;
|
||||
|
|
|
@ -185,7 +185,7 @@ namespace smt {
|
|||
m_context.pop(n);
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
TRACE("solver_na2as", tout << "smt_solver::check_sat_core: " << num_assumptions << "\n";);
|
||||
return m_context.check(num_assumptions, assumptions);
|
||||
}
|
||||
|
|
|
@ -16,5 +16,7 @@ z3_add_component(solver
|
|||
PYG_FILES
|
||||
combined_solver_params.pyg
|
||||
parallel_params.pyg
|
||||
PYG_FILES
|
||||
solver_params.pyg
|
||||
|
||||
)
|
||||
|
|
|
@ -218,7 +218,7 @@ public:
|
|||
return l_undef;
|
||||
}
|
||||
|
||||
lbool check_sat(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
m_check_sat_executed = true;
|
||||
m_use_solver1_results = false;
|
||||
|
||||
|
@ -227,13 +227,13 @@ public:
|
|||
m_ignore_solver1) {
|
||||
// must use incremental solver
|
||||
switch_inc_mode();
|
||||
return m_solver2->check_sat(num_assumptions, assumptions);
|
||||
return m_solver2->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
if (m_inc_mode) {
|
||||
if (m_inc_timeout == UINT_MAX) {
|
||||
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"using solver 2 (without a timeout)\")\n";);
|
||||
lbool r = m_solver2->check_sat(num_assumptions, assumptions);
|
||||
lbool r = m_solver2->check_sat_core(num_assumptions, assumptions);
|
||||
if (r != l_undef || !use_solver1_when_undef() || get_manager().canceled()) {
|
||||
return r;
|
||||
}
|
||||
|
@ -244,7 +244,7 @@ public:
|
|||
lbool r = l_undef;
|
||||
try {
|
||||
scoped_timer timer(m_inc_timeout, &eh);
|
||||
r = m_solver2->check_sat(num_assumptions, assumptions);
|
||||
r = m_solver2->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
catch (z3_exception&) {
|
||||
if (!eh.m_canceled) {
|
||||
|
@ -260,7 +260,7 @@ public:
|
|||
|
||||
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"using solver 1\")\n";);
|
||||
m_use_solver1_results = true;
|
||||
return m_solver1->check_sat(num_assumptions, assumptions);
|
||||
return m_solver1->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
void set_progress_callback(progress_callback * callback) override {
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2011 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
solver.h
|
||||
solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -21,25 +21,25 @@ Notes:
|
|||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/ast_pp_util.h"
|
||||
#include "ast/display_dimacs.h"
|
||||
#include "tactic/model_converter.h"
|
||||
#include "solver/solver.h"
|
||||
#include "solver/solver_params.hpp"
|
||||
#include "model/model_evaluator.h"
|
||||
|
||||
|
||||
unsigned solver::get_num_assertions() const {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
UNREACHABLE();
|
||||
return 0;
|
||||
}
|
||||
|
||||
expr * solver::get_assertion(unsigned idx) const {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
UNREACHABLE();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream & out, unsigned n, expr* const* assumptions) const {
|
||||
expr_ref_vector fmls(get_manager());
|
||||
stopwatch sw;
|
||||
sw.start();
|
||||
get_assertions(fmls);
|
||||
ast_pp_util visitor(get_manager());
|
||||
model_converter_ref mc = get_model_converter();
|
||||
|
@ -57,6 +57,12 @@ std::ostream& solver::display(std::ostream & out, unsigned n, expr* const* assum
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream& solver::display_dimacs(std::ostream& out) const {
|
||||
expr_ref_vector fmls(get_manager());
|
||||
get_assertions(fmls);
|
||||
return ::display_dimacs(out, fmls);
|
||||
}
|
||||
|
||||
void solver::get_assertions(expr_ref_vector& fmls) const {
|
||||
unsigned sz = get_num_assertions();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
|
@ -232,12 +238,16 @@ void solver::collect_param_descrs(param_descrs & r) {
|
|||
|
||||
void solver::reset_params(params_ref const & p) {
|
||||
m_params = p;
|
||||
m_enforce_model_conversion = m_params.get_bool("solver.enforce_model_conversion", false);
|
||||
solver_params sp(m_params);
|
||||
m_enforce_model_conversion = sp.enforce_model_conversion();
|
||||
m_cancel_backup_file = sp.cancel_backup_file();
|
||||
}
|
||||
|
||||
void solver::updt_params(params_ref const & p) {
|
||||
m_params.copy(p);
|
||||
m_enforce_model_conversion = m_params.get_bool("solver.enforce_model_conversion", false);
|
||||
solver_params sp(m_params);
|
||||
m_enforce_model_conversion = sp.enforce_model_conversion();
|
||||
m_cancel_backup_file = sp.cancel_backup_file();
|
||||
}
|
||||
|
||||
|
||||
|
@ -309,3 +319,28 @@ expr_ref_vector solver::get_non_units(ast_manager& m) {
|
|||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
lbool solver::check_sat(unsigned num_assumptions, expr * const * assumptions) {
|
||||
lbool r = l_undef;
|
||||
try {
|
||||
r = check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
catch (...) {
|
||||
if (get_manager().canceled()) {
|
||||
dump_state(num_assumptions, assumptions);
|
||||
}
|
||||
throw;
|
||||
}
|
||||
if (r == l_undef && get_manager().canceled()) {
|
||||
dump_state(num_assumptions, assumptions);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void solver::dump_state(unsigned sz, expr* const* assumptions) {
|
||||
std::string file = m_cancel_backup_file.str();
|
||||
if (file != "") {
|
||||
std::ofstream ous(file);
|
||||
display(ous, sz, assumptions);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -44,8 +44,9 @@ public:
|
|||
- results based on check_sat_result API
|
||||
*/
|
||||
class solver : public check_sat_result {
|
||||
params_ref m_params;
|
||||
bool m_enforce_model_conversion;
|
||||
params_ref m_params;
|
||||
bool m_enforce_model_conversion;
|
||||
symbol m_cancel_backup_file;
|
||||
public:
|
||||
solver(): m_enforce_model_conversion(false) {}
|
||||
~solver() override {}
|
||||
|
@ -140,7 +141,8 @@ public:
|
|||
|
||||
If it is unsatisfiable, and unsat-core generation is enabled. Then, the unsat-core is a subset of these assumptions.
|
||||
*/
|
||||
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) = 0;
|
||||
|
||||
lbool check_sat(unsigned num_assumptions, expr * const * assumptions);
|
||||
|
||||
lbool check_sat(expr_ref_vector const& asms) { return check_sat(asms.size(), asms.c_ptr()); }
|
||||
|
||||
|
@ -227,6 +229,11 @@ public:
|
|||
*/
|
||||
virtual std::ostream& display(std::ostream & out, unsigned n = 0, expr* const* assumptions = nullptr) const;
|
||||
|
||||
/**
|
||||
\brief Display the content of this solver in DIMACS format
|
||||
*/
|
||||
std::ostream& display_dimacs(std::ostream & out) const;
|
||||
|
||||
/**
|
||||
\brief expose model converter when solver produces partially reduced set of assertions.
|
||||
*/
|
||||
|
@ -249,14 +256,17 @@ public:
|
|||
void disable_pop() { m_nopop = true; }
|
||||
};
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) = 0;
|
||||
|
||||
protected:
|
||||
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences);
|
||||
|
||||
void dump_state(unsigned sz, expr* const* assumptions);
|
||||
|
||||
bool is_literal(ast_manager& m, expr* e);
|
||||
|
||||
|
||||
};
|
||||
|
||||
typedef ref<solver> solver_ref;
|
||||
|
|
|
@ -61,10 +61,10 @@ struct append_assumptions {
|
|||
}
|
||||
};
|
||||
|
||||
lbool solver_na2as::check_sat(unsigned num_assumptions, expr * const * assumptions) {
|
||||
lbool solver_na2as::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
append_assumptions app(m_assumptions, num_assumptions, assumptions);
|
||||
TRACE("solver_na2as", display(tout););
|
||||
return check_sat_core(m_assumptions.size(), m_assumptions.c_ptr());
|
||||
return check_sat_core2(m_assumptions.size(), m_assumptions.c_ptr());
|
||||
}
|
||||
|
||||
lbool solver_na2as::check_sat_cc(const expr_ref_vector &assumptions, vector<expr_ref_vector> const &clauses) {
|
||||
|
|
|
@ -35,10 +35,9 @@ public:
|
|||
~solver_na2as() override;
|
||||
|
||||
void assert_expr_core2(expr * t, expr * a) override;
|
||||
// virtual void assert_expr_core(expr * t) = 0;
|
||||
|
||||
// Subclasses of solver_na2as should redefine the following *_core methods instead of these ones.
|
||||
lbool check_sat(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
lbool check_sat_cc(const expr_ref_vector &assumptions, vector<expr_ref_vector> const &clauses) override;
|
||||
void push() override;
|
||||
void pop(unsigned n) override;
|
||||
|
@ -49,7 +48,7 @@ public:
|
|||
lbool get_consequences(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override;
|
||||
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override;
|
||||
protected:
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) = 0;
|
||||
virtual lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) = 0;
|
||||
virtual lbool check_sat_cc_core(const expr_ref_vector &assumptions, vector<expr_ref_vector> const &clauses) { NOT_IMPLEMENTED_YET(); }
|
||||
virtual void push_core() = 0;
|
||||
virtual void pop_core(unsigned n) = 0;
|
||||
|
|
8
src/solver/solver_params.pyg
Normal file
8
src/solver/solver_params.pyg
Normal file
|
@ -0,0 +1,8 @@
|
|||
|
||||
def_module_params('solver',
|
||||
description='solver parameters',
|
||||
export=True,
|
||||
params=(('enforce_model_conversion', BOOL, False, "apply model transformation on new assertions"),
|
||||
('cancel_backup_file', SYMBOL, '', "file to save partial search state if search is canceled"),
|
||||
))
|
||||
|
|
@ -119,7 +119,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
SASSERT(!m_pushed || get_scope_level() > 0);
|
||||
m_proof.reset();
|
||||
scoped_watch _t_(m_pool.m_check_watch);
|
||||
|
|
|
@ -62,7 +62,7 @@ public:
|
|||
|
||||
void push_core() override;
|
||||
void pop_core(unsigned n) override;
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override;
|
||||
|
||||
void collect_statistics(statistics & st) const override;
|
||||
void get_unsat_core(expr_ref_vector & r) override;
|
||||
|
@ -136,7 +136,7 @@ void tactic2solver::pop_core(unsigned n) {
|
|||
m_result = nullptr;
|
||||
}
|
||||
|
||||
lbool tactic2solver::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
lbool tactic2solver::check_sat_core2(unsigned num_assumptions, expr * const * assumptions) {
|
||||
if (m_tactic.get() == nullptr)
|
||||
return l_false;
|
||||
ast_manager & m = m_assertions.m();
|
||||
|
|
|
@ -137,9 +137,9 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
return m_solver->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) override { solver::updt_params(p); m_solver->updt_params(p); }
|
||||
|
|
|
@ -78,9 +78,9 @@ public:
|
|||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
m_solver->updt_params(get_params());
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
return m_solver->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) override { solver::updt_params(p); m_solver->updt_params(p); }
|
||||
|
|
|
@ -75,9 +75,9 @@ public:
|
|||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
return m_solver->check_sat_core(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) override { solver::updt_params(p); m_rewriter.updt_params(p); m_solver->updt_params(p); }
|
||||
|
|
|
@ -20,6 +20,7 @@ Revision History:
|
|||
#include "ast/ast_smt2_pp.h"
|
||||
#include "ast/for_each_expr.h"
|
||||
#include "ast/well_sorted.h"
|
||||
#include "ast/display_dimacs.h"
|
||||
#include "tactic/goal.h"
|
||||
|
||||
goal::precision goal::mk_union(precision p1, precision p2) {
|
||||
|
@ -262,14 +263,14 @@ void goal::assert_expr(expr * f, expr_dependency * d) {
|
|||
assert_expr(f, proofs_enabled() ? m().mk_asserted(f) : nullptr, d);
|
||||
}
|
||||
|
||||
void goal::get_formulas(ptr_vector<expr> & result) {
|
||||
void goal::get_formulas(ptr_vector<expr> & result) const {
|
||||
unsigned sz = size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
result.push_back(form(i));
|
||||
}
|
||||
}
|
||||
|
||||
void goal::get_formulas(expr_ref_vector & result) {
|
||||
void goal::get_formulas(expr_ref_vector & result) const {
|
||||
unsigned sz = size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
result.push_back(form(i));
|
||||
|
@ -434,63 +435,9 @@ void goal::display_ll(std::ostream & out) const {
|
|||
\brief Assumes that the formula is already in CNF.
|
||||
*/
|
||||
void goal::display_dimacs(std::ostream & out) const {
|
||||
unsigned_vector expr2var;
|
||||
ptr_vector<expr> exprs;
|
||||
unsigned num_vars = 0;
|
||||
unsigned num_cls = size();
|
||||
for (unsigned i = 0; i < num_cls; i++) {
|
||||
expr * f = form(i);
|
||||
unsigned num_lits;
|
||||
expr * const * lits;
|
||||
if (m().is_or(f)) {
|
||||
num_lits = to_app(f)->get_num_args();
|
||||
lits = to_app(f)->get_args();
|
||||
}
|
||||
else {
|
||||
num_lits = 1;
|
||||
lits = &f;
|
||||
}
|
||||
for (unsigned j = 0; j < num_lits; j++) {
|
||||
expr * l = lits[j];
|
||||
if (m().is_not(l))
|
||||
l = to_app(l)->get_arg(0);
|
||||
if (expr2var.get(l->get_id(), UINT_MAX) == UINT_MAX) {
|
||||
num_vars++;
|
||||
expr2var.setx(l->get_id(), num_vars, UINT_MAX);
|
||||
exprs.setx(l->get_id(), l, nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
out << "p cnf " << num_vars << " " << num_cls << "\n";
|
||||
for (unsigned i = 0; i < num_cls; i++) {
|
||||
expr * f = form(i);
|
||||
unsigned num_lits;
|
||||
expr * const * lits;
|
||||
if (m().is_or(f)) {
|
||||
num_lits = to_app(f)->get_num_args();
|
||||
lits = to_app(f)->get_args();
|
||||
}
|
||||
else {
|
||||
num_lits = 1;
|
||||
lits = &f;
|
||||
}
|
||||
for (unsigned j = 0; j < num_lits; j++) {
|
||||
expr * l = lits[j];
|
||||
if (m().is_not(l)) {
|
||||
out << "-";
|
||||
l = to_app(l)->get_arg(0);
|
||||
}
|
||||
SASSERT(exprs[l->get_id()]);
|
||||
out << expr2var[l->get_id()] << " ";
|
||||
}
|
||||
out << "0\n";
|
||||
}
|
||||
for (expr* e : exprs) {
|
||||
if (e && is_app(e)) {
|
||||
symbol const& n = to_app(e)->get_decl()->get_name();
|
||||
out << "c " << expr2var[e->get_id()] << " " << n << "\n";
|
||||
}
|
||||
}
|
||||
expr_ref_vector fmls(m());
|
||||
get_formulas(fmls);
|
||||
::display_dimacs(out, fmls);
|
||||
}
|
||||
|
||||
unsigned goal::num_exprs() const {
|
||||
|
|
|
@ -126,8 +126,8 @@ public:
|
|||
|
||||
void update(unsigned i, expr * f, proof * pr = nullptr, expr_dependency * dep = nullptr);
|
||||
|
||||
void get_formulas(ptr_vector<expr> & result);
|
||||
void get_formulas(expr_ref_vector & result);
|
||||
void get_formulas(ptr_vector<expr> & result) const;
|
||||
void get_formulas(expr_ref_vector & result) const;
|
||||
|
||||
void elim_true();
|
||||
void elim_redundancies();
|
||||
|
|
|
@ -32,6 +32,7 @@ Revision History:
|
|||
#include "util/debug.h"
|
||||
#include "util/trace.h"
|
||||
#include "util/tptr.h"
|
||||
#include "util/util.h"
|
||||
#ifdef Z3DEBUG
|
||||
#include "util/hashtable.h"
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue