3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-20 04:43:39 +00:00

debugging mbi

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-06-13 21:17:35 -07:00 committed by Arie Gurfinkel
parent 732a8149d8
commit 49279d7047
6 changed files with 112 additions and 59 deletions

View file

@ -128,6 +128,20 @@ void for_each_expr(ForEachProc & proc, expr * n) {
for_each_expr_core<ForEachProc, expr_mark, false, false>(proc, visited, n); for_each_expr_core<ForEachProc, expr_mark, false, false>(proc, visited, n);
} }
template<typename ForEachProc>
void for_each_expr(ForEachProc & proc, unsigned n, expr * const* es) {
expr_mark visited;
for (unsigned i = 0; i < n; ++i)
for_each_expr_core<ForEachProc, expr_mark, false, false>(proc, visited, es[i]);
}
template<typename ForEachProc>
void for_each_expr(ForEachProc & proc, expr_ref_vector const& es) {
expr_mark visited;
for (expr* e : es)
for_each_expr_core<ForEachProc, expr_mark, false, false>(proc, visited, e);
}
template<typename ForEachProc> template<typename ForEachProc>
void quick_for_each_expr(ForEachProc & proc, expr_fast_mark1 & visited, expr * n) { void quick_for_each_expr(ForEachProc & proc, expr_fast_mark1 & visited, expr * n) {
for_each_expr_core<ForEachProc, expr_fast_mark1, false, false>(proc, visited, n); for_each_expr_core<ForEachProc, expr_fast_mark1, false, false>(proc, visited, n);

View file

@ -523,18 +523,26 @@ namespace opt {
rational slack = (abs_src_c - rational::one()) * (abs_dst_c - rational::one()); rational slack = (abs_src_c - rational::one()) * (abs_dst_c - rational::one());
rational dst_val = dst.m_value - x_val*dst_c; rational dst_val = dst.m_value - x_val*dst_c;
rational src_val = src.m_value - x_val*src_c; rational src_val = src.m_value - x_val*src_c;
bool use_case1 = rational distance = src_c * dst_val + dst_c * src_val + slack;
(src_c * dst_val + dst_c * src_val + slack).is_nonpos() bool use_case1 = distance.is_nonpos() || abs_src_c.is_one() || abs_dst_c.is_one();
|| abs_src_c.is_one()
|| abs_dst_c.is_one(); if (distance.is_nonpos() && !abs_src_c.is_one() && !abs_dst_c.is_one()) {
unsigned r = copy_row(row_src);
mul_add(false, r, rational::one(), row_dst);
del_var(r, x);
add(r, slack);
TRACE("qe", tout << m_rows[r];);
SASSERT(!m_rows[r].m_value.is_pos());
}
if (use_case1) { if (use_case1) {
TRACE("opt", tout << "slack: " << slack << " " << src_c << " " << dst_val << " " << dst_c << " " << src_val << "\n";);
// dst <- abs_src_c*dst + abs_dst_c*src - slack // dst <- abs_src_c*dst + abs_dst_c*src - slack
mul(row_dst, abs_src_c); mul(row_dst, abs_src_c);
sub(row_dst, slack); sub(row_dst, slack);
mul_add(false, row_dst, abs_dst_c, row_src); mul_add(false, row_dst, abs_dst_c, row_src);
return; return;
} }
// //
// create finite disjunction for |b|. // create finite disjunction for |b|.
@ -555,6 +563,7 @@ namespace opt {
// exists z in [0 .. |b|-2] . |b| | (z + s) && a*n_sign(b)(s + z) + |b|t <= 0 // exists z in [0 .. |b|-2] . |b| | (z + s) && a*n_sign(b)(s + z) + |b|t <= 0
// //
TRACE("qe", tout << "finite disjunction " << distance << " " << src_c << " " << dst_c << "\n";);
vector<var> coeffs; vector<var> coeffs;
if (abs_dst_c <= abs_src_c) { if (abs_dst_c <= abs_src_c) {
rational z = mod(dst_val, abs_dst_c); rational z = mod(dst_val, abs_dst_c);
@ -611,6 +620,21 @@ namespace opt {
r.m_value -= c; r.m_value -= c;
} }
void model_based_opt::del_var(unsigned dst, unsigned x) {
row& r = m_rows[dst];
unsigned j = 0;
for (var & v : r.m_vars) {
if (v.m_id == x) {
r.m_value -= eval(x)*r.m_coeff;
}
else {
r.m_vars[j++] = v;
}
}
r.m_vars.shrink(j);
}
void model_based_opt::normalize(unsigned row_id) { void model_based_opt::normalize(unsigned row_id) {
row& r = m_rows[row_id]; row& r = m_rows[row_id];
if (r.m_vars.empty()) return; if (r.m_vars.empty()) return;

View file

@ -120,6 +120,8 @@ namespace opt {
void sub(unsigned dst, rational const& c); void sub(unsigned dst, rational const& c);
void del_var(unsigned dst, unsigned x);
void set_row(unsigned row_id, vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel); void set_row(unsigned row_id, vector<var> const& coeffs, rational const& c, rational const& m, ineq_type rel);
void add_constraint(vector<var> const& coeffs, rational const& c, rational const& m, ineq_type r); void add_constraint(vector<var> const& coeffs, rational const& c, rational const& m, ineq_type r);

View file

@ -417,7 +417,7 @@ namespace qe {
ts.push_back(t); ts.push_back(t);
} }
t = mk_add(ts); t = mk_add(ts);
s = a.mk_numeral(-r.m_coeff, a.is_int(t)); s = a.mk_numeral(-r.m_coeff, r.m_coeff.is_int() && a.is_int(t));
switch (r.m_type) { switch (r.m_type) {
case opt::t_lt: t = a.mk_lt(t, s); break; case opt::t_lt: t = a.mk_lt(t, s); break;
case opt::t_le: t = a.mk_le(t, s); break; case opt::t_le: t = a.mk_le(t, s); break;
@ -445,7 +445,8 @@ namespace qe {
for (var const& v : d.m_vars) { for (var const& v : d.m_vars) {
ts.push_back(var2expr(index2expr, v)); ts.push_back(var2expr(index2expr, v));
} }
ts.push_back(a.mk_numeral(d.m_coeff, is_int)); if (!d.m_coeff.is_zero())
ts.push_back(a.mk_numeral(d.m_coeff, is_int));
t = mk_add(ts); t = mk_add(ts);
if (!d.m_div.is_one() && is_int) { if (!d.m_div.is_one() && is_int) {
t = a.mk_idiv(t, a.mk_numeral(d.m_div, is_int)); t = a.mk_idiv(t, a.mk_numeral(d.m_div, is_int));
@ -461,10 +462,12 @@ namespace qe {
} }
expr_ref mk_add(expr_ref_vector const& ts) { expr_ref mk_add(expr_ref_vector const& ts) {
if (ts.size() == 1) { switch (ts.size()) {
case 0:
return expr_ref(a.mk_int(0), m);
case 1:
return expr_ref(ts.get(0), m); return expr_ref(ts.get(0), m);
} default:
else {
return expr_ref(a.mk_add(ts.size(), ts.c_ptr()), m); return expr_ref(a.mk_add(ts.size(), ts.c_ptr()), m);
} }
} }

View file

@ -259,12 +259,11 @@ namespace qe {
app_ref_vector& m_vars; app_ref_vector& m_vars;
arith_util arith; arith_util arith;
obj_hashtable<func_decl> m_exclude; obj_hashtable<func_decl> m_exclude;
is_arith_var_proc(app_ref_vector& vars, func_decl_ref_vector const& shared): is_arith_var_proc(app_ref_vector& vars, func_decl_ref_vector const& shared):
m(vars.m()), m_vars(vars), arith(m) { m(vars.m()), m_vars(vars), arith(m) {
for (func_decl* f : shared) m_exclude.insert(f); for (func_decl* f : shared) m_exclude.insert(f);
} }
void operator()(app* a) { void operator()(app* a) {
TRACE("qe", tout << expr_ref(a, m) << " " << arith.is_int_real(a) << " " << a->get_family_id() << "\n";);
if (arith.is_int_real(a) && a->get_family_id() != arith.get_family_id() && !m_exclude.contains(a->get_decl())) { if (arith.is_int_real(a) && a->get_family_id() != arith.get_family_id() && !m_exclude.contains(a->get_decl())) {
m_vars.push_back(a); m_vars.push_back(a);
} }
@ -291,17 +290,7 @@ namespace qe {
} }
} }
mbi_result euf_arith_mbi_plugin::operator()(expr_ref_vector& lits, model_ref& mdl) { bool euf_arith_mbi_plugin::get_literals(model_ref& mdl, expr_ref_vector& lits) {
lbool r = m_solver->check_sat(lits);
switch (r) {
case l_false:
lits.reset();
m_solver->get_unsat_core(lits);
// optionally minimize core using superposition.
return mbi_unsat;
case l_true: {
m_solver->get_model(mdl);
model_evaluator mev(*mdl.get()); model_evaluator mev(*mdl.get());
lits.reset(); lits.reset();
for (expr* e : m_atoms) { for (expr* e : m_atoms) {
@ -313,49 +302,65 @@ namespace qe {
} }
} }
TRACE("qe", tout << "atoms from model: " << lits << "\n";); TRACE("qe", tout << "atoms from model: " << lits << "\n";);
r = m_dual_solver->check_sat(lits); lbool r = m_dual_solver->check_sat(lits);
expr_ref_vector core(m); if (l_false == r) {
term_graph tg(m);
switch (r) {
case l_false: {
// use the dual solver to find a 'small' implicant // use the dual solver to find a 'small' implicant
m_dual_solver->get_unsat_core(core);
TRACE("qe", tout << "core: " << core << "\n";);
lits.reset(); lits.reset();
lits.append(core); m_dual_solver->get_unsat_core(lits);
return true;
}
else {
return false;
}
}
app_ref_vector euf_arith_mbi_plugin::get_arith_vars(expr_ref_vector const& lits) {
arith_util a(m); arith_util a(m);
// populate set of arithmetic variables to be projected.
app_ref_vector avars(m); app_ref_vector avars(m);
is_arith_var_proc _proc(avars, m_shared); is_arith_var_proc _proc(avars, m_shared);
for (expr* l : lits) quick_for_each_expr(_proc, l); for_each_expr(_proc, lits);
TRACE("qe", tout << "vars: " << avars << " lits: " << lits << "\n";); return avars;
}
// 1. project arithmetic variables using mdl that satisfies core. mbi_result euf_arith_mbi_plugin::operator()(expr_ref_vector& lits, model_ref& mdl) {
// ground any remaining arithmetic variables using model. lbool r = m_solver->check_sat(lits);
arith_project_plugin ap(m);
ap.set_check_purified(false);
auto defs = ap.project(*mdl.get(), avars, lits); switch (r) {
// 2. Add the projected definitions to the remaining (euf) literals case l_false:
for (auto const& def : defs) { lits.reset();
lits.push_back(m.mk_eq(def.var, def.term)); m_solver->get_unsat_core(lits);
} TRACE("qe", tout << "unsat core: " << lits << "\n";);
TRACE("qe", tout << "# arith defs" << defs.size() << " avars: " << avars << " " << lits << "\n";); // optionally minimize core using superposition.
return mbi_unsat;
// 3. Project the remaining literals with respect to EUF. case l_true: {
tg.set_vars(m_shared, false); m_solver->get_model(mdl);
tg.add_lits(lits); if (!get_literals(mdl, lits)) {
lits.reset();
lits.append(tg.project(*mdl));
TRACE("qe", tout << "project: " << lits << "\n";);
return mbi_sat;
}
case l_undef:
return mbi_undef;
case l_true:
UNREACHABLE();
return mbi_undef; return mbi_undef;
} }
app_ref_vector avars = get_arith_vars(lits);
TRACE("qe", tout << "vars: " << avars << " lits: " << lits << "\n";);
// 1. project arithmetic variables using mdl that satisfies core.
// ground any remaining arithmetic variables using model.
arith_project_plugin ap(m);
ap.set_check_purified(false);
auto defs = ap.project(*mdl.get(), avars, lits);
// 2. Add the projected definitions to the remaining (euf) literals
for (auto const& def : defs) {
lits.push_back(m.mk_eq(def.var, def.term));
}
TRACE("qe", tout << "# arith defs" << defs.size() << " avars: " << avars << " " << lits << "\n";);
// 3. Project the remaining literals with respect to EUF.
term_graph tg(m);
tg.set_vars(m_shared, false);
tg.add_lits(lits);
lits.reset();
//lits.append(tg.project(*mdl));
lits.append(tg.project());
TRACE("qe", tout << "project: " << lits << "\n";);
return mbi_sat; return mbi_sat;
} }
default: default:
@ -448,6 +453,7 @@ namespace qe {
case l_undef: case l_undef:
return l_undef; return l_undef;
} }
break;
case l_false: case l_false:
itp = mk_and(itps); itp = mk_and(itps);
return l_false; return l_false;

View file

@ -109,6 +109,10 @@ namespace qe {
solver_ref m_dual_solver; solver_ref m_dual_solver;
struct is_atom_proc; struct is_atom_proc;
struct is_arith_var_proc; struct is_arith_var_proc;
app_ref_vector get_arith_vars(expr_ref_vector const& lits);
bool get_literals(model_ref& mdl, expr_ref_vector& lits);
public: public:
euf_arith_mbi_plugin(solver* s, solver* sNot); euf_arith_mbi_plugin(solver* s, solver* sNot);
~euf_arith_mbi_plugin() override {} ~euf_arith_mbi_plugin() override {}