3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00

refactor tests from nla_solver

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-16 14:03:09 -07:00
parent c9e989ae85
commit 48fcd66bb9
5 changed files with 838 additions and 819 deletions

View file

@ -1,6 +1,6 @@
add_executable(lp_tst
EXCLUDE_FROM_ALL
lp_main.cpp lp.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:polynomial> $<TARGET_OBJECTS:nlsat> $<TARGET_OBJECTS:lp> )
lp_main.cpp lp.cpp nla_solver_test.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:polynomial> $<TARGET_OBJECTS:nlsat> $<TARGET_OBJECTS:lp> )
target_compile_definitions(lp_tst PRIVATE ${Z3_COMPONENT_CXX_DEFINES})
target_compile_options(lp_tst PRIVATE ${Z3_COMPONENT_CXX_FLAGS})
target_include_directories(lp_tst PRIVATE ${Z3_COMPONENT_EXTRA_INCLUDE_DIRS})

View file

@ -55,6 +55,18 @@
#include "util/lp/general_matrix.h"
#include "util/lp/bound_propagator.h"
#include "util/lp/nla_solver.h"
namespace nla {
void test_factorization();
void test_order_lemma();
void test_monotone_lemma();
void test_basic_sign_lemma();
void test_tangent_lemma();
void test_basic_lemma_for_mon_zero_from_monomial_to_factors();
void test_basic_lemma_for_mon_zero_from_factors_to_monomial();
void test_basic_lemma_for_mon_neutral_from_monomial_to_factors();
void test_basic_lemma_for_mon_neutral_from_factors_to_monomial();
}
namespace lp {
unsigned seed = 1;
@ -3557,11 +3569,11 @@ void test_gomory_cut() {
}
void test_nla_factorization() {
nla::solver::test_factorization();
nla::test_factorization();
}
void test_nla_order_lemma() {
nla::solver::test_order_lemma();
nla::test_order_lemma();
}
void test_lp_local(int argn, char**argv) {
@ -3597,49 +3609,49 @@ void test_lp_local(int argn, char**argv) {
if (args_parser.option_is_used("-nla_monot")) {
#ifdef Z3DEBUG
nla::solver::test_monotone_lemma();
nla::test_monotone_lemma();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_bsl")) {
#ifdef Z3DEBUG
nla::solver::test_basic_sign_lemma();
nla::test_basic_sign_lemma();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_tan")) {
#ifdef Z3DEBUG
nla::solver::test_tangent_lemma();
nla::test_tangent_lemma();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_blfmz_mf")) {
#ifdef Z3DEBUG
nla::solver::test_basic_lemma_for_mon_zero_from_monomial_to_factors();
nla::test_basic_lemma_for_mon_zero_from_monomial_to_factors();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_blfmz_fm")) {
#ifdef Z3DEBUG
nla::solver::test_basic_lemma_for_mon_zero_from_factors_to_monomial();
nla::test_basic_lemma_for_mon_zero_from_factors_to_monomial();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_blnt_mf")) {
#ifdef Z3DEBUG
nla::solver::test_basic_lemma_for_mon_neutral_from_monomial_to_factors();
nla::test_basic_lemma_for_mon_neutral_from_monomial_to_factors();
#endif
return finalize(0);
}
if (args_parser.option_is_used("-nla_blnt_fm")) {
#ifdef Z3DEBUG
nla::solver::test_basic_lemma_for_mon_neutral_from_factors_to_monomial();
nla::test_basic_lemma_for_mon_neutral_from_factors_to_monomial();
#endif
return finalize(0);
}

View file

@ -0,0 +1,815 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/nla_solver.h"
namespace nla {
void create_abcde(solver & nla,
unsigned lp_a,
unsigned lp_b,
unsigned lp_c,
unsigned lp_d,
unsigned lp_e,
unsigned lp_abcde,
unsigned lp_ac,
unsigned lp_bde,
unsigned lp_acd,
unsigned lp_be) {
// create monomial abcde
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
vec.push_back(lp_c);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_abcde, vec.size(), vec.begin());
// create monomial ac
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
nla.add_monomial(lp_ac, vec.size(), vec.begin());
// create monomial bde
vec.clear();
vec.push_back(lp_b);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_bde, vec.size(), vec.begin());
// create monomial acd
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
// create monomial be
vec.clear();
vec.push_back(lp_b);
vec.push_back(lp_e);
nla.add_monomial(lp_be, vec.size(), vec.begin());
}
void test_factorization() {
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
solver nla(s);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
nla.get_core()->register_monomials_in_tables();
nla.get_core()->print_monomials(std::cout);
nla.get_core()->test_factorization(1, // 0 is the index of monomial abcde
1); // 3 is the number of expected factorizations
nla.get_core()->test_factorization(0, // 0 is the index of monomial abcde
3); // 3 is the number of expected factorizations
}
void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
std::cout << "test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0\n";
enable_trace("nla_solver");
TRACE("nla_solver",);
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
reslimit l;
params_ref p;
solver nla(s);
svector<lpvar> v; v.push_back(lp_b);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_bde, v.size(), v.begin());
v.clear();
v.push_back(lp_a);v.push_back(lp_b);v.push_back(lp_c);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_abcde, v.size(), v.begin());
v.clear();
v.push_back(lp_a);v.push_back(lp_c);
nla.add_monomial(lp_ac, v.size(), v.begin());
vector<lemma> lv;
// set abcde = ac * bde
// ac = 1 then abcde = bde, but we have abcde < bde
s.set_column_value(lp_a, lp::impq(rational(4)));
s.set_column_value(lp_b, lp::impq(rational(4)));
s.set_column_value(lp_c, lp::impq(rational(4)));
s.set_column_value(lp_d, lp::impq(rational(4)));
s.set_column_value(lp_e, lp::impq(rational(4)));
s.set_column_value(lp_abcde, lp::impq(rational(15)));
s.set_column_value(lp_ac, lp::impq(rational(1)));
s.set_column_value(lp_bde, lp::impq(rational(16)));
SASSERT(nla.get_core()->test_check(lv) == l_false);
nla.get_core()->print_lemma(std::cout);
ineq i0(llc::NE, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_ac);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_bde);
i1.m_term.add_coeff_var(-rational(1), lp_abcde);
ineq i2(llc::EQ, lp::lar_term(), rational(0));
i2.m_term.add_var(lp_abcde);
i2.m_term.add_coeff_var(-rational(1), lp_bde);
bool found0 = false;
bool found1 = false;
bool found2 = false;
for (const auto& k : lv[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2) {
found2 = true;
}
}
SASSERT(found0 && (found1 || found2));
}
void s_set_column_value(lp::lar_solver&s, lpvar j, const rational & v) {
s.set_column_value(j, lp::impq(v));
}
void s_set_column_value(lp::lar_solver&s, lpvar j, const lp::impq & v) {
s.set_column_value(j, v);
}
void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() {
std::cout << "test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1\n";
TRACE("nla_solver",);
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
bde = 7;
lpvar lp_a = s.add_var(a, true);
lpvar lp_b = s.add_var(b, true);
lpvar lp_c = s.add_var(c, true);
lpvar lp_d = s.add_var(d, true);
lpvar lp_e = s.add_var(e, true);
lpvar lp_bde = s.add_var(bde, true);
reslimit l;
params_ref p;
solver nla(s);
svector<lpvar> v; v.push_back(lp_b);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_bde, v.size(), v.begin());
vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_bde, rational(3));
SASSERT(nla.get_core()->test_check(lemma) == l_false);
SASSERT(lemma[0].size() == 4);
nla.get_core()->print_lemma(std::cout);
ineq i0(llc::NE, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_b);
ineq i1(llc::NE, lp::lar_term(), rational(1));
i1.m_term.add_var(lp_d);
ineq i2(llc::NE, lp::lar_term(), rational(1));
i2.m_term.add_var(lp_e);
ineq i3(llc::EQ, lp::lar_term(), rational(1));
i3.m_term.add_var(lp_bde);
bool found0 = false;
bool found1 = false;
bool found2 = false;
bool found3 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2) {
found2 = true;
} else if (k == i3) {
found3 = true;
}
}
SASSERT(found0 && found1 && found2 && found3);
}
void test_basic_lemma_for_mon_neutral_from_factors_to_monomial() {
test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0();
test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1();
}
void test_basic_lemma_for_mon_zero_from_factors_to_monomial() {
std::cout << "test_basic_lemma_for_mon_zero_from_factors_to_monomial\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
reslimit l;
params_ref p;
solver nla(s);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
vector<lemma> lemma;
// set vars
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(0));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(0));
s_set_column_value(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(0));
s_set_column_value(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1));
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
SASSERT(lemma.size() == 1 && lemma[0].size() == 2);
ineq i0(llc::NE, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_b);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_be);
bool found0 = false;
bool found1 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
}
}
SASSERT(found0 && found1);
}
void test_basic_lemma_for_mon_zero_from_monomial_to_factors() {
std::cout << "test_basic_lemma_for_mon_zero_from_monomial_to_factors\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, c = 2, d = 3, acd = 8;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
reslimit l;
params_ref p;
solver nla(s);
// create monomial acd
unsigned_vector vec;
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_acd, rational(0));
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
ineq i0(llc::EQ, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_a);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_c);
ineq i2(llc::EQ, lp::lar_term(), rational(0));
i2.m_term.add_var(lp_d);
bool found0 = false;
bool found1 = false;
bool found2 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2){
found2 = true;
}
}
SASSERT(found0 && found1 && found2);
}
void test_basic_lemma_for_mon_neutral_from_monomial_to_factors() {
std::cout << "test_basic_lemma_for_mon_neutral_from_monomial_to_factors\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
reslimit l;
params_ref p;
solver nla(s);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
vector<lemma> lemma;
// set all vars to 1
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(1));
s_set_column_value(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(1));
s_set_column_value(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1));
// set bde to 2, b to minus 2
s_set_column_value(s, lp_bde, rational(2));
s_set_column_value(s, lp_b, - rational(2));
// we have bde = -b, therefore d = +-1 and e = +-1
s_set_column_value(s, lp_d, rational(3));
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
ineq i0(llc::EQ, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_d);
ineq i1(llc::EQ, lp::lar_term(), -rational(1));
i1.m_term.add_var(lp_d);
bool found0 = false;
bool found1 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
}
}
SASSERT(found0 && found1);
}
void test_basic_sign_lemma() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
bde = 7, acd = 8;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
reslimit l;
params_ref p;
solver nla(s);
// create monomial bde
vector<unsigned> vec;
vec.push_back(lp_b);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_bde, vec.size(), vec.begin());
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
// set the values of the factors so it should be bde = -acd according to the model
// b = -a
s_set_column_value(s, lp_a, rational(7));
s_set_column_value(s, lp_b, rational(-7));
// e - c = 0
s_set_column_value(s, lp_e, rational(4));
s_set_column_value(s, lp_c, rational(4));
s_set_column_value(s, lp_d, rational(6));
// make bde != -acd according to the model
s_set_column_value(s, lp_bde, rational(5));
s_set_column_value(s, lp_acd, rational(3));
vector<lemma> lemma;
SASSERT(nla.get_core()->test_check(lemma) == l_false);
lp::lar_term t;
t.add_var(lp_bde);
t.add_var(lp_acd);
ineq q(llc::EQ, t, rational(0));
nla.get_core()->print_lemma(std::cout);
SASSERT(q == lemma[0].ineqs().back());
ineq i0(llc::EQ, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_bde);
i0.m_term.add_var(lp_acd);
bool found = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found = true;
}
}
SASSERT(found);
}
void test_order_lemma_params(bool var_equiv, int sign) {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4, f = 5,
i = 8, j = 9,
ab = 10, cd = 11, ef = 12, abef = 13, cdij = 16, ij = 17,
k = 18;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_f = s.add_named_var(f, true, "f");
lpvar lp_i = s.add_named_var(i, true, "i");
lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_k = s.add_named_var(k, true, "k");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
lpvar lp_cd = s.add_named_var(cd, true, "cd");
lpvar lp_ef = s.add_named_var(ef, true, "ef");
lpvar lp_ij = s.add_named_var(ij, true, "ij");
lpvar lp_abef = s.add_named_var(abef, true, "abef");
lpvar lp_cdij = s.add_named_var(cdij, true, "cdij");
for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational(j + 2));
}
reslimit l;
params_ref p;
solver nla(s);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
// create monomial cd
vec.clear();
vec.push_back(lp_c);
vec.push_back(lp_d);
int mon_cd = nla.add_monomial(lp_cd, vec.size(), vec.begin());
// create monomial ef
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_f);
int mon_ef = nla.add_monomial(lp_ef, vec.size(), vec.begin());
// create monomial ij
vec.clear();
vec.push_back(lp_i);
if (var_equiv)
vec.push_back(lp_k);
else
vec.push_back(lp_j);
int mon_ij = nla.add_monomial(lp_ij, vec.size(), vec.begin());
if (var_equiv) { // make k equivalent to j
lp::lar_term t;
t.add_var(lp_k);
t.add_coeff_var(-rational(1), lp_j);
lpvar kj = s.add_term(t.coeffs_as_vector(), -1);
s.add_var_bound(kj, llc::LE, rational(0));
s.add_var_bound(kj, llc::GE, rational(0));
}
//create monomial (ab)(ef)
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_a);
vec.push_back(lp_b);
vec.push_back(lp_f);
nla.add_monomial(lp_abef, vec.size(), vec.begin());
//create monomial (cd)(ij)
vec.clear();
vec.push_back(lp_i);
vec.push_back(lp_j);
vec.push_back(lp_c);
vec.push_back(lp_d);
auto mon_cdij = nla.add_monomial(lp_cdij, vec.size(), vec.begin());
// set i == e
s_set_column_value(s, lp_e, s.get_column_value(lp_i));
// set f == sign*j
s_set_column_value(s, lp_f, rational(sign) * s.get_column_value(lp_j));
if (var_equiv) {
s_set_column_value(s, lp_k, s.get_column_value(lp_j));
}
// set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.get_core()->mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_ef, nla.get_core()->mon_value_by_vars(mon_ef));
s_set_column_value(s, lp_cd, nla.get_core()->mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.get_core()->mon_value_by_vars(mon_ij));
// set abef = cdij, while it has to be abef < cdij
if (sign > 0) {
SASSERT(s.get_column_value(lp_ab) < s.get_column_value(lp_cd));
// we have ab < cd
// we need to have ab*ef < cd*ij, so let us make ab*ef > cd*ij
s_set_column_value(s, lp_cdij, nla.get_core()->mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.get_core()->mon_value_by_vars(mon_cdij)
+ rational(1));
}
else {
SASSERT(-s.get_column_value(lp_ab) < s.get_column_value(lp_cd));
// we need to have abef < cdij, so let us make abef < cdij
s_set_column_value(s, lp_cdij, nla.get_core()->mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.get_core()->mon_value_by_vars(mon_cdij)
+ rational(1));
}
vector<lemma> lemma;
SASSERT(nla.get_core()->test_check(lemma) == l_false);
// lp::lar_term t;
// t.add_coeff_var(lp_bde);
// t.add_coeff_var(lp_acd);
// ineq q(llc::EQ, t, rational(0));
nla.get_core()->print_lemma(std::cout);
// SASSERT(q == lemma.back());
// ineq i0(llc::EQ, lp::lar_term(), rational(0));
// i0.m_term.add_coeff_var(lp_bde);
// i0.m_term.add_coeff_var(rational(1), lp_acd);
// bool found = false;
// for (const auto& k : lemma){
// if (k == i0) {
// found = true;
// }
// }
// SASSERT(found);
}
void test_monotone_lemma() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4, f = 5,
i = 8, j = 9,
ab = 10, cd = 11, ef = 12, ij = 17;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_f = s.add_named_var(f, true, "f");
lpvar lp_i = s.add_named_var(i, true, "i");
lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
lpvar lp_cd = s.add_named_var(cd, true, "cd");
lpvar lp_ef = s.add_named_var(ef, true, "ef");
lpvar lp_ij = s.add_named_var(ij, true, "ij");
for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational((j + 2)*(j + 2)));
}
reslimit l;
params_ref p;
solver nla(s);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
// create monomial cd
vec.clear();
vec.push_back(lp_c);
vec.push_back(lp_d);
int mon_cd = nla.add_monomial(lp_cd, vec.size(), vec.begin());
// create monomial ef
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_f);
nla.add_monomial(lp_ef, vec.size(), vec.begin());
// create monomial ij
vec.clear();
vec.push_back(lp_i);
vec.push_back(lp_j);
int mon_ij = nla.add_monomial(lp_ij, vec.size(), vec.begin());
// set e == i + 1
s_set_column_value(s, lp_e, s.get_column_value(lp_i) + lp::impq(rational(1)));
// set f == j + 1
s_set_column_value(s, lp_f, s.get_column_value(lp_j) +lp::impq( rational(1)));
// set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.get_core()->mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_cd, nla.get_core()->mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.get_core()->mon_value_by_vars(mon_ij));
// set ef = ij while it has to be ef > ij
s_set_column_value(s, lp_ef, s.get_column_value(lp_ij));
vector<lemma> lemma;
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
}
void test_tangent_lemma_reg() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, ab = 10;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
// lpvar lp_c = s.add_named_var(c, true, "c");
// lpvar lp_d = s.add_named_var(d, true, "d");
// lpvar lp_e = s.add_named_var(e, true, "e");
// lpvar lp_f = s.add_named_var(f, true, "f");
// lpvar lp_i = s.add_named_var(i, true, "i");
// lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
int sign = 1;
for (unsigned j = 0; j < s.number_of_vars(); j++) {
sign *= -1;
s_set_column_value(s, j, sign * rational((j + 2) * (j + 2)));
}
reslimit l;
params_ref p;
solver nla(s);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
s_set_column_value(s, lp_ab, nla.get_core()->mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value
vector<lemma> lemma;
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
}
void test_tangent_lemma_equiv() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, k = 2, ab = 10;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_k = s.add_named_var(k, true, "k");
lpvar lp_b = s.add_named_var(b, true, "b");
// lpvar lp_c = s.add_named_var(c, true, "c");
// lpvar lp_d = s.add_named_var(d, true, "d");
// lpvar lp_e = s.add_named_var(e, true, "e");
// lpvar lp_f = s.add_named_var(f, true, "f");
// lpvar lp_i = s.add_named_var(i, true, "i");
// lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
int sign = 1;
for (unsigned j = 0; j < s.number_of_vars(); j++) {
sign *= -1;
s_set_column_value(s, j, sign * rational((j + 2) * (j + 2)));
}
// make k == -a
lp::lar_term t;
t.add_var(lp_k);
t.add_var(lp_a);
lpvar kj = s.add_term(t.coeffs_as_vector(), -1);
s.add_var_bound(kj, llc::LE, rational(0));
s.add_var_bound(kj, llc::GE, rational(0));
s_set_column_value(s, lp_a, - s.get_column_value(lp_k));
reslimit l;
params_ref p;
solver nla(s);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
s_set_column_value(s, lp_ab, nla.get_core()->mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value
vector<lemma> lemma;
SASSERT(nla.get_core()->test_check(lemma) == l_false);
nla.get_core()->print_lemma(std::cout);
}
void test_tangent_lemma() {
test_tangent_lemma_reg();
test_tangent_lemma_equiv();
}
void test_order_lemma() {
test_order_lemma_params(false, 1);
test_order_lemma_params(false, -1);
test_order_lemma_params(true, 1);
test_order_lemma_params(true, -1);
}
} // end of namespace nla

View file

@ -54,797 +54,4 @@ solver::~solver() {
dealloc(m_core);
}
void create_abcde(solver & nla,
unsigned lp_a,
unsigned lp_b,
unsigned lp_c,
unsigned lp_d,
unsigned lp_e,
unsigned lp_abcde,
unsigned lp_ac,
unsigned lp_bde,
unsigned lp_acd,
unsigned lp_be) {
// create monomial abcde
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
vec.push_back(lp_c);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_abcde, vec.size(), vec.begin());
// create monomial ac
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
nla.add_monomial(lp_ac, vec.size(), vec.begin());
// create monomial bde
vec.clear();
vec.push_back(lp_b);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_bde, vec.size(), vec.begin());
// create monomial acd
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
// create monomial be
vec.clear();
vec.push_back(lp_b);
vec.push_back(lp_e);
nla.add_monomial(lp_be, vec.size(), vec.begin());
}
void solver::test_factorization() {
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
reslimit l;
params_ref p;
solver nla(s, l, p);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
nla.m_core->register_monomials_in_tables();
nla.m_core->print_monomials(std::cout);
nla.m_core->test_factorization(1, // 0 is the index of monomial abcde
1); // 3 is the number of expected factorizations
nla.m_core->test_factorization(0, // 0 is the index of monomial abcde
3); // 3 is the number of expected factorizations
}
void solver::test_basic_lemma_for_mon_neutral_from_factors_to_monomial() {
test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0();
test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1();
}
void solver::test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
std::cout << "test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0\n";
enable_trace("nla_solver");
TRACE("nla_solver",);
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
reslimit l;
params_ref p;
solver nla(s, l, p);
svector<lpvar> v; v.push_back(lp_b);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_bde, v.size(), v.begin());
v.clear();
v.push_back(lp_a);v.push_back(lp_b);v.push_back(lp_c);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_abcde, v.size(), v.begin());
v.clear();
v.push_back(lp_a);v.push_back(lp_c);
nla.add_monomial(lp_ac, v.size(), v.begin());
vector<lemma> lv;
// set abcde = ac * bde
// ac = 1 then abcde = bde, but we have abcde < bde
s.set_column_value(lp_a, lp::impq(rational(4)));
s.set_column_value(lp_b, lp::impq(rational(4)));
s.set_column_value(lp_c, lp::impq(rational(4)));
s.set_column_value(lp_d, lp::impq(rational(4)));
s.set_column_value(lp_e, lp::impq(rational(4)));
s.set_column_value(lp_abcde, lp::impq(rational(15)));
s.set_column_value(lp_ac, lp::impq(rational(1)));
s.set_column_value(lp_bde, lp::impq(rational(16)));
SASSERT(nla.m_core->test_check(lv) == l_false);
nla.m_core->print_lemma(std::cout);
ineq i0(llc::NE, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_ac);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_bde);
i1.m_term.add_coeff_var(-rational(1), lp_abcde);
ineq i2(llc::EQ, lp::lar_term(), rational(0));
i2.m_term.add_var(lp_abcde);
i2.m_term.add_coeff_var(-rational(1), lp_bde);
bool found0 = false;
bool found1 = false;
bool found2 = false;
for (const auto& k : lv[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2) {
found2 = true;
}
}
SASSERT(found0 && (found1 || found2));
}
void solver::s_set_column_value(lp::lar_solver&s, lpvar j, const rational & v) {
s.set_column_value(j, lp::impq(v));
}
void solver::s_set_column_value(lp::lar_solver&s, lpvar j, const lp::impq & v) {
s.set_column_value(j, v);
}
void solver::test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() {
std::cout << "test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1\n";
TRACE("nla_solver",);
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
bde = 7;
lpvar lp_a = s.add_var(a, true);
lpvar lp_b = s.add_var(b, true);
lpvar lp_c = s.add_var(c, true);
lpvar lp_d = s.add_var(d, true);
lpvar lp_e = s.add_var(e, true);
lpvar lp_bde = s.add_var(bde, true);
reslimit l;
params_ref p;
solver nla(s, l, p);
svector<lpvar> v; v.push_back(lp_b);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monomial(lp_bde, v.size(), v.begin());
vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_bde, rational(3));
SASSERT(nla.m_core->test_check(lemma) == l_false);
SASSERT(lemma[0].size() == 4);
nla.m_core->print_lemma(std::cout);
ineq i0(llc::NE, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_b);
ineq i1(llc::NE, lp::lar_term(), rational(1));
i1.m_term.add_var(lp_d);
ineq i2(llc::NE, lp::lar_term(), rational(1));
i2.m_term.add_var(lp_e);
ineq i3(llc::EQ, lp::lar_term(), rational(1));
i3.m_term.add_var(lp_bde);
bool found0 = false;
bool found1 = false;
bool found2 = false;
bool found3 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2) {
found2 = true;
} else if (k == i3) {
found3 = true;
}
}
SASSERT(found0 && found1 && found2 && found3);
}
void solver::test_basic_lemma_for_mon_zero_from_factors_to_monomial() {
std::cout << "test_basic_lemma_for_mon_zero_from_factors_to_monomial\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
reslimit l;
params_ref p;
solver nla(s, l, p);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
vector<lemma> lemma;
// set vars
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(0));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(0));
s_set_column_value(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(0));
s_set_column_value(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1));
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
SASSERT(lemma.size() == 1 && lemma[0].size() == 2);
ineq i0(llc::NE, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_b);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_be);
bool found0 = false;
bool found1 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
}
}
SASSERT(found0 && found1);
}
void solver::test_basic_lemma_for_mon_zero_from_monomial_to_factors() {
std::cout << "test_basic_lemma_for_mon_zero_from_monomial_to_factors\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, c = 2, d = 3, acd = 8;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial acd
unsigned_vector vec;
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_acd, rational(0));
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
ineq i0(llc::EQ, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_a);
ineq i1(llc::EQ, lp::lar_term(), rational(0));
i1.m_term.add_var(lp_c);
ineq i2(llc::EQ, lp::lar_term(), rational(0));
i2.m_term.add_var(lp_d);
bool found0 = false;
bool found1 = false;
bool found2 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
} else if (k == i2){
found2 = true;
}
}
SASSERT(found0 && found1 && found2);
}
void solver::test_basic_lemma_for_mon_neutral_from_monomial_to_factors() {
std::cout << "test_basic_lemma_for_mon_neutral_from_monomial_to_factors\n";
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
abcde = 5, ac = 6, bde = 7, acd = 8, be = 9;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_abcde = s.add_named_var(abcde, true, "abcde");
lpvar lp_ac = s.add_named_var(ac, true, "ac");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
lpvar lp_be = s.add_named_var(be, true, "be");
reslimit l;
params_ref p;
solver nla(s, l, p);
create_abcde(nla,
lp_a,
lp_b,
lp_c,
lp_d,
lp_e,
lp_abcde,
lp_ac,
lp_bde,
lp_acd,
lp_be);
vector<lemma> lemma;
// set all vars to 1
s_set_column_value(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(1));
s_set_column_value(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(1));
s_set_column_value(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1));
// set bde to 2, b to minus 2
s_set_column_value(s, lp_bde, rational(2));
s_set_column_value(s, lp_b, - rational(2));
// we have bde = -b, therefore d = +-1 and e = +-1
s_set_column_value(s, lp_d, rational(3));
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
ineq i0(llc::EQ, lp::lar_term(), rational(1));
i0.m_term.add_var(lp_d);
ineq i1(llc::EQ, lp::lar_term(), -rational(1));
i1.m_term.add_var(lp_d);
bool found0 = false;
bool found1 = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
found1 = true;
}
}
SASSERT(found0 && found1);
}
void solver::test_basic_sign_lemma() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4,
bde = 7, acd = 8;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_bde = s.add_named_var(bde, true, "bde");
lpvar lp_acd = s.add_named_var(acd, true, "acd");
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial bde
vector<unsigned> vec;
vec.push_back(lp_b);
vec.push_back(lp_d);
vec.push_back(lp_e);
nla.add_monomial(lp_bde, vec.size(), vec.begin());
vec.clear();
vec.push_back(lp_a);
vec.push_back(lp_c);
vec.push_back(lp_d);
nla.add_monomial(lp_acd, vec.size(), vec.begin());
// set the values of the factors so it should be bde = -acd according to the model
// b = -a
s_set_column_value(s, lp_a, rational(7));
s_set_column_value(s, lp_b, rational(-7));
// e - c = 0
s_set_column_value(s, lp_e, rational(4));
s_set_column_value(s, lp_c, rational(4));
s_set_column_value(s, lp_d, rational(6));
// make bde != -acd according to the model
s_set_column_value(s, lp_bde, rational(5));
s_set_column_value(s, lp_acd, rational(3));
vector<lemma> lemma;
SASSERT(nla.m_core->test_check(lemma) == l_false);
lp::lar_term t;
t.add_var(lp_bde);
t.add_var(lp_acd);
ineq q(llc::EQ, t, rational(0));
nla.m_core->print_lemma(std::cout);
SASSERT(q == lemma[0].ineqs().back());
ineq i0(llc::EQ, lp::lar_term(), rational(0));
i0.m_term.add_var(lp_bde);
i0.m_term.add_var(lp_acd);
bool found = false;
for (const auto& k : lemma[0].ineqs()){
if (k == i0) {
found = true;
}
}
SASSERT(found);
}
void solver::test_order_lemma_params(bool var_equiv, int sign) {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4, f = 5,
i = 8, j = 9,
ab = 10, cd = 11, ef = 12, abef = 13, cdij = 16, ij = 17,
k = 18;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_f = s.add_named_var(f, true, "f");
lpvar lp_i = s.add_named_var(i, true, "i");
lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_k = s.add_named_var(k, true, "k");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
lpvar lp_cd = s.add_named_var(cd, true, "cd");
lpvar lp_ef = s.add_named_var(ef, true, "ef");
lpvar lp_ij = s.add_named_var(ij, true, "ij");
lpvar lp_abef = s.add_named_var(abef, true, "abef");
lpvar lp_cdij = s.add_named_var(cdij, true, "cdij");
for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational(j + 2));
}
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
// create monomial cd
vec.clear();
vec.push_back(lp_c);
vec.push_back(lp_d);
int mon_cd = nla.add_monomial(lp_cd, vec.size(), vec.begin());
// create monomial ef
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_f);
int mon_ef = nla.add_monomial(lp_ef, vec.size(), vec.begin());
// create monomial ij
vec.clear();
vec.push_back(lp_i);
if (var_equiv)
vec.push_back(lp_k);
else
vec.push_back(lp_j);
int mon_ij = nla.add_monomial(lp_ij, vec.size(), vec.begin());
if (var_equiv) { // make k equivalent to j
lp::lar_term t;
t.add_var(lp_k);
t.add_coeff_var(-rational(1), lp_j);
lpvar kj = s.add_term(t.coeffs_as_vector(), -1);
s.add_var_bound(kj, llc::LE, rational(0));
s.add_var_bound(kj, llc::GE, rational(0));
}
//create monomial (ab)(ef)
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_a);
vec.push_back(lp_b);
vec.push_back(lp_f);
nla.add_monomial(lp_abef, vec.size(), vec.begin());
//create monomial (cd)(ij)
vec.clear();
vec.push_back(lp_i);
vec.push_back(lp_j);
vec.push_back(lp_c);
vec.push_back(lp_d);
auto mon_cdij = nla.add_monomial(lp_cdij, vec.size(), vec.begin());
// set i == e
s_set_column_value(s, lp_e, s.get_column_value(lp_i));
// set f == sign*j
s_set_column_value(s, lp_f, rational(sign) * s.get_column_value(lp_j));
if (var_equiv) {
s_set_column_value(s, lp_k, s.get_column_value(lp_j));
}
// set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.m_core->mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_ef, nla.m_core->mon_value_by_vars(mon_ef));
s_set_column_value(s, lp_cd, nla.m_core->mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.m_core->mon_value_by_vars(mon_ij));
// set abef = cdij, while it has to be abef < cdij
if (sign > 0) {
SASSERT(s.get_column_value(lp_ab) < s.get_column_value(lp_cd));
// we have ab < cd
// we need to have ab*ef < cd*ij, so let us make ab*ef > cd*ij
s_set_column_value(s, lp_cdij, nla.m_core->mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.m_core->mon_value_by_vars(mon_cdij)
+ rational(1));
}
else {
SASSERT(-s.get_column_value(lp_ab) < s.get_column_value(lp_cd));
// we need to have abef < cdij, so let us make abef < cdij
s_set_column_value(s, lp_cdij, nla.m_core->mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.m_core->mon_value_by_vars(mon_cdij)
+ rational(1));
}
vector<lemma> lemma;
SASSERT(nla.m_core->test_check(lemma) == l_false);
// lp::lar_term t;
// t.add_coeff_var(lp_bde);
// t.add_coeff_var(lp_acd);
// ineq q(llc::EQ, t, rational(0));
nla.m_core->print_lemma(std::cout);
// SASSERT(q == lemma.back());
// ineq i0(llc::EQ, lp::lar_term(), rational(0));
// i0.m_term.add_coeff_var(lp_bde);
// i0.m_term.add_coeff_var(rational(1), lp_acd);
// bool found = false;
// for (const auto& k : lemma){
// if (k == i0) {
// found = true;
// }
// }
// SASSERT(found);
}
void solver::test_monotone_lemma() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, c = 2, d = 3, e = 4, f = 5,
i = 8, j = 9,
ab = 10, cd = 11, ef = 12, ij = 17;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_c = s.add_named_var(c, true, "c");
lpvar lp_d = s.add_named_var(d, true, "d");
lpvar lp_e = s.add_named_var(e, true, "e");
lpvar lp_f = s.add_named_var(f, true, "f");
lpvar lp_i = s.add_named_var(i, true, "i");
lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
lpvar lp_cd = s.add_named_var(cd, true, "cd");
lpvar lp_ef = s.add_named_var(ef, true, "ef");
lpvar lp_ij = s.add_named_var(ij, true, "ij");
for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational((j + 2)*(j + 2)));
}
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
// create monomial cd
vec.clear();
vec.push_back(lp_c);
vec.push_back(lp_d);
int mon_cd = nla.add_monomial(lp_cd, vec.size(), vec.begin());
// create monomial ef
vec.clear();
vec.push_back(lp_e);
vec.push_back(lp_f);
nla.add_monomial(lp_ef, vec.size(), vec.begin());
// create monomial ij
vec.clear();
vec.push_back(lp_i);
vec.push_back(lp_j);
int mon_ij = nla.add_monomial(lp_ij, vec.size(), vec.begin());
// set e == i + 1
s_set_column_value(s, lp_e, s.get_column_value(lp_i) + lp::impq(rational(1)));
// set f == j + 1
s_set_column_value(s, lp_f, s.get_column_value(lp_j) +lp::impq( rational(1)));
// set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.m_core->mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_cd, nla.m_core->mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.m_core->mon_value_by_vars(mon_ij));
// set ef = ij while it has to be ef > ij
s_set_column_value(s, lp_ef, s.get_column_value(lp_ij));
vector<lemma> lemma;
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
}
void solver::test_tangent_lemma_reg() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, ab = 10;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b");
// lpvar lp_c = s.add_named_var(c, true, "c");
// lpvar lp_d = s.add_named_var(d, true, "d");
// lpvar lp_e = s.add_named_var(e, true, "e");
// lpvar lp_f = s.add_named_var(f, true, "f");
// lpvar lp_i = s.add_named_var(i, true, "i");
// lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
int sign = 1;
for (unsigned j = 0; j < s.number_of_vars(); j++) {
sign *= -1;
s_set_column_value(s, j, sign * rational((j + 2) * (j + 2)));
}
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
s_set_column_value(s, lp_ab, nla.m_core->mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value
vector<lemma> lemma;
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
}
void solver::test_tangent_lemma_equiv() {
enable_trace("nla_solver");
lp::lar_solver s;
unsigned a = 0, b = 1, k = 2, ab = 10;
lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_k = s.add_named_var(k, true, "k");
lpvar lp_b = s.add_named_var(b, true, "b");
// lpvar lp_c = s.add_named_var(c, true, "c");
// lpvar lp_d = s.add_named_var(d, true, "d");
// lpvar lp_e = s.add_named_var(e, true, "e");
// lpvar lp_f = s.add_named_var(f, true, "f");
// lpvar lp_i = s.add_named_var(i, true, "i");
// lpvar lp_j = s.add_named_var(j, true, "j");
lpvar lp_ab = s.add_named_var(ab, true, "ab");
int sign = 1;
for (unsigned j = 0; j < s.number_of_vars(); j++) {
sign *= -1;
s_set_column_value(s, j, sign * rational((j + 2) * (j + 2)));
}
// make k == -a
lp::lar_term t;
t.add_var(lp_k);
t.add_var(lp_a);
lpvar kj = s.add_term(t.coeffs_as_vector(), -1);
s.add_var_bound(kj, llc::LE, rational(0));
s.add_var_bound(kj, llc::GE, rational(0));
s_set_column_value(s, lp_a, - s.get_column_value(lp_k));
reslimit l;
params_ref p;
solver nla(s, l, p);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
vec.push_back(lp_b);
int mon_ab = nla.add_monomial(lp_ab, vec.size(), vec.begin());
s_set_column_value(s, lp_ab, nla.m_core->mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value
vector<lemma> lemma;
SASSERT(nla.m_core->test_check(lemma) == l_false);
nla.m_core->print_lemma(std::cout);
}
void solver::test_tangent_lemma() {
test_tangent_lemma_reg();
test_tangent_lemma_equiv();
}
void solver::test_order_lemma() {
test_order_lemma_params(false, 1);
test_order_lemma_params(false, -1);
test_order_lemma_params(true, 1);
test_order_lemma_params(true, -1);
}
}

View file

@ -37,25 +37,10 @@ public:
solver(lp::lar_solver& s, reslimit& lim, params_ref const& p);
~solver();
inline core * get_core() { return m_core; }
void push();
void pop(unsigned scopes);
bool need_check();
lbool check(vector<lemma>&);
static void test_factorization();
static void test_basic_sign_lemma();
static void test_basic_lemma_for_mon_zero_from_monomial_to_factors();
static void test_basic_lemma_for_mon_zero_from_factors_to_monomial();
static void test_basic_lemma_for_mon_neutral_from_monomial_to_factors();
static void test_basic_lemma_for_mon_neutral_from_factors_to_monomial();
static void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0();
static void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1();
static void test_order_lemma();
static void test_order_lemma_params(bool, int sign);
static void test_monotone_lemma();
static void test_tangent_lemma();
static void test_tangent_lemma_reg();
static void test_tangent_lemma_equiv();
static void s_set_column_value(lp::lar_solver&, unsigned, const rational &);
static void s_set_column_value(lp::lar_solver&, unsigned, const lp::impq &);
};
}