mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 09:34:08 +00:00
document dioph_eq
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
02a509b6e8
commit
480c48f93d
|
@ -4,6 +4,32 @@
|
|||
#include "math/lp/lp_utils.h"
|
||||
#include <list>
|
||||
#include <queue>
|
||||
/*
|
||||
Following paper: "A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic"
|
||||
by Alberto Griggio(griggio@fbk.eu)
|
||||
Data structures are:
|
||||
-- term_o: inherits lar_term and differs from it by having a constant, while lar_term is just
|
||||
a sum of monomials
|
||||
-- entry : has a dependency lar_term, keeping the history of the entry updates, the rational constant
|
||||
of the corresponding term_o, and the entry status that is in {F,S, NO_S_NO_F}. The entry status is used for efficiency
|
||||
reasons. It allows quickly check if an entry belongs to F, S, or neither.
|
||||
dioph_eq::imp main fields are
|
||||
-- lra: pointer to lar_solver.
|
||||
-- lia: point to int_solver.
|
||||
-- m_entries: it keeps all "entry" objects.
|
||||
-- m_e_matrix: i-th row of this matrix keeps the term corresponding to m_entries[i].
|
||||
The actual term is the sum of the matrix row and the constant m_c of the entry.
|
||||
The column j of the matrix corresponds to j column of lar_solver if j < lra.column_count().
|
||||
Otherwise, j is a fresh column. It has to change in the interactive version.
|
||||
Implementation remarks:
|
||||
-- get_term_from_entry(unsigned i) return a term corresponding i-th entry. If t = get_term_from_entry(i)
|
||||
then we have equality t = 0. Initially get_term_from_entry(i) is set to initt(j) = lra.get_term(j) - j,
|
||||
for some column j,where all fixed variables are replaced by their values.
|
||||
To track the explanations of equality t = 0 we initially set m_entries[i].m_l = lar_term(j), and update m_l
|
||||
accordingly with the pivot operations. The explanation is obtained by replacing term m_l = sum(aj*j) by the linear
|
||||
combination sum (aj*initt(j)) and joining the explanations of all fixed variables in the latter sum.
|
||||
entry_invariant(i) guarantees the validity of entry i.
|
||||
*/
|
||||
namespace lp {
|
||||
// This class represents a term with an added constant number c, in form sum {x_i*a_i} + c.
|
||||
class dioph_eq::imp {
|
||||
|
@ -161,7 +187,7 @@ namespace lp {
|
|||
mpq m_c; // the constant of the term, the term is taken from the row of m_e_matrix with the same index as the entry
|
||||
entry_status m_entry_status;
|
||||
};
|
||||
std_vector<entry> m_eprime;
|
||||
std_vector<entry> m_entries;
|
||||
// the terms are stored in m_A and m_c
|
||||
static_matrix<mpq, mpq> m_e_matrix; // the rows of the matrix are the terms, without the constant part
|
||||
int_solver& lia;
|
||||
|
@ -182,7 +208,7 @@ namespace lp {
|
|||
|
||||
std_vector<unsigned> m_k2s;
|
||||
std_vector<unsigned> m_fresh_definitions; // seems only needed in the debug version in remove_fresh_vars
|
||||
unsigned m_conflict_index = -1; // m_eprime[m_conflict_index] gives the conflict
|
||||
unsigned m_conflict_index = -1; // m_entries[m_conflict_index] gives the conflict
|
||||
public:
|
||||
imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) {}
|
||||
term_o get_term_from_entry(unsigned i) const {
|
||||
|
@ -190,21 +216,21 @@ namespace lp {
|
|||
for (const auto & p: m_e_matrix.m_rows[i]) {
|
||||
t.add_monomial(p.coeff(), p.var());
|
||||
}
|
||||
t.c() = m_eprime[i].m_c;
|
||||
t.c() = m_entries[i].m_c;
|
||||
return t;
|
||||
}
|
||||
// the term has form sum(a_i*x_i) - t.j() = 0,
|
||||
// i is the index of the term in the lra.m_terms
|
||||
void fill_entry(const lar_term& t) {
|
||||
TRACE("dioph_eq", print_lar_term_L(t, tout) << std::endl;);
|
||||
unsigned i = static_cast<unsigned>(m_eprime.size());
|
||||
unsigned i = static_cast<unsigned>(m_entries.size());
|
||||
entry te = {lar_term(t.j()), mpq(0), entry_status::NO_S_NO_F};
|
||||
unsigned entry_index = m_eprime.size();
|
||||
unsigned entry_index = m_entries.size();
|
||||
m_f.push_back(entry_index);
|
||||
m_eprime.push_back(te);
|
||||
entry& e = m_eprime.back();
|
||||
m_entries.push_back(te);
|
||||
entry& e = m_entries.back();
|
||||
m_e_matrix.add_row();
|
||||
SASSERT(m_e_matrix.row_count() == m_eprime.size());
|
||||
SASSERT(m_e_matrix.row_count() == m_entries.size());
|
||||
|
||||
for (const auto & p: t) {
|
||||
SASSERT(p.coeff().is_int());
|
||||
|
@ -247,7 +273,7 @@ namespace lp {
|
|||
m_conflict_index = -1;
|
||||
m_infeas_explanation.clear();
|
||||
lia.get_term().clear();
|
||||
m_eprime.clear();
|
||||
m_entries.clear();
|
||||
for (unsigned j = 0; j < lra.column_count(); j++) {
|
||||
if (!lra.column_is_int(j)|| !lra.column_has_term(j)) continue;
|
||||
const lar_term& t = lra.get_term(j);
|
||||
|
@ -320,7 +346,7 @@ namespace lp {
|
|||
// it is needed by the next steps
|
||||
// the conflict can be used to report "cuts from proofs"
|
||||
bool normalize_e_by_gcd(unsigned ei) {
|
||||
entry& e = m_eprime[ei];
|
||||
entry& e = m_entries[ei];
|
||||
TRACE("dioph_eq", print_entry(ei, tout) << std::endl;);
|
||||
mpq g = gcd_of_coeffs(m_e_matrix.m_rows[ei]);
|
||||
if (g.is_zero() || g.is_one()) {
|
||||
|
@ -333,7 +359,7 @@ namespace lp {
|
|||
for (auto& p: m_e_matrix.m_rows[ei]) {
|
||||
p.coeff() /= g;
|
||||
}
|
||||
m_eprime[ei].m_c = c_g;
|
||||
m_entries[ei].m_c = c_g;
|
||||
e.m_l *= (1/g);
|
||||
TRACE("dioph_eq", tout << "ep_m_e:"; print_entry(ei, tout) << std::endl;);
|
||||
SASSERT(entry_invariant(ei));
|
||||
|
@ -426,7 +452,7 @@ namespace lp {
|
|||
return ret;
|
||||
}
|
||||
const entry& entry_for_subs(unsigned k) const {
|
||||
return m_eprime[m_k2s[k]];
|
||||
return m_entries[m_k2s[k]];
|
||||
}
|
||||
|
||||
const unsigned sub_index(unsigned k) const {
|
||||
|
@ -714,7 +740,7 @@ public:
|
|||
// j is the variable to eliminate, it appears in row e.m_e_matrix with
|
||||
// a coefficient equal to +-1
|
||||
void eliminate_var_in_f(unsigned ei, unsigned j, int j_sign) {
|
||||
entry& e = m_eprime[ei];
|
||||
entry& e = m_entries[ei];
|
||||
TRACE("dioph_eq", tout << "eliminate var:" << j << " by using:"; print_entry(ei, tout) << std::endl;);
|
||||
auto &column = m_e_matrix.m_columns[j];
|
||||
int pivot_col_cell_index = -1;
|
||||
|
@ -738,7 +764,7 @@ public:
|
|||
unsigned cell_to_process = column.size() - 1;
|
||||
while (cell_to_process > 0) {
|
||||
auto & c = column[cell_to_process];
|
||||
if (m_eprime[c.var()].m_entry_status != entry_status::F) {
|
||||
if (m_entries[c.var()].m_entry_status != entry_status::F) {
|
||||
cell_to_process--;
|
||||
continue;
|
||||
}
|
||||
|
@ -747,14 +773,14 @@ public:
|
|||
mpq coeff = m_e_matrix.get_val(c);
|
||||
unsigned i = c.var();
|
||||
TRACE("dioph_eq", tout << "before pivot entry :"; print_entry(i, tout) << std::endl;);
|
||||
m_eprime[i].m_c -= j_sign * coeff*e.m_c;
|
||||
m_entries[i].m_c -= j_sign * coeff*e.m_c;
|
||||
m_e_matrix.pivot_row_to_row_given_cell_with_sign(ei, c, j, j_sign);
|
||||
m_eprime[i].m_l -= j_sign * coeff * e.m_l;
|
||||
m_entries[i].m_l -= j_sign * coeff * e.m_l;
|
||||
TRACE("dioph_eq", tout << "after pivoting c_row:"; print_entry(i, tout););
|
||||
CTRACE("dioph_eq", !entry_invariant(i),
|
||||
tout << "invariant delta:";
|
||||
{
|
||||
const auto& e = m_eprime[i];
|
||||
const auto& e = m_entries[i];
|
||||
print_term_o(get_term_from_entry(ei) - fix_vars(open_ml(e.m_l)), tout) << std::endl;
|
||||
}
|
||||
);
|
||||
|
@ -764,7 +790,7 @@ public:
|
|||
}
|
||||
|
||||
bool entry_invariant(unsigned ei) const {
|
||||
const auto &e = m_eprime[ei];
|
||||
const auto &e = m_entries[ei];
|
||||
bool ret = remove_fresh_vars(get_term_from_entry(ei)) == fix_vars(open_ml(e.m_l));
|
||||
if (ret) return true;
|
||||
TRACE("dioph_eq",
|
||||
|
@ -846,13 +872,13 @@ public:
|
|||
Then -xt + x_k + sum {qi*x_i)| i != k} + c_q will be the fresh row
|
||||
eh = ahk*xt + sum {ri*x_i | i != k} + c_r is the row m_e_matrix[e.m_row_index]
|
||||
*/
|
||||
auto & e = m_eprime[h];
|
||||
auto & e = m_entries[h];
|
||||
mpq q, r;
|
||||
q = machine_div_rem(e.m_c, ahk, r);
|
||||
e.m_c = r;
|
||||
m_e_matrix.add_new_element(h, xt, ahk);
|
||||
|
||||
m_eprime.push_back({lar_term(), q, entry_status::NO_S_NO_F});
|
||||
m_entries.push_back({lar_term(), q, entry_status::NO_S_NO_F});
|
||||
m_e_matrix.add_new_element(fresh_row, xt, -mpq(1));
|
||||
m_e_matrix.add_new_element(fresh_row, k, mpq(1));
|
||||
for (unsigned i: m_indexed_work_vector.m_index) {
|
||||
|
@ -877,8 +903,8 @@ public:
|
|||
}
|
||||
|
||||
std::ostream& print_entry(unsigned i, std::ostream& out, bool print_dep = true) {
|
||||
out << "m_eprime[" << i << "]:";
|
||||
return print_entry(i, m_eprime[i], out, print_dep);
|
||||
out << "m_entries[" << i << "]:";
|
||||
return print_entry(i, m_entries[i], out, print_dep);
|
||||
}
|
||||
|
||||
std::ostream& print_entry(unsigned ei, const entry& e, std::ostream& out, bool need_print_dep = true) {
|
||||
|
@ -907,8 +933,8 @@ public:
|
|||
|
||||
// k is the index of the variable that is being substituted
|
||||
void move_entry_from_f_to_s(unsigned k, unsigned h) {
|
||||
SASSERT(m_eprime[h].m_entry_status == entry_status::F);
|
||||
m_eprime[h].m_entry_status = entry_status::S;
|
||||
SASSERT(m_entries[h].m_entry_status == entry_status::F);
|
||||
m_entries[h].m_entry_status = entry_status::S;
|
||||
if (k >= m_k2s.size()) { // k is a fresh variable
|
||||
m_k2s.resize(k+1, -1 );
|
||||
}
|
||||
|
@ -924,7 +950,7 @@ public:
|
|||
auto it = m_f.begin();
|
||||
while (it != m_f.end()) {
|
||||
if (m_e_matrix.m_rows[*it].size() == 0) {
|
||||
if (m_eprime[*it].m_c.is_zero()) {
|
||||
if (m_entries[*it].m_c.is_zero()) {
|
||||
it = m_f.erase(it);
|
||||
continue;
|
||||
} else {
|
||||
|
@ -961,7 +987,7 @@ public:
|
|||
}
|
||||
SASSERT(ex.empty());
|
||||
TRACE("dioph_eq", tout << "conflict:"; print_entry(m_conflict_index, tout, true) << std::endl;);
|
||||
auto & ep = m_eprime[m_conflict_index];
|
||||
auto & ep = m_entries[m_conflict_index];
|
||||
for (auto ci: lra.flatten(explain_fixed_in_meta_term(ep.m_l))) {
|
||||
ex.push_back(ci);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue