3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

move validation code to unit test

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-02-15 17:46:22 -08:00
parent f46c7f9bd9
commit 47342e5d0c
3 changed files with 185 additions and 237 deletions

View file

@ -1,14 +1,180 @@
#include "hilbert_basis.h"
#include "hilbert_basis_validate.h"
#include "ast_pp.h"
#include "reg_decl_plugins.h"
#include "arith_decl_plugin.h"
#include "quant_tactics.h"
#include "tactic.h"
#include "tactic2solver.h"
#include "solver.h"
#include <signal.h>
#include <time.h>
#include <sstream>
class hilbert_basis_validate {
ast_manager& m;
void validate_solution(hilbert_basis& hb, vector<rational> const& v, bool is_initial);
public:
hilbert_basis_validate(ast_manager& m);
expr_ref mk_validate(hilbert_basis& hb);
};
hilbert_basis_validate::hilbert_basis_validate(ast_manager& m):
m(m) {
}
void hilbert_basis_validate::validate_solution(hilbert_basis& hb, vector<rational> const& v, bool is_initial) {
unsigned sz = hb.get_num_ineqs();
rational bound;
for (unsigned i = 0; i < sz; ++i) {
bool is_eq;
vector<rational> w;
hb.get_ge(i, w, bound, is_eq);
rational sum(0);
for (unsigned j = 0; j < v.size(); ++j) {
sum += w[j]*v[j];
}
if (bound > sum ||
(is_eq && bound != sum)) {
// validation failed.
std::cout << "validation failed for inequality\n";
for (unsigned j = 0; j < v.size(); ++j) {
std::cout << v[j] << " ";
}
std::cout << "\n";
for (unsigned j = 0; j < w.size(); ++j) {
std::cout << w[j] << " ";
}
std::cout << (is_eq?" = ":" >= ") << bound << "\n";
std::cout << "is initial: " << (is_initial?"true":"false") << "\n";
std::cout << "sum: " << sum << "\n";
}
}
}
expr_ref hilbert_basis_validate::mk_validate(hilbert_basis& hb) {
arith_util a(m);
unsigned sz = hb.get_basis_size();
vector<rational> v;
bool is_initial;
// check that claimed solution really satisfies inequalities:
for (unsigned i = 0; i < sz; ++i) {
hb.get_basis_solution(i, v, is_initial);
validate_solution(hb, v, is_initial);
}
// check that solutions satisfying inequalities are in solution.
// build a formula that says solutions to linear inequalities
// coincide with linear combinations of basis.
vector<expr_ref_vector> offsets, increments;
expr_ref_vector xs(m), vars(m);
expr_ref var(m);
svector<symbol> names;
sort_ref_vector sorts(m);
#define mk_mul(_r,_x) (_r.is_one()?((expr*)_x):((expr*)a.mk_mul(a.mk_numeral(_r,true),_x)))
for (unsigned i = 0; i < sz; ++i) {
hb.get_basis_solution(i, v, is_initial);
for (unsigned j = 0; xs.size() < v.size(); ++j) {
xs.push_back(m.mk_fresh_const("x", a.mk_int()));
}
if (is_initial) {
expr_ref_vector tmp(m);
for (unsigned j = 0; j < v.size(); ++j) {
tmp.push_back(a.mk_numeral(v[j], true));
}
offsets.push_back(tmp);
}
else {
var = m.mk_var(vars.size(), a.mk_int());
expr_ref_vector tmp(m);
for (unsigned j = 0; j < v.size(); ++j) {
tmp.push_back(mk_mul(v[j], var));
}
std::stringstream name;
name << "u" << i;
increments.push_back(tmp);
vars.push_back(var);
names.push_back(symbol(name.str().c_str()));
sorts.push_back(a.mk_int());
}
}
expr_ref_vector bounds(m);
for (unsigned i = 0; i < vars.size(); ++i) {
bounds.push_back(a.mk_ge(vars[i].get(), a.mk_numeral(rational(0), true)));
}
expr_ref_vector fmls(m);
expr_ref fml(m), fml1(m), fml2(m);
for (unsigned i = 0; i < offsets.size(); ++i) {
expr_ref_vector eqs(m);
eqs.append(bounds);
for (unsigned j = 0; j < xs.size(); ++j) {
expr_ref_vector sum(m);
sum.push_back(offsets[i][j].get());
for (unsigned k = 0; k < increments.size(); ++k) {
sum.push_back(increments[k][j].get());
}
eqs.push_back(m.mk_eq(xs[j].get(), a.mk_add(sum.size(), sum.c_ptr())));
}
fml = m.mk_and(eqs.size(), eqs.c_ptr());
if (!names.empty()) {
fml = m.mk_exists(names.size(), sorts.c_ptr(), names.c_ptr(), fml);
}
fmls.push_back(fml);
}
fml1 = m.mk_or(fmls.size(), fmls.c_ptr());
fmls.reset();
sz = hb.get_num_ineqs();
for (unsigned i = 0; i < sz; ++i) {
bool is_eq;
vector<rational> w;
rational bound;
hb.get_ge(i, w, bound, is_eq);
expr_ref_vector sum(m);
for (unsigned j = 0; j < w.size(); ++j) {
if (!w[j].is_zero()) {
sum.push_back(mk_mul(w[j], xs[j].get()));
}
}
expr_ref lhs(m), rhs(m);
lhs = a.mk_add(sum.size(), sum.c_ptr());
rhs = a.mk_numeral(bound, true);
if (is_eq) {
fmls.push_back(a.mk_eq(lhs, rhs));
}
else {
fmls.push_back(a.mk_ge(lhs, rhs));
}
}
fml2 = m.mk_and(fmls.size(), fmls.c_ptr());
fml = m.mk_eq(fml1, fml2);
bounds.reset();
for (unsigned i = 0; i < xs.size(); ++i) {
if (!hb.get_is_int(i)) {
bounds.push_back(a.mk_ge(xs[i].get(), a.mk_numeral(rational(0), true)));
}
}
if (!bounds.empty()) {
fml = m.mk_implies(m.mk_and(bounds.size(), bounds.c_ptr()), fml);
}
return fml;
}
#include<signal.h>
#include<time.h>
hilbert_basis* g_hb = 0;
static double g_start_time;
@ -236,6 +402,7 @@ static void tst6() {
// Sigma_4 table 1, Ajili, Contejean
static void tst7() {
hilbert_basis hb;
hb.add_eq(vec( 1, 1, 1, 0), R(5));
hb.add_le(vec( 2, 1, 0, 1), R(6));
hb.add_le(vec( 1, 2, 1, 1), R(7));
hb.add_le(vec( 1, 3,-1, 2), R(8));
@ -268,7 +435,7 @@ static void tst9() {
static void tst10() {
hilbert_basis hb;
hb.add_le(vec( 1,-1,-1,-3), R(2));
hb.add_le(vec(-2, 3, 3, 5), R(3));
hb.add_le(vec(-2, 3, 3,-5), R(3));
saturate_basis(hb);
}
@ -279,15 +446,8 @@ static void tst11() {
saturate_basis(hb);
}
static void tst12() {
hilbert_basis hb;
hb.add_le(vec(1, 0), R(1));
hb.add_le(vec(0, 1), R(1));
saturate_basis(hb);
}
// Sigma_9 table 1, Ajili, Contejean
static void tst13() {
static void tst12() {
hilbert_basis hb;
hb.add_eq(vec( 1,-2,-4,4), R(0));
hb.add_le(vec(100,45,-78,-67), R(0));
@ -295,17 +455,25 @@ static void tst13() {
}
// Sigma_10 table 1, Ajili, Contejean
static void tst14() {
static void tst13() {
hilbert_basis hb;
hb.add_le(vec( 23, -56, -34, 12, 11), R(0));
saturate_basis(hb);
}
// Sigma_11 table 1, Ajili, Contejean
static void tst14() {
hilbert_basis hb;
hb.add_eq(vec(1, 0, -4, 8), R(2));
hb.add_le(vec(12,19,-11,7), R(-7));
saturate_basis(hb);
}
static void tst15() {
// hilbert_basis hb;
// hb.add_le(vec( 23, -56, -34, 12, 11), R(0));
// saturate_basis(hb);
hilbert_basis hb;
hb.add_le(vec(1, 0), R(1));
hb.add_le(vec(0, 1), R(1));
saturate_basis(hb);
}
@ -336,5 +504,6 @@ void tst_hilbert_basis() {
}
else {
gorrila_test(0, 10, 7, 20, 11);
tst4();
}
}