3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-20 23:56:37 +00:00
* initial skeletons for nra solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* initial skeletons for nra solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding more nlsat

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* nlsat integration

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding constraints

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding nra solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* add missing initialization

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* adding nra solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-05-24 16:32:14 -07:00 committed by Lev Nachmanson
parent 09530bb6bc
commit 4726d32e2f
12 changed files with 338 additions and 46 deletions

View file

@ -35,10 +35,10 @@ endforeach()
# raised if you try to declare a component is dependent on another component
# that has not yet been declared.
add_subdirectory(util)
add_subdirectory(util/lp)
add_subdirectory(math/polynomial)
add_subdirectory(sat)
add_subdirectory(nlsat)
add_subdirectory(util/lp)
add_subdirectory(math/hilbert)
add_subdirectory(math/simplex)
add_subdirectory(math/automata)

View file

@ -70,6 +70,7 @@ z3_add_component(smt
euclid
fpa
grobner
nlsat
lp
macros
normal_forms

View file

@ -1,4 +1,4 @@
add_executable(lp_tst lp_main.cpp lp.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:lp>)
add_executable(lp_tst lp_main.cpp lp.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:polynomial> $<TARGET_OBJECTS:nlsat> $<TARGET_OBJECTS:lp> )
target_compile_definitions(lp_tst PRIVATE ${Z3_COMPONENT_CXX_DEFINES})
target_compile_options(lp_tst PRIVATE ${Z3_COMPONENT_CXX_FLAGS})
target_include_directories(lp_tst PRIVATE ${Z3_COMPONENT_EXTRA_INCLUDE_DIRS})

View file

@ -30,6 +30,8 @@ z3_add_component(lp
random_updater_instances.cpp
COMPONENT_DEPENDENCIES
util
polynomial
nlsat
PYG_FILES
lp_params.pyg
)

View file

@ -21,10 +21,10 @@ Revision History:
#ifndef NLSAT_SOLVER_H_
#define NLSAT_SOLVER_H_
#include"nlsat_types.h"
#include"params.h"
#include"statistics.h"
#include"rlimit.h"
#include"nlsat/nlsat_types.h"
#include"util/params.h"
#include"util/statistics.h"
#include"util/rlimit.h"
namespace nlsat {

View file

@ -19,10 +19,10 @@ Revision History:
#ifndef NLSAT_TYPES_H_
#define NLSAT_TYPES_H_
#include"polynomial.h"
#include"buffer.h"
#include"sat_types.h"
#include"z3_exception.h"
#include"math/polynomial/polynomial.h"
#include"util/buffer.h"
#include"sat/sat_types.h"
#include"util/z3_exception.h"
namespace algebraic_numbers {
class anum;

View file

@ -415,6 +415,31 @@ namespace smt {
}
}
void internalize_mul(app* t) {
SASSERT(a.is_mul(t));
mk_enode(t);
theory_var v = mk_var(t);
svector<lean::var_index> vars;
ptr_vector<expr> todo;
todo.push_back(t);
while (!todo.empty()) {
expr* n = todo.back();
todo.pop_back();
expr* n1, *n2;
if (a.is_mul(n, n1, n2)) {
todo.push_back(n1);
todo.push_back(n2);
}
else {
if (!ctx().e_internalized(n)) {
ctx().internalize(n, false);
}
vars.push_back(get_var_index(mk_var(n)));
}
}
// m_solver->add_monomial(get_var_index(v), vars);
}
enode * mk_enode(app * n) {
if (ctx().e_internalized(n)) {
return get_enode(n);
@ -1166,18 +1191,41 @@ namespace smt {
else if (m_solver->get_status() != lean::lp_status::OPTIMAL) {
is_sat = make_feasible();
}
final_check_status st = FC_DONE;
switch (is_sat) {
case l_true:
if (delayed_assume_eqs()) {
return FC_CONTINUE;
}
if (assume_eqs()) {
return FC_CONTINUE;
}
if (m_not_handled != 0) {
return FC_GIVEUP;
switch (check_lia()) {
case l_true:
break;
case l_false:
return FC_CONTINUE;
case l_undef:
st = FC_GIVEUP;
break;
}
return FC_DONE;
switch (check_nra()) {
case l_true:
break;
case l_false:
return FC_CONTINUE;
case l_undef:
st = FC_GIVEUP;
break;
}
if (m_not_handled != 0) {
st = FC_GIVEUP;
}
return st;
case l_false:
set_conflict();
return FC_CONTINUE;
@ -1190,6 +1238,28 @@ namespace smt {
return FC_GIVEUP;
}
lbool check_lia() {
if (m.canceled()) return l_undef;
return l_true;
}
lbool check_nra() {
if (m.canceled()) return l_undef;
return l_true;
// TBD:
switch (m_solver->check_nra(m_variable_values, m_explanation)) {
case lean::final_check_status::DONE:
return l_true;
case lean::final_check_status::CONTINUE:
return l_true; // ?? why have a continue at this level ??
case lean::final_check_status::UNSAT:
set_conflict1();
return l_false;
case lean::final_check_status::GIVEUP:
return l_undef;
}
return l_true;
}
/**
\brief We must redefine this method, because theory of arithmetic contains
@ -2197,11 +2267,15 @@ namespace smt {
}
void set_conflict() {
m_solver->get_infeasibility_explanation(m_explanation);
set_conflict1();
}
void set_conflict1() {
m_eqs.reset();
m_core.reset();
m_params.reset();
m_explanation.clear();
m_solver->get_infeasibility_explanation(m_explanation);
// m_solver->shrink_explanation_to_minimum(m_explanation); // todo, enable when perf is fixed
/*
static unsigned cn = 0;

View file

@ -31,7 +31,9 @@ lar_solver::lar_solver() : m_status(OPTIMAL),
m_infeasible_column_index(-1),
m_terms_start_index(1000000),
m_mpq_lar_core_solver(m_settings, *this)
{}
{
m_nra = alloc(nra::solver, *this);
}
void lar_solver::set_propagate_bounds_on_pivoted_rows_mode(bool v) {
m_mpq_lar_core_solver.m_r_solver.m_pivoted_rows = v? (& m_rows_with_changed_bounds) : nullptr;
@ -330,6 +332,7 @@ void lar_solver::push() {
m_term_count.push();
m_constraint_count = m_constraints.size();
m_constraint_count.push();
m_nra->push();
}
void lar_solver::clean_large_elements_after_pop(unsigned n, int_set& set) {
@ -385,6 +388,7 @@ void lar_solver::pop(unsigned k) {
m_settings.simplex_strategy() = m_simplex_strategy;
lean_assert(sizes_are_correct());
lean_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
m_nra->pop(k);
}
vector<constraint_index> lar_solver::get_all_constraint_indices() const {
@ -1084,6 +1088,15 @@ void lar_solver::get_infeasibility_explanation(vector<std::pair<mpq, constraint_
lean_assert(explanation_is_correct(explanation));
}
final_check_status lar_solver::check_nra(nra_model_t& model, explanation_t& explanation) {
return m_nra->check(model, explanation);
}
void lar_solver::add_monomial(var_index v, svector<var_index> const& vars) {
m_nra->add_monomial(v, vars.size(), vars.c_ptr());
}
void lar_solver::get_infeasibility_explanation_for_inf_sign(
vector<std::pair<mpq, constraint_index>> & explanation,
const vector<std::pair<mpq, unsigned>> & inf_row,

View file

@ -31,9 +31,11 @@
#include "util/lp/quick_xplain.h"
#include "util/lp/conversion_helper.h"
#include "util/lp/int_solver.h"
#include "util/lp/nra_solver.h"
namespace lean {
class lar_solver : public column_namer {
class ext_var_info {
unsigned m_ext_j; // the external index
@ -61,7 +63,8 @@ class lar_solver : public column_namer {
stacked_value<unsigned> m_term_count;
vector<lar_term*> m_terms;
const var_index m_terms_start_index;
indexed_vector<mpq> m_column_buffer;
indexed_vector<mpq> m_column_buffer;
scoped_ptr<nra::solver> m_nra;
public:
lar_core_solver m_mpq_lar_core_solver;
unsigned constraint_count() const;
@ -200,10 +203,14 @@ public:
void set_status(lp_status s);
lp_status find_feasible_solution();
final_check_status check_nra(nra_model_t& model, explanation_t& explanation);
void add_monomial(var_index v, svector<var_index> const& vars);
lp_status solve();
void fill_explanation_from_infeasible_column(vector<std::pair<mpq, constraint_index>> & evidence) const;
void fill_explanation_from_infeasible_column(explanation_t & evidence) const;
unsigned get_total_iterations() const;

View file

@ -18,11 +18,17 @@ typedef unsigned constraint_index;
typedef unsigned row_index;
enum class final_check_status {
DONE,
CONTINUE,
GIVEUP
DONE,
CONTINUE,
UNSAT,
GIVEUP
};
typedef vector<std::pair<mpq, constraint_index>> explanation_t;
typedef std::unordered_map<lean::var_index, rational> nra_model_t;
enum class column_type {
free_column = 0,
low_bound = 1,

View file

@ -4,64 +4,254 @@
*/
#pragma once
#include "util/lp/lar_solver.h"
#include "util/lp/nra_solver.h"
#include "nlsat/nlsat_solver.h"
#include "math/polynomial/polynomial.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/map.h"
namespace lp {
struct nra_solver::imp {
namespace nra {
struct solver::imp {
lean::lar_solver& s;
reslimit m_limit; // TBD: extract from lar_solver
params_ref m_params; // TBD: pass from outside
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
svector<lean::var_index> m_vars;
vector<svector<lean::var_index>> m_monomials;
struct mon_eq {
mon_eq(lean::var_index v, svector<lean::var_index> const& vs):
m_v(v), m_vs(vs) {}
lean::var_index m_v;
svector<lean::var_index> m_vs;
};
vector<mon_eq> m_monomials;
unsigned_vector m_lim;
mutable std::unordered_map<lean::var_index, rational> m_variable_values; // current model
imp(lean::lar_solver& s): s(s) {
m_lim.push_back(0);
imp(lean::lar_solver& s):
s(s) {
}
lean::final_check_status check_feasible() {
return lean::final_check_status::GIVEUP;
lean::final_check_status check_feasible(lean::nra_model_t& m, lean::explanation_t& ex) {
if (m_monomials.empty()) {
return lean::final_check_status::DONE;
}
if (check_assignments()) {
return lean::final_check_status::DONE;
}
switch (check_nlsat(m, ex)) {
case l_undef: return lean::final_check_status::GIVEUP;
case l_true: lean::final_check_status::DONE;
case l_false: lean::final_check_status::UNSAT;
}
return lean::final_check_status::DONE;
}
void add(lean::var_index v, unsigned sz, lean::var_index const* vs) {
m_vars.push_back(v);
m_monomials.push_back(svector<lean::var_index>(sz, vs));
m_monomials.push_back(mon_eq(v, svector<lean::var_index>(sz, vs)));
}
void push() {
m_lim.push_back(m_vars.size());
m_lim.push_back(m_monomials.size());
}
void pop(unsigned n) {
if (n == 0) return;
SASSERT(n < m_lim.size());
m_monomials.shrink(m_lim[m_lim.size() - n]);
m_lim.shrink(m_lim.size() - n);
m_vars.shrink(m_lim.back());
m_monomials.shrink(m_lim.back());
}
/*
\brief Check if polynomials are well defined.
multiply values for vs and check if they are equal to value for v.
epsilon has been computed.
*/
bool check_assignment(mon_eq const& m) const {
rational r1 = m_variable_values[m.m_v];
rational r2(1);
for (auto w : m.m_vs) {
r2 *= m_variable_values[w];
}
return r1 == r2;
}
bool check_assignments() const {
s.get_model(m_variable_values);
for (auto const& m : m_monomials) {
if (!check_assignment(m)) return false;
}
return true;
}
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
*/
lbool check_nlsat(lean::nra_model_t& model, lean::explanation_t& ex) {
nlsat::solver solver(m_limit, m_params);
m_lp2nl.reset();
// add linear inequalities from lra_solver
for (unsigned i = 0; i < s.constraint_count(); ++i) {
add_constraint(solver, i);
}
// add polynomial definitions.
for (auto const& m : m_monomials) {
add_monomial_eq(solver, m);
}
// TBD: add variable bounds?
lbool r = solver.check();
switch (r) {
case l_true: {
nlsat::anum_manager& am = solver.am();
model.clear();
for (auto kv : m_lp2nl) {
kv.m_key;
nlsat::anum const& v = solver.value(kv.m_value);
if (is_int(kv.m_key) && !am.is_int(v)) {
// the nlsat solver should already have returned unknown.
TRACE("lp", tout << "Value is not integer " << kv.m_key << "\n";);
return l_undef;
}
if (!am.is_rational(v)) {
// TBD extract and convert model.
TRACE("lp", tout << "Cannot handle algebraic numbers\n";);
return l_undef;
}
rational r;
am.to_rational(v, r);
model[kv.m_key] = r;
}
break;
}
case l_false: {
ex.reset();
vector<nlsat::assumption, false> core;
solver.get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_back(std::pair<rational, unsigned>(rational(1), idx));
}
break;
}
case l_undef:
break;
}
return r;
}
void add_monomial_eq(nlsat::solver& solver, mon_eq const& m) {
polynomial::manager& pm = solver.pm();
svector<polynomial::var> vars;
for (auto v : m.m_vs) {
vars.push_back(lp2nl(solver, v));
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(solver, m.m_v), 1), pm);
polynomial::monomial* mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = solver.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
solver.mk_clause(1, &lit, 0);
}
void add_constraint(nlsat::solver& solver, unsigned idx) {
lean::lar_base_constraint const& c = s.get_constraint(idx);
polynomial::manager& pm = solver.pm();
auto k = c.m_kind;
auto rhs = c.m_right_side;
auto lhs = c.get_left_side_coefficients();
unsigned sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(solver, kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
switch (k) {
case lean::lconstraint_kind::LE:
lit = ~solver.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GE:
lit = ~solver.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::LT:
lit = solver.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GT:
lit = solver.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::EQ:
lit = solver.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
}
nlsat::assumption a = this + idx;
solver.mk_clause(1, &lit, a);
}
bool is_int(lean::var_index v) {
// TBD: is it s.column_is_integer(v), if then the function should take a var_index and not unsigned; s.is_int(v);
return false;
}
polynomial::var lp2nl(nlsat::solver& solver, lean::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = solver.mk_var(is_int(v));
m_lp2nl.insert(v, r);
}
return r;
}
};
nra_solver::nra_solver(lean::lar_solver& s) {
solver::solver(lean::lar_solver& s) {
m_imp = alloc(imp, s);
}
nra_solver::~nra_solver() {
solver::~solver() {
dealloc(m_imp);
}
void nra_solver::add_monomial(lean::var_index v, unsigned sz, lean::var_index const* vs) {
void solver::add_monomial(lean::var_index v, unsigned sz, lean::var_index const* vs) {
m_imp->add(v, sz, vs);
}
lean::final_check_status nra_solver::check_feasible() {
return m_imp->check_feasible();
lean::final_check_status solver::check(lean::nra_model_t& m, lean::explanation_t& ex) {
return m_imp->check_feasible(m, ex);
}
void nra_solver::push() {
void solver::push() {
m_imp->push();
}
void nra_solver::pop(unsigned n) {
void solver::pop(unsigned n) {
m_imp->pop(n);
}
}

View file

@ -6,23 +6,22 @@
#pragma once
#include "util/vector.h"
#include "util/lp/lp_settings.h"
#include "util/lp/lar_solver.h"
namespace lean {
class lar_solver;
}
namespace lp {
namespace nra {
class nra_solver {
class solver {
struct imp;
imp* m_imp;
public:
nra_solver(lean::lar_solver& s);
solver(lean::lar_solver& s);
~nra_solver();
~solver();
/*
\brief Add a definition v = vs[0]*vs[1]*...*vs[sz-1]
@ -34,7 +33,7 @@ namespace lp {
\brief Check feasiblity of linear constraints augmented by polynomial definitions
that are added.
*/
lean::final_check_status check_feasible();
lean::final_check_status check(lean::nra_model_t& m, lean::explanation_t& ex);
/*
\brief push and pop scope.