diff --git a/src/api/api_context.cpp b/src/api/api_context.cpp index 3349bed7c..b10621d43 100644 --- a/src/api/api_context.cpp +++ b/src/api/api_context.cpp @@ -343,22 +343,18 @@ namespace api { void context::push() { get_smt_kernel().push(); - if (!m_user_ref_count) { - m_ast_lim.push_back(m_ast_trail.size()); - m_replay_stack.push_back(0); - } + m_ast_lim.push_back(m_ast_trail.size()); + m_replay_stack.push_back(0); } void context::pop(unsigned num_scopes) { for (unsigned i = 0; i < num_scopes; ++i) { - if (!m_user_ref_count) { - unsigned sz = m_ast_lim.back(); - m_ast_lim.pop_back(); - dealloc(m_replay_stack.back()); - m_replay_stack.pop_back(); - while (m_ast_trail.size() > sz) { - m_ast_trail.pop_back(); - } + unsigned sz = m_ast_lim.back(); + m_ast_lim.pop_back(); + dealloc(m_replay_stack.back()); + m_replay_stack.pop_back(); + while (m_ast_trail.size() > sz) { + m_ast_trail.pop_back(); } } SASSERT(num_scopes <= get_smt_kernel().get_scope_level()); diff --git a/src/api/python/z3.py b/src/api/python/z3.py index d46d40ab2..879b19597 100644 --- a/src/api/python/z3.py +++ b/src/api/python/z3.py @@ -7344,7 +7344,7 @@ def binary_interpolant(a,b,p=None,ctx=None): >>> x = Int('x') >>> print binary_interpolant(x<0,x>2) - x <= 2 + Not(x >= 0) """ f = And(Interp(a),b) return tree_interpolant(f,p,ctx)[0] diff --git a/src/muz/base/dl_context.cpp b/src/muz/base/dl_context.cpp index fbef46ae3..3d0c7c880 100644 --- a/src/muz/base/dl_context.cpp +++ b/src/muz/base/dl_context.cpp @@ -1104,10 +1104,10 @@ namespace datalog { void context::get_raw_rule_formulas(expr_ref_vector& rules, svector& names){ for (unsigned i = 0; i < m_rule_fmls.size(); ++i) { - expr_ref r = bind_variables(m_rule_fmls[i].get(), true); - rules.push_back(r.get()); - // rules.push_back(m_rule_fmls[i].get()); - names.push_back(m_rule_names[i]); + expr_ref r = bind_variables(m_rule_fmls[i].get(), true); + rules.push_back(r.get()); + // rules.push_back(m_rule_fmls[i].get()); + names.push_back(m_rule_names[i]); } } diff --git a/src/smt/theory_arith.h b/src/smt/theory_arith.h index 998dd72e6..d1af762bb 100644 --- a/src/smt/theory_arith.h +++ b/src/smt/theory_arith.h @@ -410,6 +410,7 @@ namespace smt { atoms m_atoms; // set of theory atoms ptr_vector m_asserted_bounds; // set of asserted bounds unsigned m_asserted_qhead; + ptr_vector m_new_atoms; // new bound atoms that have yet to be internalized. svector m_nl_monomials; // non linear monomials svector m_nl_propagated; // non linear monomials that became linear v_dependency_manager m_dep_manager; // for tracking bounds during non-linear reasoning @@ -570,6 +571,22 @@ namespace smt { void mk_clause(literal l1, literal l2, unsigned num_params, parameter * params); void mk_clause(literal l1, literal l2, literal l3, unsigned num_params, parameter * params); void mk_bound_axioms(atom * a); + void mk_bound_axiom(atom* a1, atom* a2); + void flush_bound_axioms(); + typename atoms::iterator next_sup(atom* a1, atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end, + bool& found_compatible); + typename atoms::iterator next_inf(atom* a1, atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end, + bool& found_compatible); + typename atoms::iterator first(atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end); + struct compare_atoms { + bool operator()(atom* a1, atom* a2) const { return a1->get_k() < a2->get_k(); } + }; virtual bool default_internalizer() const { return false; } virtual bool internalize_atom(app * n, bool gate_ctx); virtual bool internalize_term(app * term); diff --git a/src/smt/theory_arith_core.h b/src/smt/theory_arith_core.h index fbc043048..ba4eefc36 100644 --- a/src/smt/theory_arith_core.h +++ b/src/smt/theory_arith_core.h @@ -348,13 +348,24 @@ namespace smt { context & ctx = get_context(); simplifier & s = ctx.get_simplifier(); expr_ref s_ante(m), s_conseq(m); + expr* s_conseq_n, * s_ante_n; + bool negated; proof_ref pr(m); + s(ante, s_ante, pr); + negated = m.is_not(s_ante, s_ante_n); + if (negated) s_ante = s_ante_n; ctx.internalize(s_ante, false); literal l_ante = ctx.get_literal(s_ante); + if (negated) l_ante.neg(); + s(conseq, s_conseq, pr); + negated = m.is_not(s_conseq, s_conseq_n); + if (negated) s_conseq = s_conseq_n; ctx.internalize(s_conseq, false); literal l_conseq = ctx.get_literal(s_conseq); + if (negated) l_conseq.neg(); + literal lits[2] = {l_ante, l_conseq}; ctx.mk_th_axiom(get_id(), 2, lits); if (ctx.relevancy()) { @@ -800,48 +811,244 @@ namespace smt { template void theory_arith::mk_bound_axioms(atom * a1) { theory_var v = a1->get_var(); - literal l1(a1->get_bool_var()); + atoms & occs = m_var_occs[v]; + if (!get_context().is_searching()) { + // + // NB. We make an assumption that user push calls propagation + // before internal scopes are pushed. This flushes all newly + // asserted atoms into the right context. + // + m_new_atoms.push_back(a1); + return; + } numeral const & k1(a1->get_k()); atom_kind kind1 = a1->get_atom_kind(); TRACE("mk_bound_axioms", tout << "making bound axioms for v" << v << " " << kind1 << " " << k1 << "\n";); - atoms & occs = m_var_occs[v]; typename atoms::iterator it = occs.begin(); typename atoms::iterator end = occs.end(); + + typename atoms::iterator lo_inf = end, lo_sup = end; + typename atoms::iterator hi_inf = end, hi_sup = end; for (; it != end; ++it) { - atom * a2 = *it; - literal l2(a2->get_bool_var()); - numeral const & k2 = a2->get_k(); - atom_kind kind2 = a2->get_atom_kind(); + atom * a2 = *it; + numeral const & k2(a2->get_k()); + atom_kind kind2 = a2->get_atom_kind(); SASSERT(k1 != k2 || kind1 != kind2); - SASSERT(a2->get_var() == v); - parameter coeffs[3] = { parameter(symbol("farkas")), parameter(rational(1)), parameter(rational(1)) }; - if (kind1 == A_LOWER) { - if (kind2 == A_LOWER) { - // x >= k1, x >= k2 - if (k1 >= k2) mk_clause(~l1, l2, 3, coeffs); - else mk_clause(~l2, l1, 3, coeffs); + if (kind2 == A_LOWER) { + if (k2 < k1) { + if (lo_inf == end || k2 > (*lo_inf)->get_k()) { + lo_inf = it; + } } - else { - // x >= k1, x <= k2 - if (k1 > k2) mk_clause(~l1, ~l2, 3, coeffs); - else mk_clause(l1, l2, 3, coeffs); + else if (lo_sup == end || k2 < (*lo_sup)->get_k()) { + lo_sup = it; } } - else { - if (kind2 == A_LOWER) { - // x <= k1, x >= k2 - if (k1 < k2) mk_clause(~l1, ~l2, 3, coeffs); - else mk_clause(l1, l2, 3, coeffs); + else if (k2 < k1) { + if (hi_inf == end || k2 > (*hi_inf)->get_k()) { + hi_inf = it; + } + } + else if (hi_sup == end || k2 < (*hi_sup)->get_k()) { + hi_sup = it; + } + } + if (lo_inf != end) mk_bound_axiom(a1, *lo_inf); + if (lo_sup != end) mk_bound_axiom(a1, *lo_sup); + if (hi_inf != end) mk_bound_axiom(a1, *hi_inf); + if (hi_sup != end) mk_bound_axiom(a1, *hi_sup); + } + + template + void theory_arith::mk_bound_axiom(atom* a1, atom* a2) { + theory_var v = a1->get_var(); + literal l1(a1->get_bool_var()); + literal l2(a2->get_bool_var()); + numeral const & k1(a1->get_k()); + numeral const & k2(a2->get_k()); + atom_kind kind1 = a1->get_atom_kind(); + atom_kind kind2 = a2->get_atom_kind(); + bool v_is_int = is_int(v); + SASSERT(v == a2->get_var()); + SASSERT(k1 != k2 || kind1 != kind2); + parameter coeffs[3] = { parameter(symbol("farkas")), + parameter(rational(1)), parameter(rational(1)) }; + + //std::cout << "v" << v << " " << ((kind1==A_LOWER)?"<= ":">= ") << k1 << "\t "; + //std::cout << "v" << v << " " << ((kind2==A_LOWER)?"<= ":">= ") << k2 << "\n"; + + if (kind1 == A_LOWER) { + if (kind2 == A_LOWER) { + if (k2 <= k1) { + mk_clause(~l1, l2, 3, coeffs); } else { - // x <= k1, x <= k2 - if (k1 < k2) mk_clause(~l1, l2, 3, coeffs); - else mk_clause(~l2, l1, 3, coeffs); + mk_clause(l1, ~l2, 3, coeffs); + } + } + else if (k1 <= k2) { + // k1 <= k2, k1 <= x or x <= k2 + mk_clause(l1, l2, 3, coeffs); + } + else { + // k1 > hi_inf, k1 <= x => ~(x <= hi_inf) + mk_clause(~l1, ~l2, 3, coeffs); + if (v_is_int && k1 == k2 + numeral(1)) { + // k1 <= x or x <= k1-1 + mk_clause(l1, l2, 3, coeffs); } } } + else if (kind2 == A_LOWER) { + if (k1 >= k2) { + // k1 >= lo_inf, k1 >= x or lo_inf <= x + mk_clause(l1, l2, 3, coeffs); + } + else { + // k1 < k2, k2 <= x => ~(x <= k1) + mk_clause(~l1, ~l2, 3, coeffs); + if (v_is_int && k1 == k2 - numeral(1)) { + // x <= k1 or k1+l <= x + mk_clause(l1, l2, 3, coeffs); + } + + } + } + else { + // kind1 == A_UPPER, kind2 == A_UPPER + if (k1 >= k2) { + // k1 >= k2, x <= k2 => x <= k1 + mk_clause(l1, ~l2, 3, coeffs); + } + else { + // k1 <= hi_sup , x <= k1 => x <= hi_sup + mk_clause(~l1, l2, 3, coeffs); + } + } } + template + void theory_arith::flush_bound_axioms() { + while (!m_new_atoms.empty()) { + ptr_vector atoms; + atoms.push_back(m_new_atoms.back()); + m_new_atoms.pop_back(); + theory_var v = atoms.back()->get_var(); + for (unsigned i = 0; i < m_new_atoms.size(); ++i) { + if (m_new_atoms[i]->get_var() == v) { + atoms.push_back(m_new_atoms[i]); + m_new_atoms[i] = m_new_atoms.back(); + m_new_atoms.pop_back(); + --i; + } + } + ptr_vector occs(m_var_occs[v]); + + std::sort(atoms.begin(), atoms.end(), compare_atoms()); + std::sort(occs.begin(), occs.end(), compare_atoms()); + + typename atoms::iterator begin1 = occs.begin(); + typename atoms::iterator begin2 = occs.begin(); + typename atoms::iterator end = occs.end(); + begin1 = first(A_LOWER, begin1, end); + begin2 = first(A_UPPER, begin2, end); + + typename atoms::iterator lo_inf = begin1, lo_sup = begin1; + typename atoms::iterator hi_inf = begin2, hi_sup = begin2; + typename atoms::iterator lo_inf1 = begin1, lo_sup1 = begin1; + typename atoms::iterator hi_inf1 = begin2, hi_sup1 = begin2; + bool flo_inf, fhi_inf, flo_sup, fhi_sup; + // std::cout << atoms.size() << "\n"; + ptr_addr_hashtable visited; + for (unsigned i = 0; i < atoms.size(); ++i) { + atom* a1 = atoms[i]; + lo_inf1 = next_inf(a1, A_LOWER, lo_inf, end, flo_inf); + hi_inf1 = next_inf(a1, A_UPPER, hi_inf, end, fhi_inf); + lo_sup1 = next_sup(a1, A_LOWER, lo_sup, end, flo_sup); + hi_sup1 = next_sup(a1, A_UPPER, hi_sup, end, fhi_sup); +// std::cout << "v" << a1->get_var() << ((a1->get_atom_kind()==A_LOWER)?" <= ":" >= ") << a1->get_k() << "\n"; + // std::cout << (lo_inf1 != end) << " " << (lo_sup1 != end) << " " << (hi_inf1 != end) << " " << (hi_sup1 != end) << "\n"; + if (lo_inf1 != end) lo_inf = lo_inf1; + if (lo_sup1 != end) lo_sup = lo_sup1; + if (hi_inf1 != end) hi_inf = hi_inf1; + if (hi_sup1 != end) hi_sup = hi_sup1; + if (!flo_inf) lo_inf = end; + if (!fhi_inf) hi_inf = end; + if (!flo_sup) lo_sup = end; + if (!fhi_sup) hi_sup = end; + visited.insert(a1); + if (lo_inf1 != end && lo_inf != end && !visited.contains(*lo_inf)) mk_bound_axiom(a1, *lo_inf); + if (lo_sup1 != end && lo_sup != end && !visited.contains(*lo_sup)) mk_bound_axiom(a1, *lo_sup); + if (hi_inf1 != end && hi_inf != end && !visited.contains(*hi_inf)) mk_bound_axiom(a1, *hi_inf); + if (hi_sup1 != end && hi_sup != end && !visited.contains(*hi_sup)) mk_bound_axiom(a1, *hi_sup); + } + } + } + + template + typename theory_arith::atoms::iterator + theory_arith::first( + atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end) { + for (; it != end; ++it) { + atom* a = *it; + if (a->get_atom_kind() == kind) return it; + } + return end; + } + + template + typename theory_arith::atoms::iterator + theory_arith::next_inf( + atom* a1, + atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end, + bool& found_compatible) { + numeral const & k1(a1->get_k()); + typename atoms::iterator result = end; + found_compatible = false; + for (; it != end; ++it) { + atom * a2 = *it; + if (a1 == a2) continue; + if (a2->get_atom_kind() != kind) continue; + numeral const & k2(a2->get_k()); + found_compatible = true; + if (k2 <= k1) { + result = it; + } + else { + break; + } + } + return result; + } + + template + typename theory_arith::atoms::iterator + theory_arith::next_sup( + atom* a1, + atom_kind kind, + typename atoms::iterator it, + typename atoms::iterator end, + bool& found_compatible) { + numeral const & k1(a1->get_k()); + found_compatible = false; + for (; it != end; ++it) { + atom * a2 = *it; + if (a1 == a2) continue; + if (a2->get_atom_kind() != kind) continue; + numeral const & k2(a2->get_k()); + found_compatible = true; + if (k1 < k2) { + return it; + } + } + return end; + } + + template bool theory_arith::internalize_atom(app * n, bool gate_ctx) { TRACE("arith_internalize", tout << "internalising atom:\n" << mk_pp(n, this->get_manager()) << "\n";); @@ -879,7 +1086,7 @@ namespace smt { bool_var bv = ctx.mk_bool_var(n); ctx.set_var_theory(bv, get_id()); rational _k; - m_util.is_numeral(rhs, _k); + VERIFY(m_util.is_numeral(rhs, _k)); numeral k(_k); atom * a = alloc(atom, bv, v, k, kind); mk_bound_axioms(a); @@ -927,6 +1134,7 @@ namespace smt { template void theory_arith::assign_eh(bool_var v, bool is_true) { + TRACE("arith", tout << "v" << v << " " << is_true << "\n";); atom * a = get_bv2a(v); if (!a) return; SASSERT(get_context().get_assignment(a->get_bool_var()) != l_undef); @@ -1142,6 +1350,7 @@ namespace smt { CASSERT("arith", wf_columns()); CASSERT("arith", valid_row_assignment()); + flush_bound_axioms(); propagate_linear_monomials(); while (m_asserted_qhead < m_asserted_bounds.size()) { bound * b = m_asserted_bounds[m_asserted_qhead]; @@ -2421,6 +2630,8 @@ namespace smt { if (val == l_undef) continue; // TODO: check if the following line is a bottleneck + TRACE("arith", tout << "v" << a->get_bool_var() << " " << (val == l_true) << "\n";); + a->assign_eh(val == l_true, get_epsilon(a->get_var())); if (val != l_undef && a->get_bound_kind() == b->get_bound_kind()) { SASSERT((ctx.get_assignment(bv) == l_true) == a->is_true()); @@ -2916,6 +3127,7 @@ namespace smt { SASSERT(m_to_patch.empty()); m_to_check.reset(); m_in_to_check.reset(); + m_new_atoms.reset(); CASSERT("arith", wf_rows()); CASSERT("arith", wf_columns()); CASSERT("arith", valid_row_assignment());